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Abstract: (1) Background: This study aims to develop a deep learning model based on a 3D Deeplab
V3+ network to automatically segment multiple structures from magnetic resonance (MR) images
at the L4/5 level. (2) Methods: After data preprocessing, the modified 3D Deeplab V3+ network of
the deep learning model was used for the automatic segmentation of multiple structures from MR
images at the L4/5 level. We performed five-fold cross-validation to evaluate the performance of the
deep learning model. Subsequently, the Dice Similarity Coefficient (DSC), precision, and recall were
also used to assess the deep learning model’s performance. Pearson’s correlation coefficient analysis
and the Wilcoxon signed-rank test were employed to compare the morphometric measurements
of 3D reconstruction models generated by manual and automatic segmentation. (3) Results: The
deep learning model obtained an overall average DSC of 0.886, an average precision of 0.899, and an
average recall of 0.881 on the test sets. Furthermore, all morphometry-related measurements of 3D
reconstruction models revealed no significant difference between ground truth and automatic segmen-
tation. Strong linear relationships and correlations were also obtained in the morphometry-related
measurements of 3D reconstruction models between ground truth and automated segmentation.
(4) Conclusions: We found it feasible to perform automated segmentation of multiple structures from
MR images, which would facilitate lumbar surgical evaluation by establishing 3D reconstruction
models at the L4/5 level.

Keywords: magnetic resonance imaging; neural network models; deep learning; preoperative plan;
3D visualization

1. Introduction

Over the past 30 years, low back pain has been one of the leading causes of disabil-
ity worldwide, burdening individuals, healthcare, and society [1–3]. Lumbar magnetic
resonance imaging (MRI) has evolved into an essential non-invasive diagnostic tool for
detecting and preoperative assessment of patients with low back pain [4,5]. More critically,
for some minimally invasive surgical (MIS) procedures, such as the MIS oblique approach,
preoperative MR image analysis can help to determine whether there is a sufficient surgical
window [6]. It can also help to determine the anatomical variation of the large blood vessels
in the surgical area. This preoperative evaluation, a common practice in the MIS oblique
approach, aims to ensure the procedure’s success and estimate the risk of postoperative
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complications. Several complications, such as large blood vessel damage, nerve injury, and
psoas muscle injury, however, may occur in cases of inadequate preoperative evaluation [7].

As a result of the complexity of the three-dimensional (3D) anatomy of the lumbar
spine and the sensitive nature of the neurovascular structures involved, the limited infor-
mation available in two-dimensional (2D) images poses a challenge for preoperative and
operative evaluation [8,9]. The space structures of 3D surgical views are often unobserved
directly by radiologists or surgeons due to the limited structural information on a single
CT or MR slice [10]. Some researchers have attempted to develop a new preoperative
evaluation method to acquire 3D geometric morphology using multi-planar MR images for
MIS procedures [11]. Even though the 3D information was obtained before or during the
surgery through multi-planar MR images, including sagittal, coronal, and axial images, the
inconvenient truth is that the surgeons’ minds were not effectively able to interpret these
complicated 3D anatomical structures in clinical practice.

The improvements in perioperative patient safety for the MIS oblique approach come
from knowledge of 3D anatomy. However, manual or semi-automatic segmentation of
the lumbar structures and their adjacent structures in clinical practice is laborious and
time-consuming. It also suffers from intra- and inter-reader variability [12]. Deep learn-
ing, a machine learning technique that employs multi-layer neural networks, has been
extensively utilized for automatic medical image segmentation [13,14]. To our knowledge,
however, only a handful of studies have simultaneously segmented lumbar structures and
their adjacent structures on MR images simultaneously [15,16]. Prior studies and segmen-
tation have focused mainly on bones [17,18], discs [19], and nerves [20]. Regrettably, the
segmentation of automatic lumbar structures and their adjacent structures in MR images
has not been systematically investigated before, specifically for 3D segmentation of the
large blood vessels, as well as the psoas major muscle. Therefore, 3D segmentation of
lumbar structures and their adjacent structures using deep learning is a pressing and unmet
clinical need.

The purpose of this study was to develop a deep learning model using a modified
3D Deeplabv3+ network to automatically segment lumbar structures and their adjacent
structures (including bones, intervertebral disc, nerve roots, dura, abdominal aorta, inferior
vena cava, and psoas major) from MR images at the L4/5 level. Specifically, we compared
the performance of the deep learning model to that of the performance of manual seg-
mentation through the evaluation of quantitative metrics (including DSC, precision, and
recall) and the morphometric-related measurements of the 3D lumbar model generated by
image segmentation. If successful, the deep learning model could be used for automated
segmenting of lumbar structures and their adjacent structures, which would allow for the
preoperative and operative evaluation of the MIS oblique approach in clinical practice to
improve perioperative patient safety.

2. Materials and Methods
2.1. Study Subjects

This study was approved by the institutional ethics committee of the Fifth Affiliated
Hospital of Sun Yat-sen University (NCT04647279, IRB-2020 K05-1) and was conducted in
accordance with the Helsinki Declaration of 1975, as revised in 2013. All participants signed
informed consent forms. The study recruited a total of 50 participants, encompassing
individuals diagnosed with lumbar degenerative diseases based on clinical predictions
as well as healthy volunteers. The inclusion criteria required participants to be at least
18 years old and have no contraindications for MRI examination. Exclusion criteria in-
cluded individuals with a history of spinal surgery, subjects with spinal deformity, and
patients diagnosed with lumbar spondylolisthesis. A total of 50 participants who had
undergone a 3T MRI with T2-3D-space sequences (TR/TE, 2800.0/189.0; FA, 45◦; FOV,
240 × 240 mm; Matrix, 320 × 320; Slice thickness, 0.8 mm; Bandwidth, 579 kHz; and Reso-
lution, 0.8 × 0.8 × 0.8 mm.) at the L4/5 level between March and July 2020 were recruited
in the present study. Of the 50 L4/5 levels, 41 were healthy and 9 unhealthy, with spinal
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stenosis at 1 level, disc herniation at 8 levels, or both at 1 level. L4/L5 data at the lumbar
level and the demographic characteristics of the participants were recorded (Table 1). Per-
formance of the automatic segmentation model was evaluated in the current study. A 3D
model of multiple structures in the L4/5 level was constructed using manual and automatic
segmentation images. All key parameters of the model were recorded.

Table 1. Dataset demography.

Sequence and Parameters L4/L5 Level Dataset

T2-3D-space
Men II 27 (54)
Women II 23 (46)
Age III 34.70 (23, 63)
Male Participants III 32.37 (25, 46)
Female Participants III 37.43 (23, 63)
Body Mass Index(kg/m2) IV 23.79 (20.68, 26.90)

Note: T2-3D-space = T2-3D-weighted sampling perfection with application-optimized contrast with different
flip-angle evolutions. II Data are numbers of participants, with percentages in parentheses. III Data are means,
with ranges in parentheses. IV Data are means, with 95% confidence intervals in parentheses.

2.2. Image Annotation and Preprocessing

Trained professionals manually segmented all image data using Mimics software
(Mimics®, 3-matic, Materialise, Inc., Leuven, Belgium). Manually annotated anatomical
structures included the L4 vertebrae, L5 vertebrae, the abdominal aorta, the inferior vena
cava, psoas major muscles, and intervertebral discs. In addition, all the segmented images
were evaluated by a radiologist and a spinal surgeon. The three doctors had an open
discussion to confirm the accuracy of the segmentation data in case of a dispute.

Images were further subjected to cropping, normalization, and padding preprocessing
steps. Given an image with specifications of I ∈ RD×H×W, the cropped version of an image
was obtained using the expression presented below:

Icrop(I) = I
[

:,
1
4

H − 40 :
3
4

H + 40,
1
4

W − 10 :
3
4

W + 10
]

where D, H, and W represent the depth, height, and width of the image, respectively. The
value of D in the current study varied from 88 to 128. Cropped image size was D× 240× 180;
the voxel values were then normalized by subtracting the average and dividing by the
standard deviations. The normalized images were ultimately zero-padded to attain a size
of 128× 240× 180.

2.3. Model Architecture

A 3D DeepLabv3+, modified from previous reports [15,21], was utilized to attain the
automatic segmentation of multiple anatomical structures in L4/5 segment MR images
(Figure 1). The 3D DeepLabv3+ comprises a deep convNet (Figure 2) for extracting low-
level (stride = 2) and high-level image representation (stride = 4). In addition, it has a
decoder for generating the predicted segmentation. Moreover, the output of the decoder
contains 9 channels including 8 anatomical structures and the background.

2.4. Experimental Configurations

A 5-fold cross-validation method was utilized to evaluate the performance of the
model. The 50 subjects were randomly assigned to 5 groups, each with 10 individuals. Ten
subjects from a group were used as the test dataset in each experiment, whereas thirty-
two individuals, randomly selected from the other 4 groups, were used as the training
dataset. The other 8 subjects were used as the validation dataset. To enhance generalization,
the training dataset was augmented online with random rotations ranging from −15◦ to
15◦ and random elastic deformations. The 3D DeepLabv3+ was trained for 200 epochs
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using the training dataset. The validation dataset was used to calculate the Dice Similarity
Coefficient after training at each epoch, and the trained model with the highest Dice
Similarity Coefficient among the 200 epochs was used for testing. Five replicates were
conducted for this process until the segmentation results of all the samples were obtained.
Moreover, the DeepLabv3+ model, developed by Facebook Artificial Intelligence Research
and implemented in PyTorch version 1.5.1, underwent training for 200 epochs using the
Adam optimizer with a batch size of 2. The learning rate was initially set at 0.005 and then
lowered 5 times at epochs 66 and 133.
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2.5. Examination of Model Performance and Morphometric Evaluation

The Dice Similarity Coefficient (DSC) [22] was utilized as a quantitative metric to
assess the segmentation performance of DeepLabv3+. Notably, all metrics were calculated
for a single object in the original image space (including L4, L5, and abdominal aorta,
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etc.). In addition, the average of the DSC of all the objects was calculated to obtain the
final result. Two independent researchers evaluated segmentation effect of DeepLabv3+ in
clinical application. Mimics were initially used to establish 3D reconstruction of the field of
view of the L4/5 level. Moreover, the 3D models were cut along the middle section of the
mask of the L4 vertebral body and the intervertebral disc. Morphological data related to
the surgery in the field of view of the L4/5 level were then obtained (Figure 3). One of the
observers re-evaluated all the morphological parameters of the three-dimensional model of
multiple structures in the L4/5 level a month after the first analysis. The final morphological
parameters were obtained by averaging the values of the three measurements.
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Figure 3. Morphological measurement using the three-dimensional model of the L4/5 level. P, psoas
major; Disc, intervertebral disc; N4, Lumbar 4 nerve roots; OC, the shortest distance between the
psoas major and abdominal aorta in the middle of the L4/5 intervertebral disc; DAA, the maximum
diameter of the abdominal aorta in the middle of the L4/5 intervertebral disc; DIVC, the maximum
diameter of the inferior vena cava in the middle of the L4/5 intervertebral disc; PI, the shortest
distance between the psoas major muscle and the inferior vena cava in the middle of the L4/5
intervertebral disc.

2.6. Statistical Analysis

Statistical tests were conducted using SPSS 25.0 (IBM Corporation, Chicago, IL, USA).
Differences in morphometric parameters of the three-dimensional model of multiple struc-
tures in L4/5 level, between automatic and manual segmentation were evaluated using the
Wilcoxon signed-rank test without assuming the underlying distribution. A p-value < 0.05
was considered statistically significant. Pearson correlation coefficient, Bland–Altman plot,
and scatter diagram were used to evaluate the reliability of the morphological analysis.

3. Results
3.1. Performance of Automatic Segmentation

The validation results showed that DeepLabv3+ was effective in the segmentation of
the spinal structures (L4 vertebrae (L4), L5 vertebrae (L5), Intervertebral disc (IVD), L4
nerve roots (N4), dura, Abdominal Aorta (AA), Inferior Vena Cava (IVC), and Psoas major
(PM)) on axial MR. The results of the three-dimensional visual model was established
according to the results of manual (Figure 4A,C) and automatic (Figure 4B,D) segmentation
of L4/5 MRI images were compared. Automatic segmentation showed a high DSC score
(Table 2 and Figure 5). Analysis of the overall automatic segmentation effect of the test set
revealed that 92% of the DSC of the model was above 0.85 and 15% was above 0.90. This
indicated that the Deeplabv3+ model was effective in the 3D reconstruction of multiple
structures in L4/5 on MRI.
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Table 2. Results of automatic segmentation performances.

Datasets L4 IVD L5 Dura N4 AA PM IVC All

DSC
Training 0.951 0.955 0.951 0.935 0.805 0.921 0.976 0.930 0.928
Validation 0.926 0.921 0.925 0.895 0.700 0.860 0.951 0.878 0.882

Test 0.931 0.924 0.928 0.903 0.721 0.852 0.950 0.880 0.886

Precision
Training 0.956 0.954 0.955 0.940 0.810 0.924 0.974 0.930 0.930
Validation 0.938 0.925 0.930 0.910 0.731 0.894 0.952 0.904 0.898

Test 0.941 0.923 0.937 0.915 0.756 0.881 0.948 0.895 0.899

Recall
Training 0.947 0.956 0.945 0.934 0.818 0.921 0.979 0.934 0.929
Validation 0.916 0.920 0.921 0.886 0.703 0.835 0.951 0.862 0.874

Test 0.923 0.928 0.920 0.896 0.717 0.837 0.953 0.872 0.881

Note: Data are means of Dice Similarity Coefficient of 5-Fold cross-validation scores. L4, L4 vertebral body; L5, L5
vertebral body; IVD, intervertebral disc. N4, L4 nerve roots; AA, abdominal aorta; IVC, inferior vena cava; PM,
psoas major.
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Figure 5. The 3D Deeplabv3+ achieved good performance in terms of DSC, precision, and recall
for segmentations of various anatomical structures, including bones (L4 and L5), dura mater, discs,
nerves, abdominal aorta, inferior vena cava, psoas major, and all 8 spinal structures at the L4/L5
level. The median value and mean value are represented by the orange line and green triangle in the
box, respectively.
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The entire training of DeepLabv3+ lasted for about 12.5 h in each validation fold. The
modified 3D Deeplabv3+ network took 3.5 s (a Quadro RTX 8000 GPU) per sample to
complete an automated segmentation after training. This duration was significantly lower
compared with the 300 min used in manual segmentation (Section 3.1).

3.2. Morphometric Correlation of Parameters and Difference between Manually and Automatically
Segmented Images

Automatic and manual segmentation data were compared to establish a three-
dimensional model of multiple structures in the L4/5 level (p, the Wilcoxon signed-rank
test). The findings showed no significant differences between the automatic and manual
measurements. The results showed a strong correlation between manual and automatic
segmentation for establishing the 3D model of multiple structures in the L4/5 level (R,
Pearson correlation coefficient). Details on the morphologic parameters are presented in
Table 3. The D value of each group corresponded to the mean scatter plot (Bland–Altman
plot) generated. Notably, the points representing fluctuations in the D-value were close
to the average of the D-value, with almost all D-value points located within the 95% con-
sistency interval. Moreover, each group of points in the scatter plot was located near the
tropic line (Figures 6 and 7). The results indicated that the 3D-reconstructed model of
multiple structures at the L4/5 level, established by automatic segmentation, exhibited
high reproducibility of the measurements from the manual segmentation model.
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Table 3. Comparison of morphological measurement results between automatic and manual segmen-
tation of 3D models “x ± s, (minimum–maximum)”.

Level Morphometric
Parameters

3D Model of Automatic
Segmentation

3D Model of Manual
Segmentation

Mean Absolute
Error R Value p Value

OC 9.214 ± 4.897
(0.000–17.970)

9.077 ± 5.038
(0.000–21.80)

0.866 ± 0.706
(0.000, 3.830) 0.975 0.259

DAA 11.852 ± 3.150
(6.100–24.350)

11.828 ± 3.193
(6.950–24.10)

0.779 ± 0.697
(0.010, 4.260) 0.945 0.504

DIVC 21.081 ± 7.257
(8.420–36.430)

21.039 ± 7.217
(8.710–36.680)

1.121 ± 1.312
(0.050, 7.300) 0.971 0.947

PI 1.929 ± 1.504
(0.000–5.820)

1.852 ± 1.382
(0.000–5.950)

0.489 ± 0.462
(0.000, 2.060) 0.895 0.241

Note: Statistical significance is determined at the p < 0.05 level. OC, the shortest distance between the psoas major
and abdominal aorta in the middle of the L4/5 intervertebral disc; DAA, the maximum diameter of the abdominal
aorta in the middle of the L4/5 intervertebral disc; DIVC, the maximum diameter of the inferior vena cava in the
middle of the L4/5 intervertebral disc; PI, the shortest distance between the psoas major muscle and the inferior
vena cava in the middle of the L4/5 intervertebral disc.
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psoas major muscle and the inferior vena cava in the middle of the L4/5 intervertebral disc.
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4. Discussion

Utilizing deep learning-based image segmentation has the potential to accelerate the
3D reconstruction of multiple structures at the L4/5 level. The modified 3D Deeplabv3+
network [21] was well demonstrated in this study due to its multi-scale and multi-structural
segmentation advantages, which took 3.5 s (a Quadro RTX 8000 GPU) per sample to
complete an automated segmentation after training. This duration was significantly lower
compared with the 300 min used in manual segmentation. In this study, five-fold cross-
validation was employed to examine an automated MRI segmentation technique based on
deep neural networks. According to the findings, deep learning techniques can accurately
and rapidly segment lumbar spinal structures (including bones, intervertebral discs, nerve
roots, dura mater, abdominal aorta, inferior vena cava, and psoas major), thereby expediting
the 3D reconstruction of multiple structures in the L4/5 region on magnetic resonance
imaging. Our method shows promising potential for preoperative assessment of spatial
safety in anterior surgery and comprehensive understanding of 3D anatomy within the
surgical field.

The methods proposed in the present study showed good performance in automatic
segmentation of the lumbar spine structure. The average DSC of the method developed in
the current study for automatic segmentation of vertebral structure was 0.93. In addition,
the segmentation performance was similar to that achieved using an automatic image
segmentation model developed by Pang Shumao et al. (the average DSC was 0.94) [23].
The average DSC of automatic disc segmentation was 0.92, which was higher compared
with the segmentation performance of the model developed by Pang Shumao et al. (the
average DSC is 0.87). The present method achieved an average DSC of 0.90 and 0.72,
respectively in automatic segmentation of the dura mater and nerve roots. Moreover,
the total segmentation accuracy for the method was 0.81, which was similar to findings
from our previous research (the average DSC of the dura mater and nerve roots was
0.84) [20]. In contrast to previous research, this study segmented multiple structures in the
lumbar spine and its vicinity, including bones, intervertebral discs, nerve roots, dura mater,
abdominal aorta, inferior vena cava, and psoas major. This provides a more detailed three-
dimensional anatomical relationship that significantly enhances the clinical applicability
of the segmentation model. The results of the automatic segmentation of the psoas major
anatomical structure showed that the present model achieved an average DSC of 0.95,
higher than the performance of the paravertebral muscle automatic segmentation model
developed by Dourthe et al. (the average DSC of psoas major automatic segmentation
was 0.90) [24]. Moreover, the model in the present study showed good performance
in automatic segmentation of the abdominal aorta and inferior vena cava (the average
DSC of abdominal aorta and inferior vena cava was 0.85 and 0.88, respectively). This
performance was higher compared to the performance of the abdominal vascular automatic
segmentation model developed by Golla’s research group (the average DSC of arteries
was 0.84 and the average DSC of veins was 0.76) [25]. In addition, the intricate structure
of nerve roots poses challenges in distinguishing them from other tissues. However, the
overall segmentation performance of the model was satisfactory. These findings show
that the automatic image segmentation method based on deep learning developed in the
present study achieved the same or better segmentation performance as models developed
in previous studies.

Accurate reconstruction of the 3D anatomy of the lumbar region can be used for
preoperative 3D measurement and evaluation of some specific lumbar spine surgeries.
Previous studies report that the distance between the psoas major muscle and the great
vessels of the lumbar anterior spine (the safe zone distance for MIS oblique approach, OC,
the oblique corridor) must be accurately assessed before surgery to avoid complications
such as vascular injury [7]. Molinares et al. [6] reported that the average OC at the L4/5 level
was 10.28 mm after carrying out MRI examination. Wang Hongli et al. [26] conducted an
autopsy study and observed that the average distance between the anterior border of the left
psoas muscle and the abdominal aorta was 8.90 mm at the L4/5 level. In this study, analysis
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using the 3D models generated by automatic segmentation and manual segmentation
showed that the minimum of OC at the median level of the L4/5 intervertebral disc was
9.214 mm and 9.077 mm, respectively. Measurements between the two were similar to
previously reported safe zone distances. In addition, the measurement parameters of the
two models were determined and the differences were compared. The results showed that
the measurements of the 3D model generated by automatic image segmentation were not
statistically different from the measurements obtained from the 3D model generated by
manual segmentation. This indicates that the automatic image segmentation performance
of the method proposed in this study is similar to that of medical professionals. Currently,
the three-dimensional visualization model of the lumbar spine plays a crucial role in
preoperative planning and path trajectory evaluation for lumbar surgery [9,27]. In this
study, we have meticulously elucidated the anatomical structure adjacent to the lumbar
intervertebral foramen and anterior to the lumbar spine, which will greatly facilitate
preoperative planning of minimally invasive procedures in the lumbar region (including
the MIS oblique approach and intervertebral foramen endoscopy, among others). This may
potentially reduce surgical complications and improve postoperative recovery outcomes.

The current study has some limitations. In the current study, automatic segmentation
of the lumbar segmental artery was not explored. If the segmental artery can be automat-
ically segmented and the three-dimensional spatial relationship between the segmental
artery and lumbar region can be clearly presented, this will assist the evaluation and
guidance of the MIS oblique approach, which will be more conducive to reducing the
incidence of vascular injury complications. Further studies should be conducted to explore
the automatic segmentation of lumbar segmental arteries and integrate it into the model
constructed in the present study. Furthermore, the study cohort primarily consisted of
younger individuals with relatively uncomplicated disease types, predominantly lumbar
disc herniation and spinal stenosis patients. Therefore, we intend to expand our sample size
to encompass diverse age groups, body types, and disease types (including spinal deformity
and lumbar spondylolisthesis) to enhance the generalizability of our model. In addition,
this study lacked clinical surgical validations. Further studies should be performed to
conduct clinical validation of automatic segmentation of important tissue structures at the
L4/5 level and explore the clinical feasibility of 3D visualization models.

5. Conclusions

In this study, a modified 3D Deeplabv3+ network-based deep learning model was
developed to automatically segment multiple structures from MR images at the L4/5 level,
achieving performance comparable to that of human experts. In addition, the deep learning
model proved the ability to accurately reconstruct the 3D lumbar model with strong linear
relationships and correlation for the morphometric-related measurements, comparing the
3D lumbar model of manual segmentation. We found it feasible to perform automated seg-
mentation of multiple structures from MR images, which would facilitate minimally inva-
sive lumbar surgical evaluation by establishing 3D reconstruction models at the L4/5 level.
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