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Abstract: Kidney–ureter–bladder (KUB) imaging is used as a frontline investigation for patients
with suspected renal stones. In this study, we designed a computer-aided diagnostic system for
KUB imaging to assist clinicians in accurately diagnosing urinary tract stones. The image dataset
used for training and testing the model comprised 485 images provided by Kaohsiung Chang Gung
Memorial Hospital. The proposed system was divided into two subsystems, 1 and 2. Subsystem
1 used Inception-ResNetV2 to train a deep learning model on preprocessed KUB images to verify
the improvement in diagnostic accuracy with image preprocessing. Subsystem 2 trained an image
segmentation model using the ResNet hybrid, U-net, to accurately identify the contours of renal
stones. The performance was evaluated using a confusion matrix for the classification model. We
conclude that the model can assist clinicians in accurately diagnosing renal stones via KUB imaging.
Therefore, the proposed system can assist doctors in diagnosis, reduce patients’ waiting time for CT
scans, and minimize the radiation dose absorbed by the body.

Keywords: kidney–ureter–bladder images; renal stones; computer-aided diagnosis; deep learning;
classification model; semantic segmentation

1. Introduction

Current research indicates a global increase in the incidence of renal stones, as ob-
served in various studies conducted worldwide (including Italy, Germany, Scotland, Spain,
Sweden, Japan, and the United States) [1–3]. Several diagnostic and treatment approaches
have been proposed to address the growing prevalence of renal stones.

X-rays are low-cost and low-radiation imaging modalities that are widely used in
various stutabledies for computer-aided diagnosis (CAD) development, including chest
X-rays for COVID-19 detection with DL models [4], breast X-rays for detecting breast
cancer [5], and abdominal X-rays for assisting in the diagnosis of muscle coordination
disorders [6]. In this study, X-ray kidney–ureter–bladder (KUB) images were used (Figure 1).
In this figure, the white area inside the red frame is a urinary tract stone, as a specialist
would diagnose. KUB imaging has a few limitations, including its two-dimensional nature,
which may lead to false positives and make it difficult to distinguish between abnormalities
in high-density tissues [7]. The sensitivity of KUB imaging in detecting renal stones ranges
from 44 to 77%, with a specificity of 80–87% [8], whereas computed tomography (CT) has
a sensitivity of 94–100% and a specificity of 92–94.2% [9,10]. Noncontrast CT is the most
accurate imaging modality for kidney stones owing to high sensitivity, specificity, accurate
stone sizing, and the ability to evaluate non-stone-related pathologies [11].
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Figure 1. Urinary tract stones on a kidney–ureter–bladder (KUB) image and red box mean the
location of the stone.

CT is commonly used for whole-body screening to detect tumors or inflammation
in organs and is highly reliable for diagnosing diseases such as liver, lung, and brain
cancers [9,10]. Several studies have focused on various CT examinations, including deep
learning (DL)-based detection of hemorrhagic lesions on brain CT images and segmenta-
tion [12], and distinguishing COVID-19 severity by analyzing the lung opacity on chest
CT images [13]. Abdominal CT exhibits higher sensitivity than conventional radiography
in detecting calcifications and promptly diagnosing urinary tract stones, while also being
able to detect uric acid or cystine stones unaffected by obstruction [14]. Furthermore, CT
imaging can assist clinicians in accurately diagnosing patients with symptoms arising from
factors such as inflammation in the abdominal cavity, vascular abnormalities, or urinary
system tumors [4]. CT imaging provides a three-dimensional (3D) visualization of the
urinary system, including the kidneys, ureters, and bladder, enabling clinicians to promptly
understand the patient’s condition. In most cases, noncontrast computerized tomography
(CT) is recommended for diagnosing ureteral stones; a low-energy protocol is suggested
if the patient’s body habitus is favorable. Conventional radiography and ultrasound are
utilized to monitor the passage of the majority of radiopaque stones, as well as for most
patients undergoing stone removal. [15]

However, CT is more expensive and produces higher radiation doses than X-ray imag-
ing. For adult abdominal X-ray examinations, the radiation dose of CT in the same area
ranges from 8 to 34 mGy [16,17], whereas that of X-rays is approximately 2.47 mGy [18].
Additionally, in other areas, such as the stomach, the radiation dose of CT is approximately
50 times higher than that of X-rays [19]. These factors pose a risk to human health. In
recent years, several clinical techniques were developed to address these issues, includ-
ing low-dose CT, which reduces the radiation dose produced during a routine CT scan.
For example, the radiation dose of abdominal CT scans has been reduced from 25 to
17 mGy. However, even with low-dose CT, the radiation dose is still approximately seven
times higher than that of X-rays [20]. Considering these challenges, X-ray imaging has
emerged as a low-cost and low-radiation examination method with minimal impact on
human health. Nevertheless, compared with CT, X-rays have lower sensitivity and are less
effective in detecting smaller renal stones. Therefore, improving the sensitivity of radiog-
raphy for diagnosing renal stones could lead to wider application and effectively reduce
medical costs.

Recently, the rapid development of machine learning and artificial intelligence has fa-
cilitated the application of CAD in medical image processing. The exceptional performance
of convolutional neural networks (CNNs) in learning and computation across various
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domains [21–24] has led to their widespread adoption in CAD. The accuracy of CAD mod-
els incorporating CNNs has gradually improved over time [25,26]. Recent studies have
applied neural networks to diagnose urinary system diseases using CT imaging [27–29].
CNN models have exhibited a sensitivity of 89.6% and a positive predictive value of 56.9%
in detecting urinary stones during X-ray examinations [30]. Liu et al. [31] combined image
preprocessing and data augmentation techniques with the ResNet model to detect renal
stones on KUB images, and achieved an accuracy, sensitivity, specificity, and F1-measure of
0.982, 0.964, 1.000, and 0.982, respectively.

KUB imaging remains the primary examination method for detecting urinary stones in
emergency rooms owing to its convenience, affordability, and low radiation dose. However,
only experienced urologists and radiologists can accurately diagnose urinary stones from
KUB images. Inexperienced physicians may make errors or further prescribe CT scanning,
thus increasing the medical costs and radiation exposure. Compared to deep learning, tra-
ditional image processing algorithms do not demonstrate robust generalization capabilities,
mainly because of the large size of KUB images and the small dimensions of kidney stones.
Furthermore, conventional approaches face challenges when effectively detecting irregular
features. To address this issue, we developed a CAD system based on a DL model to assist
emergency physicians in accurately diagnosing urinary stones based on KUB imaging. The
system was validated through experimental data and specialist evaluations.

2. Materials and Methods
2.1. Molecular Structure of Renal Stones

Renal stones consist of urinary solutes (such as calcium oxalate and uric acid) in an un-
stable supersaturation state (including hypercalciuria, hyperoxaluria, and hyperuricosuria)
due to imbalances between the promoters and inhibitors of stone formation. Renal stone
formation occurs in four phases: nucleation, crystal growth, aggregation, and retention [32].
Finally, these stones remain in the collecting system of the kidneys and migrate to the uri-
nary tract. Larger renal stones that cannot pass through the body may cause various health
problems, including hematuria, renal colic pain, urinary tract infection, hydronephrosis,
and renal function impairment.

The primary classifications of renal stones with their molecular formula and occurrence
are listed as follows [32]:

• Calcium (Ca)-containing stones:

Calcium oxalate, CaC2O4 (H2O)2 or CaC2O4H2O (60%)
Hydroxyapatite, Ca10(PO4)6(OH)2 (20%)
Brushite, CaHPO4·(H2O)2 (2%)

• Non-calcium-containing stones:

Uric acid, C5H4N4O3 (7%)
Struvite, NH4MgPO4·(H2O)6 (7%)
Cystine, C6H12N2O4S2 (1–3%)
Ca-containing stones represent the majority of renal stones, making it theoretically

possible to detect most renal stones using X-ray imaging. KUB imaging, a rapid and
cost-effective X-ray imaging technique, is an ideal first-line examination for renal stone
detection.

2.2. Datasets

We collected 485 abdominal radiographs of patients diagnosed with upper urinary
tract stones by urologists at Kaohsiung Chang Gung Memorial Hospital. Owing to the
varying lengths of the follow-up, each patient had KUB images taken at different times, and
some KUB images contained multiple urinary tract stones; therefore, they were divided
into single or multiple training images with urinary tract stones (Figure 2).
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Figure 2. KUB image showing urinary stones.

2.3. Image Preprocessing
2.3.1. Contrast-Limited Adaptive Histogram Equalization

Histogram equalization (HE) [33] enhances image contrast and suppresses noise.
Adaptive histogram equalization (AHE) [34] further enhances local contrast by dividing
the image into multiple regions and applying HE to each region. However, AHE can cause
image distortion due to excessive enhancement of local contrast and does not address noise
amplification in dark areas. Contrast-limited AHE (CLAHE) [35] avoids discontinuities and
excessive local contrast caused by AHE by controlling the slope of the cumulative density
function (CDF). An abrupt increase in the slope of the CDF indicates a high grey value
in the region, whereas a decrease indicates a low grey value. CLAHE limits gray values
that exceed a certain threshold and redistributes them to various gray levels, resulting in a
smoother CDF that can be efficiently calculated using linear interpolation. This method
effectively suppresses noise and enhances the contrast between the urinary stone and the
background, making it particularly useful for images with very dark or bright backgrounds.
CLAHE is widely used in medical imaging [36–38].

Figure 3 illustrates several areas in the histogram-equalized image that are already
overexposed, particularly high-density areas such as bones, which are prominent. Figure 4
shows AHE with an 8 × 8 mask, which increases the local details; however, inconsistency
between the blocks causes pixel discontinuity in the entire image. Figure 5 depicts AHE
with a 16 × 16 mask, where the pixel discontinuity is even more obvious. Contrast-limited
AHE reduces overexposure in the histogram-equalized image and does not cause pixel
discontinuity, resulting in a square-like appearance of the image and enabling observation
of urinary stones on the image (Figure 6). Therefore, we applied this method to KUB images
in this study.

2.3.2. Image Mask

Figure 7 illustrates the original KUB image. First, all KUB images were processed
using an image segmentation network model, Mask R-CNN [39], which was trained to
detect the spine and pelvis [40] to generate masks that block most of the bright areas in
the KUB images (Figure 8). The images were then segmented about the central point of
the spine and upper pelvis on both sides (Figures 9–11), respectively. Masks were used for
segmentation because abnormalities are difficult to detect in high-density tissues on X-ray
images; the higher the density of the tissue, the brighter it appears on the image [7].
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2.3.3. Image Cropping

A 100 × 100-pixel image was cropped from the KUB image. An image with urinary
tract stones was positioned at the center of the image. Cropped images without urinary
tract stones were randomly selected from the KUB images, as illustrated in Figure 12.
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Based on a 100 × 100-pixel image, we introduced the concept of a sliding window for
real-world applications. A sliding window is used to capture the presence of stones in
the image. If stones were detected in the cropped image, we would map them back to the
original KUB image and obtained their location. Once the full-image scan was complete,
we extracted the image based on these specific locations and performed mask detection
using the segmentation model. After mask detection was complete, we merged it back with
the original image via mapping and positioning, thereby obtaining a complete KUB stone
mask image.

Bioengineering 2023, 10, x FOR PEER REVIEW 6 of 24 
 

. 

Figure 6. KUB image after contrast-limited AHE. 

2.3.2. Image Mask 

Figure 7 illustrates the original KUB image. First, all KUB images were processed 

using an image segmentation network model, Mask R-CNN [39], which was trained to 

detect the spine and pelvis [40] to generate masks that block most of the bright areas in 

the KUB images (Figure 8). The images were then segmented about the central point of 

the spine and upper pelvis on both sides (Figures 9, 10 and 11), respectively. Masks were 

used for segmentation because abnormalities are difficult to detect in high-density tissues 

on X-ray images; the higher the density of the tissue, the brighter it appears on the image 

[7]. 

 

Figure 7. Original KUB image. 

 

Figure 8. Masked image generated by Mask R-CNN. 

Figure 6. KUB image after contrast-limited AHE.

Bioengineering 2023, 10, x FOR PEER REVIEW 6 of 24 
 

. 

Figure 6. KUB image after contrast-limited AHE. 

2.3.2. Image Mask 

Figure 7 illustrates the original KUB image. First, all KUB images were processed 

using an image segmentation network model, Mask R-CNN [39], which was trained to 

detect the spine and pelvis [40] to generate masks that block most of the bright areas in 

the KUB images (Figure 8). The images were then segmented about the central point of 

the spine and upper pelvis on both sides (Figures 9, 10 and 11), respectively. Masks were 

used for segmentation because abnormalities are difficult to detect in high-density tissues 

on X-ray images; the higher the density of the tissue, the brighter it appears on the image 

[7]. 

 

Figure 7. Original KUB image. 

 

Figure 8. Masked image generated by Mask R-CNN. 

Figure 7. Original KUB image.

Bioengineering 2023, 10, x FOR PEER REVIEW 6 of 24 
 

. 

Figure 6. KUB image after contrast-limited AHE. 

2.3.2. Image Mask 

Figure 7 illustrates the original KUB image. First, all KUB images were processed 

using an image segmentation network model, Mask R-CNN [39], which was trained to 

detect the spine and pelvis [40] to generate masks that block most of the bright areas in 

the KUB images (Figure 8). The images were then segmented about the central point of 

the spine and upper pelvis on both sides (Figures 9, 10 and 11), respectively. Masks were 

used for segmentation because abnormalities are difficult to detect in high-density tissues 

on X-ray images; the higher the density of the tissue, the brighter it appears on the image 

[7]. 

 

Figure 7. Original KUB image. 

 

Figure 8. Masked image generated by Mask R-CNN. Figure 8. Masked image generated by Mask R-CNN.



Bioengineering 2023, 10, 970 7 of 24Bioengineering 2023, 10, x FOR PEER REVIEW 7 of 24 
 

 

Figure 9. A is the central point of spine, B is the upper point of the right pelvis, and C is the upper 

point of the left pelvis. 

 

Figure 10. KUB image of the right kidney. 

 

Figure 11. KUB image of the left kidney. 

2.3.3. Image Cropping 

A 100 × 100-pixel image was cropped from the KUB image. An image with urinary 

tract stones was positioned at the center of the image. Cropped images without urinary 

tract stones were randomly selected from the KUB images, as illustrated in Figure 12. 

Based on a 100 × 100-pixel image, we introduced the concept of a sliding window for real-

Figure 9. A is the central point of spine, B is the upper point of the right pelvis, and C is the upper
point of the left pelvis.

Bioengineering 2023, 10, x FOR PEER REVIEW 7 of 24 
 

 

Figure 9. A is the central point of spine, B is the upper point of the right pelvis, and C is the upper 

point of the left pelvis. 

 

Figure 10. KUB image of the right kidney. 

 

Figure 11. KUB image of the left kidney. 

2.3.3. Image Cropping 

A 100 × 100-pixel image was cropped from the KUB image. An image with urinary 

tract stones was positioned at the center of the image. Cropped images without urinary 

tract stones were randomly selected from the KUB images, as illustrated in Figure 12. 

Based on a 100 × 100-pixel image, we introduced the concept of a sliding window for real-

Figure 10. KUB image of the right kidney.

Bioengineering 2023, 10, x FOR PEER REVIEW 7 of 24 
 

 

Figure 9. A is the central point of spine, B is the upper point of the right pelvis, and C is the upper 

point of the left pelvis. 

 

Figure 10. KUB image of the right kidney. 

 

Figure 11. KUB image of the left kidney. 

2.3.3. Image Cropping 

A 100 × 100-pixel image was cropped from the KUB image. An image with urinary 

tract stones was positioned at the center of the image. Cropped images without urinary 

tract stones were randomly selected from the KUB images, as illustrated in Figure 12. 

Based on a 100 × 100-pixel image, we introduced the concept of a sliding window for real-

Figure 11. KUB image of the left kidney.



Bioengineering 2023, 10, 970 8 of 24

Bioengineering 2023, 10, x FOR PEER REVIEW 8 of 24 
 

world applications. A sliding window is used to capture the presence of stones in the 

image. If stones were detected in the cropped image, we would map them back to the 

original KUB image and obtained their location. Once the full-image scan was complete, 

we extracted the image based on these specific locations and performed mask detection 

using the segmentation model. After mask detection was complete, we merged it back 

with the original image via mapping and positioning, thereby obtaining a complete KUB 

stone mask image. 

 

Figure 12. Left-hand-side image shows the stone image cropped from the KUB image with a size of 

100 × 100 pixels, while the right-hand-side image shows the randomly cropped image with the same 

size from the KUB image. 

2.4. Data Augmentation 

Studies have shown that data augmentation can effectively prevent overfitting of the 

model, with the probability of overfitting in small datasets during training being higher 

than in large datasets [41–44]. However, there are multiple fields in which large amounts 

of data are not available for research, such as medical image analysis. Studies on medical 

image analysis have used more than 4000–5000 images for training [45–48]; however, in 

the field of DL, this is still considered a small dataset. Therefore, data augmentation can 

be used to increase the variation in images, which not only avoids the problem of low 

accuracy due to insufficient data but also increases the diversity of samples and improves 

the generalization ability of the model [49–51]. 

To increase the amount and diversity of data, random angle rotation, horizontal and 

vertical displacements, and flipping were applied to the original images (Figure 13) [52]. 

In this study, random data augmentation was applied to the training dataset during each 

iteration. When the augmented images were generated first and then used for model 

training, all data were written into the memory before training. However, by dynamically 

generating augmented image data during the iteration, only the original image data were 

read, which reduced memory consumption. 

 

Figure 13. After cropping the KUB image, random angle rotation, horizontal and vertical displace-

ments, and flipping are applied to augment data. 

2.5. Deep Learning Model 

2.5.1. Residual Network 

Previous studies have shown that the deeper the CNN, the finer the features it can 

extract [53]. However, in 2016, Kaiming discovered that the model’s performance 

decreased and experienced degradation when the network layer became excessively deep 

[54]. To solve this problem, they proposed a network structure called ResNet, which 

introduced the concept of a residual block. The residual block copies the output of the 

Figure 12. Left-hand-side image shows the stone image cropped from the KUB image with a size of
100 × 100 pixels, while the right-hand-side image shows the randomly cropped image with the same
size from the KUB image.

2.4. Data Augmentation

Studies have shown that data augmentation can effectively prevent overfitting of the
model, with the probability of overfitting in small datasets during training being higher
than in large datasets [41–44]. However, there are multiple fields in which large amounts
of data are not available for research, such as medical image analysis. Studies on medical
image analysis have used more than 4000–5000 images for training [45–48]; however, in
the field of DL, this is still considered a small dataset. Therefore, data augmentation can
be used to increase the variation in images, which not only avoids the problem of low
accuracy due to insufficient data but also increases the diversity of samples and improves
the generalization ability of the model [49–51].

To increase the amount and diversity of data, random angle rotation, horizontal and
vertical displacements, and flipping were applied to the original images (Figure 13) [52].
In this study, random data augmentation was applied to the training dataset during each
iteration. When the augmented images were generated first and then used for model
training, all data were written into the memory before training. However, by dynamically
generating augmented image data during the iteration, only the original image data were
read, which reduced memory consumption.
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ments, and flipping are applied to augment data.

2.5. Deep Learning Model
2.5.1. Residual Network

Previous studies have shown that the deeper the CNN, the finer the features it can
extract [53]. However, in 2016, Kaiming discovered that the model’s performance decreased
and experienced degradation when the network layer became excessively deep [54]. To
solve this problem, they proposed a network structure called ResNet, which introduced the
concept of a residual block. The residual block copies the output of the source layer directly
to the shortcut connection and adds it to the output of the main framework, as illustrated
in Figure 14. If the layers in the residual block do not learn any features, the output of the
block is the same as the input; this is called identity mapping. Residual blocks address the
problem of model degradation caused by overly deep networks, allowing the number of
network layers to increase.
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2.5.2. Inception-ResNetV2

In 2016, Google proposed Inception-ResNetV2 as an improved version of Inception-
ResNetV1 [55], which achieved the best performance in the ILSVRC image classification
benchmark test [56]. The core concept of Inception-ResNetV2 is to combine inception
modules and residual direct connections using residual connection shortcuts to successfully
train deeper neural networks while significantly simplifying inception modules. As indi-
cated in Figure 15, the structure of Inception-ResNetV2 is divided into several parts: Stem,
Inception-Resnet-A, Reduction-A, Inception-Resnet-B, Reduction-B, and Inception-Resnet-
C. The A, B, and C modules use asymmetric convolutional layers and 1 × 1 convolutional
layers to reduce or unify dimensions, and modules A and B are designed to gradually
reduce the size of the feature map to avoid the loss of related information. By combining
the above modules, Inception-ResNetV2 can achieve a deep network architecture without
encountering the problems of gradient disappearance and can converge better. Recently,
Inception-ResNetV2 has been increasingly used for medical image recognition. For ex-
ample, a previous study [57] explored the application of Inception-ResNetV2 for brain
tumor detection. Other studies have also implemented Inception-ResNetV2 in various
applications, such as skin lesion classification methods [58,59] and benchmark testing for
aortic pathology analysis [60].
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2.5.3. U-Net

Proposed in 2015, U-Net is widely used in medical image segmentation owing to
its unique structure [61] (Figure 16). The structure of U-Net can be conceptualized as an
encoder–decoder structure. The encoder comprises four sub-modules, each containing
two convolutional layers, followed by a max pooling layer for downsampling. These
modules gradually decrease the resolution of the image. The decoder is comprised of four
sub-modules that progressively upsample the image resolution until it matches the input
image resolution. U-Net also adopts the technique of skip connections, which connects the
upsampled results of the decoder with the outputs of the encoder submodules of the same
resolution as the input to the next submodule. The feature concatenation is unique as it
concatenates the features in the channel dimension to form thicker features, thus avoiding
information loss during feature propagation. Several improved versions based on U-Net
are available, such as 3D U-Net [62], which is used for the segmentation of 3D images;
Res-UNet [63], which combines the concept of ResNet using residual blocks instead of
convolutional layers; and ResUnet++ [64], which introduces attention modules [65] and
ASPP modules [66].
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2.6. System Architecture

In this study, we proposed a computer-aided diagnostic system consisting of two
subsystems. The overall system architecture is illustrated in Figure 17. Subsystem 1 is
a urinary stone classification model based on Inception-ResNetV2, which is shown in
Figure 18. Subsystem 2 is a urinary-stone segmentation model based on U-Net, which
is illustrated in Figure 19. The system first generated a mask to remove the spine and
pelvis from the KUB images and then performed limited-contrast AHE on the images. The
kidney area was approximately segmented according to the mask, and 100 × 100-pixel
stone images were cropped. The dataset was divided into training and testing sets in the
ratio of 8:2, and data augmentation was employed by the classification model to simulate
the diversity of stone images. After training the Inception-ResNetV2 classification model,
the system was evaluated using several metrics, including sensitivity, specificity, precision,
and F1-measure. The architecture of the semantic segmentation model was similar to that
of the classification model, except for the data augmentation component and inclusion of
three additional evaluation metrics for the mask: IoU, MIoU, and FWIoU. The complete
system flow for visualizing KUB images is shown in Figure 20. The flowchart of the
computer-aided diagnostic system is depicted in Figure 21.
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3. Results

Windows 10 was used as the operating system for testing the model; the hardware
information is listed in Table 1. A Python 3.7 environment on Anaconda 3 with a Tensorflow-
GPU version was used to train the neural network, which was built and trained using
Keras.
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Table 1. Hardware information.

CPU Graphics Card Memory

Intel Core i7-8700 @ 3.19 GHz Nvidia GeForce RTX3070 8 G 32 G

3.1. Evaluation Metrics

In this study, all images were divided into three datasets, with a total of 1340 images.
Among these, 970 images were used for training (80%) and validating (20%) the model;
the training set contained 776 images, and the validation set 194 images. The remaining
370 images were used as the test set to evaluate the performance of the model and its
generalization ability. Both subsystems used Ranger as the optimizer [67], which is an
integration of two optimizers: RAdam [68] and LookAhead [69]. The loss function used in
subsystem 1 was binary cross-entropy. For the semantic segmentation model, ResNet50
was used as the primary feature extractor network, and U-net utilized the features for
prediction and mask generation. Ranger was used as the optimizer, and the loss function
was composed of binary cross-entropy and Jaccard distance.

We generated a confusion matrix from the prediction results, which had four categories
of correct and incorrect predictions. The categories for correct predictions were true positive
(TP) and true negative (TN), whereas those for incorrect predictions were FP and FN. The
confusion matrix is depicted in Figure 22. We used these four categories to generate seven
metrics for evaluating the performance of the model. The formula for the accuracy is as
follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(1)
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In addition to determining the model’s accuracy, we used seven other metrics, four
of which were used to evaluate the classification and semantic segmentation models:
sensitivity, specificity, precision, and F1-measure. The other three metrics, IoU, MIoU,
and FWIoU, were used to evaluate the quality of the predicted masks of the semantic
segmentation model. The formula for sensitivity is as follows:

Sensitivity =
TP

TP + FN
(2)

The formula for specificity is as follows:

Specificity =
TN

FP + TN
(3)
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The formula for precision is as follows:

Precision =
TP

TP + FP
(4)

We used the F-measure to comprehensively evaluate the performance of the model.
The higher the F1-measure value, the better the performance of the model. The formula for
the F1-measure is as follows:

Fβ–measure =
(
1 + β2) Precision × Recall

(β2 × Precision) + Recall
(5)

The formula for the IoU is as follows:

IoU =
TP

TP + FP + FN
(6)

The formula for the MIoU is as follows:

MIoU =
( TP

TP + FP + FN
+

TN
TN + FN + FP

)
/2 (7)

The FWIoU is a modification of the MIoU in which weights are assigned based on the
frequency of occurrence of each class. The formula for the FWIoU is as follows:

FWIoU =

(
TP + FN

TP + FP + TN + FN

)
× TP

TP + FP + FN
(8)

3.2. Effect of Data Augmentation on the Training of the Classification Model

In this study, ResNet50 models were trained using both augmented and nonaugmented
datasets. Data augmentation was performed by rotating, horizontally and vertically shift-
ing, and magnifying and demagnifying of the original images. The difference between the
effects of using and not using data augmentation was compared based on the accuracy and
loss during the training process of the ResNet50 model. Figure 23 shows the updates of
accuracy and loss during the training process of the model without data augmentation.
The accuracy of the model without data augmentation improved faster during training
than that during validation. In contrast, Figure 24 shows the updates of accuracy and
loss during the training process of the model with data augmentation. The accuracies of
the training and validation datasets were similar. The X-axes on the left-hand sides of
Figures 22 and 23 represent the training steps, whereas the Y-axes represent the accuracy.
In Step 10, the accuracy of the training dataset in Figure 23 is approximately 0.9, but the
accuracy of the validation dataset is only approximately 0.55. However, in the same step
shown in Figure 24, the accuracy of the training dataset is approximately 0.9, and the
accuracy of the validation dataset is also improved to approximately 0.9. We observed
that data augmentation resulted in a certain degree of improvement in the training and
generalization ability of the model.

3.3. Subsystem 1—Classification Model for Medical Images

In this study, we trained two models, ResNet50 and Inception-ResNetV2, for 50 epochs
with an initial learning rate of 0.001. The specific model initialization parameters are listed
in Table 2. An excessively small learning rate could slow the convergence and increase the
training time, whereas an excessively large one can cause parametric oscillations. Therefore,
choosing an appropriate initial learning rate and appropriately reducing it after multiple
epochs can improve the model’s performance. If the validation loss function did not
continue to decrease after five consecutive epochs, the learning rate was multiplied by
0.5. Figure 25 illustrates the accuracy and loss updates during training. Table 3 lists the
confusion matrix of the model’s predictions on the test set, and Table 4 shows the calculated
accuracy, sensitivity, specificity, precision, and F1-measure based on the confusion matrix,
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which were 0.989, 0.995, 0.984, 0.984, and 0.989, respectively. The Inception-ResNetV2
model used the same parameter settings as those of ResNet50. Figure 26 depicts the
accuracy and loss updates during training. The confusion matrix of the test set is shown in
Table 5. As summarized in Table 6, the accuracy, sensitivity, specificity, precision, and F1-
measure calculated based on the confusion matrix were 0.997, 1.000, 0.995, 0.995, and 0.997,
respectively. Table 7 presents the comparison of the test results of ResNet50 [31] with those
of Inception-ResNetV2. The results of all indicators were higher for Inception-ResNetV2.
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Table 2. Model initialization parameters.

Epochs 50

Batch size 16
Learning rate 0.001
Loss function Binary cross-entropy

Optimization algorithm Ranger

Table 3. Confusion matrix of the test set for the ResNet50 classification model.

Predicted Label

Have Stone NO Stone

True label
Have stone 182 3
No stone 1 184
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Table 4. Evaluation metrics performance of ResNet50 classification model on the test set.

Accuracy Sensitivity Specificity Precision F1-Score

Testing
dataset 0.989 0.995 0.984 0.984 0.989
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Table 5. Confusion matrix of the test set for the Inception-ResNetV2 classification model.

Predicted Label

Have Stone No Stone

True label
Have stone 184 0
No stone 1 185

Table 6. Evaluation metrics performance of Inception-ResNetV2 classification model on the test set.

Accuracy Sensitivity Specificity Precision F1-Score

Testing
dataset 0.997 1.000 0.995 0.995 0.997
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Table 7. ResNet50 and Inception-ResNetV2 evaluation results comparison.

ResNet50 [31] Inception-ResNetV2

Accuracy 0.989 0.997
Sensitivity 0.995 1.000
Specificity 0.984 0.995
Precision 0.984 0.995
F1-score 0.989 0.997

3.4. Subsystem 2—Segmentation Model for Medical Images

This study employed two different backbone networks, ResNet34 and ResNet50,
to implement four U-net models using different loss functions, including bce_dice_loss,
bce_jaccard_loss, binary_focal_dice_loss, and binary_focal_jaccard_loss, as shown in
Equations (9)–(12), respectively. The specific U-net model initialization parameters are
listed in Table 8. Tables 9 and 10 show the confusion matrices for each model and loss
function. According to Table 9, a higher false negative (FN) value indicates that the model
failed to detect a portion of the actual mask, resulting in a larger area of the actual stone
being missed. A false positive (FP) value indicates misjudgment by the model, resulting in
a mask area that does not contain stones. As the segmentation model in this study primarily
divides the image into foreground (urinary stone image or positive) and background (nega-
tive), the evaluation scores were calculated separately for the foreground and background
based on the confusion matrix, with the scores presented in Tables 11–13. Tables 9 and 10
reveal a vast difference in the number of samples between the foreground and background.
Focal loss is primarily introduced as a loss function to resolve the imbalance between
positive and negative samples. Therefore, Tables 11 and 12 indicate a subtle improvement
in the model’s performance when using focal loss compared to binary cross-entropy. Based
on the evaluation metrics, both ResNet34 and ResNet50 effectively predict the urinary stone
masks. The frequency-weighted intersection over union (FWIoU) index, which assigns
different IoU weights to each label based on the test set data, is a valuable indicator for
comprehensively evaluating the model’s performance. Therefore, based on the mean IoU
(MIoU) and FWIoU, the best performance was achieved by combining ResNet34 as the
backbone network with U-net and using binary cross-entropy plus Jaccard distance as the
loss function, with sensitivity, precision, F1-score, IoU, MIoU, and FWIoU of 0.952, 0.984,
0.968, 0.937, 0.834, and 0.905, respectively. Figure 27 illustrates the original image, ground
truth mask, and predicted mask.
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)
+

(1 − TP
TP+FP+TN )

(10)

bce_ f ocaldiceloss
=

(
n
∑

i=0
αt·(1 − ŷi)
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Table 8. U-net model initialization parameters.

Epochs 100

Batch size 8
Learning rate 0.0001
Loss function Focal loss + Jaccard loss

Optimization algorithm Ranger

Table 9. Confusion matrix of ResNet34 using Bce_dice_loss, Bce_jaccard_loss, binary_focal_dice_loss,
and binary_focal_jaccard_loss.

Bce_dice_loss Bce_jaccard_loss Binary_focal_dice_loss Binary_focal_jaccard_loss

TP 270,382 267,678 259,717 268,203

FP 72,813 75,517 83,478 74,992

TN 1,480,475 1,480,115 1,481,879 1,482,633

FN 26,330 26,690 24,926 27,751

Table 10. Confusion matrix of ResNet50 using Bce_dice_loss, Bce_jaccard_loss, binary_focal_dice_loss,
and binary_focal_jaccard_loss.

Bce_dice_loss Bce_jaccard_loss Binary_focal_dice_loss Binary_focal_jaccard_loss

TP 268,540 270,597 256,915 266,816

FP 74,655 72,598 86,280 76,379

TN 1,479,054 1,472,688 1,487,191 1,480,639

FN 27,751 34,117 19,614 26,166

Table 11. Evaluation metrics calculated based on the confusion matrix for ResNet34.

Bce_dice_loss Bce_jaccard_loss Binary_focal_dice_loss Binary_focal_jaccard_loss

Positive Negative Positive Negative Positive Negative Positive Negative

Accuracy 0.946 0.946 0.945 0.945 0.941 0.941 0.946 0.946
Sensitivity 0.953 0.911 0.951 0.909 0.947 0.912 0.952 0.917
Precision 0.983 0.788 0.982 0.780 0.983 0.757 0.984 0.781
F1-score 0.968 0.845 0.967 0.840 0.965 0.827 0.968 0.844

IoU 0.937 0.732 0.935 0.724 0.932 0.706 0.937 0.730
MIoU 0.834 0.834 0.830 0.830 0.819 0.819 0.834 0.834

FWIoU 0.904 0.904 0.902 0.902 0.897 0.897 0.905 0.905

Table 12. Evaluation metrics calculated based on the confusion matrix for ResNet50.

Bce_dice_loss Bce_jaccard_loss Binary_focal_dice_loss Binary_focal_jaccard_loss
Positive Negative Positive Negative Positive Negative Negative Positive

Accuracy 0.945 0.945 0.942 0.942 0.943 0.943 0.945 0.945
Sensitivity 0.952 0.906 0.953 0.888 0.945 0.929 0.951 0.911
Precision 0.982 0.782 0.977 0.788 0.987 0.749 0.983 0.777
F1-score 0.967 0.840 0.965 0.836 0.966 0.829 0.967 0.839

IoU 0.935 0.724 0.932 0.717 0.934 0.708 0.935 0.722
MIoU 0.830 0.830 0.825 0.825 0.821 0.821 0.829 0.829

FWIoU 0.901 0.901 0.897 0.897 0.900 0.900 0.902 0.902
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Table 13. Comparison of comprehensive evaluation indicators between ResNet34 and ResNet50.

ResNet34’s
Bce_dice_loss

ResNet34’s
Binary_focal_jaccard_loss

ResNet50’s
Bce_dice_loss

ResNet50’s
Binary_focal_jaccard_loss

Accuracy 0.946 0.946 0.945 0.945
Sensitivity 0.953 0.952 0.952 0.951
Precision 0.983 0.984 0.982 0.983
F1-score 0.968 0.968 0.967 0.967

IoU 0.937 0.937 0.935 0.935
MIoU 0.834 0.834 0.830 0.829

FWIoU 0.904 0.905 0.901 0.902
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4. Discussion

In this study, two CNN models, Inception-ResNetV2 and U-Net, were utilized for
training the network. The core concept of Inception-ResNetV2 is to combine inception
modules and residual direct connections using residual connection shortcuts to success-
fully train deeper neural networks, while significantly simplifying inception modules. As
indicated in Figure 15, the structure of Inception-ResNetV2 is divided into several parts:
Stem, Inception-resnet-A, Reduction-A, Inception-resnet-B, Reduction-B, and Inception-
resnet-C. By combining these modules, Inception-ResNetV2 can achieve a deep network
architecture without encountering the problems of gradient disappearance and can con-
verge better. Recently, Inception-ResNetV2 has been increasingly used for medical image
recognition. For example, a previous study [57] explored the use of Inception-ResNetV2
for brain tumor detection. Other studies have also applied Inception-ResNetV2 in various
applications, such as skin lesion classification methods [58,59] and benchmark testing for
aortic pathology analysis [60].

Proposed in 2015, U-Net is widely used in medical image segmentation owing to
its unique structure [61], as shown in Figure 16. Its structure can be considered as an
encoder–decoder structure. The encoder consists of four sub-modules, each containing
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two convolutional layers, followed by a max pooling layer for down-sampling, which
gradually decrease the resolution of the image. The decoder consists of four submodules
that gradually increase the resolution of the image by up-sampling until it is consistent with
the input image resolution. Several improved versions based on U-Net are available, such
as 3D U-Net [62], which is used for the segmentation of 3D images; Res-UNet [63], which
combines the concept of ResNet using residual blocks instead of convolutional layers; and
ResUnet++ [64], which introduces attention modules [65] and ASPP modules [66].

In this study, KUB images were used to train the model. According to a systematic
review of the latest advancements in the use of artificial intelligence in urology conducted
by Dai et al. [70], only one study used KUB images [30]. However, recent research [22] has
demonstrated that image preprocessing techniques coupled with model classification could
enhance the accuracy of renal stone detection. In this aspect, our results surpassed those
of ref. [22]. Other studies, such as that by Parakh et al. [71], had primarily considered
machine learning and DL models based on CT images. The advantages of plain film X-ray
images include their low dosage and cost, which enable their use across a wide range
of medical institutions. However, DL models struggle to accurately detect small objects
or features, and renal stones in a KUB image typically occupy only a small number of
pixels [72]. To resolve this issue, we cropped the images to magnify the renal stones, thereby
facilitating model training.

First, we classified the KUB images based on the presence or absence of renal stones
and masked the images with renal stones after classification. The preprocessed and classi-
fied renal stone images have reduced misjudgments during segmentation. The segmented
stone positions will further assist physicians in diagnosis. Our CAD system has demon-
strated that X-ray images can be effective in detecting renal stones, offering a promising
research direction and providing an alternative system in renal stone diagnosis using KUB
imaging, in addition to CT imaging. While research on the use of plain film X-ray images
to detect renal stones is sparse, the results of this study are promising and indicate bright
prospects for future research.

5. Conclusions

In this study, we proposed a computer-aided diagnostic system, which was divided
into two subsystems. Both subsystems used CNN models to train the DL models. Sub-
system 1 classifies and subsystem 2 segments the urinary stones on KUB images. First,
subsystem 1 adopts the image preprocessing procedure designed in this study, for which
we proposed a method based on subsystem 1 for image cropping. Images of the entire renal
stone can be obtained to the greatest extent possible using a sliding window combined
with the classification model, avoiding the division of stones into multiple images for
recognition owing to average cropping. Experimental data showed that preprocessing,
which included image masking, contrast-limited AHE, and image cropping, helped the
model to effectively classify the stones and non-stones. Moreover, the Inception-ResNetV2
model was validated to further improve its accuracy over the ResNet50 model. Based on
the experimental data, U-Net can accurately generate a urinary stone mask; however, the
MIoU data showed that the accuracy of the background was low, and a few erroneous
masks were misidentified as urinary stones. In clinical medicine, conventional radiography
for detecting stones may exhibit unique characteristics that are less frequently encountered.
Due to the scarcity of such images, it is difficult to train the model effectively. Therefore,
most training images used in this study were of stones that could be observed with the
naked eye. In the future, if several difficult-to-judge KUB images can be collected and
trained using the proposed image preprocessing architecture, the generalization ability of
the model can be further improved. This will render the diagnostic tool more reliable and
enhance its potential. In this study, although the U-Net model in subsystem 2 achieved
good performance, misjudgment of feature masks is a problem that needs to be addressed
in future research. Some ribs, gas, or fecal matter commonly present in KUB images can
cause dense white areas in the images, which are uncontrollable factors that cannot be
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removed by image masking, such as in the spine and pelvis. Solving these problems is a
direction for future research.
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