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Abstract: Is self-supervised deep learning (DL) for medical image analysis already a serious alter-
native to the de facto standard of end-to-end trained supervised DL? We tackle this question for
medical image classification, with a particular focus on one of the currently most limiting factor of
the field: the (non-)availability of labeled data. Based on three common medical imaging modalities
(bone marrow microscopy, gastrointestinal endoscopy, dermoscopy) and publicly available data
sets, we analyze the performance of self-supervised DL within the self-distillation with no labels
(DINO) framework. After learning an image representation without use of image labels, conventional
machine learning classifiers are applied. The classifiers are fit using a systematically varied number
of labeled data (1-1000 samples per class). Exploiting the learned image representation, we achieve
state-of-the-art classification performance for all three imaging modalities and data sets with only a
fraction of between 1% and 10% of the available labeled data and about 100 labeled samples per class.

Keywords: self-supervision; deep learning; image classification; medical imaging

1. Introduction

Medical image analysis is currently dominated by supervised deep learning (DL). DL
has been shown to achieve exceptional performance for many medical imaging applications
and benchmarks [1-3], and is sometimes claimed (for specific applications) to be on par
with human experts [4]. The key to success is usually a large amount of Iabeled data,
i.e., image data and corresponding task-specific expert-annotated labels, that are used for
DL model training. While the availability of medical image data is, for routinely acquired
images and standard diagnoses, usually not problematic per se, comprehensive labeling
of large data sets by medical experts is a major hurdle: It is a time-consuming and costly
process that often even requires multiple experts to evaluate the same data due to high inter-
and intra-rater variability of clinical scores. For rare diseases, on the contrary, even the
availability of a sufficient amount of image data for supervised end-to-end training of DL
models is sometimes not given. Thus, the need for a large number of expert-annotated data
poses a bottleneck in automated medical image analysis when using the current methodical
state-of-the-art approach: supervised deep learning.

Interestingly and despite existing large annotated data sets like ImageNet (currently
more than 14 million images, [5]) or the COCO data set (more than 200,000 labeled im-
ages, [6]) and impressive performance of supervised DL in corresponding benchmarks,
recent developments in the natural image and computer vision domain showed a trend to-
ward self-supervised learning (SSL). Unlike supervised methods, SSL is purely data-driven.
It aims to learn a generalized representation of the input directly from the presented data,
independent of labels. In practice, this is described to result in better generalizability of
SSL models and increased robustness when out-of-distribution samples are present [7,8].
Theoretical foundations and explanations for SSL and the behavior of different SSL vari-
ants are part of active research [9]. However, the expectation is that based on the learned
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generalized and robust input representation, downstream tasks like image classification
can be solved more efficiently, i.e., with a reduced amount of ground truth labels [10]. Ac-
cordingly, self-supervision potentially allows combining the advantages of DL (extraction
of meaningful features from high-dimensional input data like images) and conventional
machine learning (ML) methods that offer run-time efficient and robust classification with
only a few but well-represented labeled data points.

The SSL concept, therefore, holds the promise to reduce the annotation workload and
to accelerate research in medical imaging, but there is more to it than directly meets the eye:
While the state-of-the-art for natural image domain benchmarks for image classification
steadily progresses with the introduction of new and often larger DL architectures, the
performance on many medical image domain benchmarks has stagnated after initial success.
The problem is: As the parameters of (DL) models increase, so do the requirements for
labeled data, and for some applications and benchmark data sets, current DL models are
only trainable with the inclusion of additional large annotated image data sets. For the
above reasons, appropriate (i.e., large) data sets are difficult to obtain for the medical
image domain. At this, self-supervised DL could help to optimize the performance on
limited-size benchmark data sets by exploiting unlabeled data to improve robustness and
generalizability of the learned representation. Moreover, the ability to quickly adjust only
the classifier of an already fitted pipeline and treat the DL model as a static feature extractor
is, from a clinical perspective, particularly interesting: As retraining of conventional ML
classifiers is much faster than retraining or adaption of end-to-end DL classification systems,
it offers a way for time-efficient integration of additional labeled data or extension to new
classes and tasks.

Despite its promising capabilities (see, e.g., current perspectives [11] and reviews [12-14]),
SSL is still in its infancy in the field of medical image analysis. Related work mainly focused
on self-supervised pretraining of DL models, with the models still being fine-tuned on
relatively large labeled data sets. Aziz et al., for instance, demonstrated self-supervised
pre-training using unlabeled data to improve subsequent medical image classification;
the classifier training was, however, still based on >15,000 labeled images [15]. To our
knowledge, a systematic experimental analysis of the label data efficiency claim, i.e., the
classification performance for limited label data scenarios, on publicly available medical
data sets has not been performed.

This study aims to fill this gap. To substantiate the data efficiency claim and to define
first related benchmark data, we analyze the potential of SSL for different medical image
classification settings and demonstrate for three established but distinct public data sets
(cell images obtained from bone marrow smears, endoscopic images, and dermoscopic
lesion images) that it is possible to reach (near) state-of-the-art performance with as little as
approximately 100 labeled training samples per class.

There exist different approaches to SSL, with contrastive learning approaches like
SimCLR [16] being commonly used. Recently, the so-called DINO algorithm (self-distillation
with 7o labels) has been introduced, which shifts away from contrastive learning and is
based on momentum encoders, i.e., BYOL [17] and siamese learning [18]. Compared to
SimCLR, DINO improved the performance on the Imagenet benchmark for SSL approaches
by over 6% using the same network architecture (ResNet50) [16,19]. Motivated by this
leap in performance, our study also builds on the DINO framework. Methodically, we
further deviate from the currently common practice of finetuning a linear layer on top of
the SSL-pretrained model or using SSL only as a means of pretraining before fitting the
entire model on available annotated data [14]. Instead, conventional ML classifiers are used
on top of the SSL-trained models. This allows for an almost instantaneous fitting process
and easy adoption to other downstream tasks. Moreover, we provide a highly customizable
and adaptive pipeline of our reimplementation of the DINO algorithm using community
standard APISs for others to take full advantage of our experiments and findings.
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2. Methods

The experiments are based on the following publicly available medical image data
sets: a bone marrow single cell data set, published by Matek et al. [20]; an endoscopic
image data set assembled and released by Borgli et al. [21]; and a dermoscopic lesion data
set, released as part of the annual Grand Challenges organized by the International Skin
Lesion Collaboration (ISIC) [22-26]. The implementation of the DINO framework, the deep
learning models, and our experiments is based on the pytorch and scikit-learn frameworks.
The source code, the trained models, and the data split information for the data sets as used
in this study are provided publicly available at https://github.com/IPMI-ICNS-UKE/
sparsam (accessed on 23 July 2023). Subsequently, the methods and data sets are therefore
primarily described conceptually. Details such as hyperparameter values can be found in
the source code and the Github repository.

2.1. Dino: Knowledge Distillation with No Labels

DINO is a self-supervised DL framework that follows the concept of knowledge
distillation. Knowledge distillation refers to the process of knowledge transfer between two
models, one often referred to as the teacher and the other as the student model. In DINO,
both models have the same architecture but are trained on differently-sized patches of the
input image data. The idea is to learn a consistent representation of local views (smaller
patches, input to the student model) and global views (larger patches, input to student
and teacher models) of the same image. Thus, the models are trained without using any
annotations (=labels) of the image data.

This general concept is summarized in Figure 1, following [19]: For an input image
I, differently sized patches of the image are presented to the two DL models of equal
architecture but a different set of model parameters: larger patches (global views) Z, to the
teacher network (parameterized by 6;) and a smaller patch (local view) Z; to the student
network (parameterized by 6;). Following the default DINO implementation, for each
input I, two global (>50% of the image area) and five local views (<50% of the image area)
are extracted. All crops are further subject to extensive augmentation (horizontal /vertical
flipping, rotation, color jitter, grey scaling, Gaussian blurring, solarization) and define
aset T = Z, UZ;. The training objective is given by the categorical cross entropy (CE)
between student and teacher outputs P;, Ps evaluated for all combinations of the global
views (input to the teacher) and the remaining elements of Z (input to the student) after
temperature-weighted softmax normalization.

While the student parameters 05 are optimized by stochastic gradient descent, the
teacher parameters 6; are given as an exponential moving average of 6;. The optimization
is further stabilized by a centering of the teacher outputs.

The general DL model architecture used within the DINO framework consists of
two major parts: the backbone network and a projection head. As the backbone network,
we use a cross-variance vision transformer (XCiT, see Section 2.2). The projection head
consists of a series of four fully connected layers as proposed in [19]. During network
inference (i.e., final application of the network), only the backbone with the teacher weights
6; is used to generate the features that are used for the desired downstream task (here:
medical image classification).

2.2. Xcit: Cross-Covariance Image Transformer

Similar to the original DINO paper [19], we built on a vision transformer as the back-
bone network. Offering a reasonable trade-off between required computational resources
and performance, we used the XCiT network, a recent version of the Vision Transformer
family, in the small variant [27]. Different to the original self-attention as introduced in [28],
which operates directly across the tokens, XCiT derives the attention map from the cross
covariance matrix of key and query projections of the token features. This results in a linear
complexity with regard to the number of tokens [27] and allowed us to work on batch sizes
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Training:

similar to [19]. We did not train the XCiT networks from scratch, but further tuned models
pretrained on ImageNet.
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Figure 1. Flowchart of the DINO training and inference processes. During training, an input image
is randomly cropped into two global and five local crops, the global crops are passed through the
teacher network, and the network outputs are centered (MLP: multi-layer perception). The student
network receives the same two global crops but is also presented with the additional five local crops
and outputs are subsequently not further post-processed. Student and teacher have the same network
architecture, as illustrated. After softmax activation (sharpened by temperature weighting), the loss
between student and teacher outputs is calculated in terms of categorical cross entropy (CE). During
optimization, only the student is updated via backpropagation, while the teacher weights are an
exponential moving average (EMA) of the student weights (i.e., no gradient backpropagation through
the teacher). During inference (right block), the trained teacher backbone is directly employed to
extract the embedding of the entire image. The corresponding embedding is subsequently fed into a
conventional ML classifier.

2.3. Image Classification Based on DINO Representation

Image classification was based on the learned representation of the trained DINO
backbone (XCiT). We only deployed the teacher model, even though in theory teacher and
student should lead to similar performance at convergence. The process of representation
extraction and classification is also shown in Figure 1. Before classifier training by means
of a small subset of the labeled training images (see Section 2.6 for details), the individual
features of the representation of these training images were first re-aligned by a principal
component analysis without dimension reduction and subsequently normalized along each
feature dimension to a zero mean and unit variance by a logarithmic power transform.
These preprocessed features and the corresponding image labels were then used to fit the
parameters of the ML classifiers. We applied three standard ML classifiers with default
parameters: support vector machine (SVM; kernel: radial basis function), logistic regression
(LR), and K-Nearest Neighbors (KNN; K = 10). For testing, the representation of the image
to be classified was extracted the same way as described above and transformed using the
previously fitted PCA and power transform. Then, the trained ML classifier was applied.

In addition and similar to common practice in SSL-based image classification evalua-
tion in the natural image domain context [19,29], a linear classifier (LL) was built by adding
a fully connected (FC) layer (input: DINO representation, size: 384; output size: number of
classes of the image data set) on top of the DINO backbone. The weights of the FC layer
were trained by minimizing cross entropy (optimizer: Adam) based on augmented global
crops of the input images, with the DINO-derived backbone weights 0; being frozen. The
stopping criterion was converging validation accuracy (relative improvement smaller than
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0.5%), with the validation data set being a stratified split of 30% of the training set defined
in Section 3.

2.4. Image Classification Using an In-House End-To-End Trained Supervised DL Baseline

For comparison purposes, we also built and trained an end-to-end trained supervised
DL system. Regarding the network architecture, the model is identical to the LL classifier
described in Section 2.3. Unlike training of the LL classifier, the DL baseline model initially
consisted of the same ImageNet pre-trained XCiT model used for SSL in the DINO frame-
work, and the weights of the pre-trained transformer were not frozen, but trained together
with the FC layer.

2.5. Image Data Sets

Example images of the three different image data sets used in this study are shown in
Figure 2.

2.5.1. Bone Marrow (BM) Single Cell Data Set

The bone marrow (BM) data set published by Matek et al. [20] consists of 171,374 cropped
microscopic cytological single cell microscopy images extracted from bone marrow smears
from 945 patients with hematological diseases. The cell image size is 250 x 250 pixel,
and the data set consists of 21 unbalanced classes with largely varying class frequencies
(cf. Figure 4), reflecting the varying prevalence of disease entities and cell classes. The
three largest classes (segmented neutrophils, erythroblasts, lymphocytes) each comprise
more than 25,000 images. In contrast, the three smallest classes (abnormal eosinophils,
smudge cells, Faggot cells) are represented by less than 50 images. Examples for the eight
largest classes are shown in Figure 2.

2.5.2. Endoscopic (Endo) Image Data Set

The Endo data set corresponds to the so-called HyperKvasir image data set published
by Borgli et al. [21]). It contains 110,079 images captured during gastro- and colonoscopy
examinations, of which 10,662 images are labeled. In turn, 99,417 images are not assigned
with a label, making the HyperKvasir image data set a good candidate for the analysis of
the potential of self-supervision for medical image classification. The labeled image data
subset consists of images from 23 classes, including not only pathological findings but also
anatomical landmarks (all classes: Barrett’s, bbps-0-1, bbps-2-3, dyed lifted polyps, dyed
resection margins, hemorrhoids, ileum, impacted stool, normal cecum, normal pylorus,
normal Z-line, oesophagitis-a, oesophagitis-b—d, polyp, retroflex rectum, retroflex stomach,
short segment Barrett’s, ulcerative colitis grade 0-1, ulcerative colitis grade 1-2, ulcerative
colitis grade 2-3, ulcerative colitis grade 1, ulcerative colitis grade 2, ulcerative colitis
grade 3). Similar to the BM data set, the Endo data set is highly imbalanced, with the largest
classes covering more than 1000 and the smallest classes less than ten labeled images. The
size of the images varies between 332 x 487 and 1920 x 1072 pixel. Example images for the
largest classes are shown in Figure 2.

2.5.3. ISIC 2019 and 2020

The dermoscopic lesion data set is a collection of dermoscopic skin lesion data sets
that were released as part of the annual Grand Challenges organized by the International
Skin Lesion Collaboration (ISIC). For the present study, we used the ISIC 2019 (25,331 im-
ages) and the ISIC 2020 challenge data (33,126 images) [1,22-24]. The ISIC 2019 data set
contains skin lesion images from eight different classes (actinic keratosis, basal cell car-
cinoma, benign keratosis, dermatofibroma, melanome, nevus, squamous cell carcinoma,
vascular lesion; largest class: nevus, 12,875 images; smallest class: vascular lesion, 253 sam-
ples), see examples in Figure 2. The ISIC 2020 data set comprises only two image labels:
melanoma and benign lesions [26]. The ISIC image size varies between 600 x 450 and
1024 x 1024 pixel. Our study focused on the more challenging multi-class setting, i.e., the
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ISIC 2019 setting. Therefore, the ISIC 2019 data were used as labeled data. However, com-
pared to the BM and the Endo data set, the total number of ISIC 2019 images is relatively
small for self-supervised representation learning. We, therefore, employed the ISIC 2020
image data as an additional unlabeled data pool for SSL.

Artefacts

Segmented neutrophils Erythroblasts Lymphocytes
_ - _ _

Blasts Plasma cells Myelocytes

BM data set

Pylorus Dyed resection margins Z-line Retroflex stomach

Endo data set

Nevus Melanome Benign keratosis Dermatofibroma

Vascular lesion

ISIC data set

Figure 2. Example images of the three publicly available medical image data sets used in this study.
(Top panel): images of the eight largest of the 21 classes of the bone marrow (BM) data set [20].
(Mid panel): images of the eight largest of the 23 classes of the endoscopic (Endo) data set, i.e., the
HyperKvasir image data set [21]. (Bottom panel): images of the eight classes of the ISIC 2019 data
set [22,24,25], i.e., dermoscopic images.
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2.6. Experimental Setup

For each data set, the available labeled images were split into a train and a test set
(70%/30%; stratified split to ensure the same class distribution in both sets). The entire
training set, plus additional unlabeled data if available (see Section 2.5), was used to
train an image-encoder backbone (XCiT) in a self-supervised fashion using the described
DINO framework. In the next step, conventional ML classifiers as well as a FC layer (see
Section 2.3) were fitted using the learned representation of a limited number of samples.
Moreover, as described in Section 2.4, an XCiT model (architecture identical to the SSL
backbone) was trained end-to-end in a supervised manner and serves as a supervised
DL baseline.

For all approaches and data sets, the number of the labeled training samples per class
was systematically varied between 1 and 1000 (steps: 1, 5, 10, 25, 50, 100, 250, 500, 1000 sam-
ples per class). In addition, two sets of experiments were performed: (1) experiments based
on the entire set of classes provided as part of the public data sets, and (2) experiments
based only on the classes for which at least 250 labeled training samples were available.
Experiment series (2) aimed to provide an evaluation for a setting that was not affected
by the pronounced class imbalance inherent in the full data sets. Finally, as an additional
benchmark, the supervised model was also trained using all available labeled samples of
the training data set.

For each experiment, the classification performance was evaluated using the modality-
specific test sets. Due to long training times for the SSL training (exceeding multiple
days for each data set; GPU: NVIDIA A40), only one model was trained per data set.
Based on this model, each SSL experiment was repeated 100 times with different randomly
sampled training splits. Due to also longer training times (e.g., 810 h for the BM data set
with 250 samples per class), the supervised DL baseline experiments were repeated only
five times, and 30% of the labeled training samples were used as validation data.

3. Results

The hypothesis of this study was that the image representations learned within the
DINO framework, that is, without the use of labels, would allow accurate subsequent image
classification with conventional ML classifiers and, compared to standard end-to-end deep
learning, only a limited number of annotated image data.

3.1. Full Data Set Experiments and Effect of the Number of Labeled Training Samples

The first experiment series aimed at a direct comparison with literature values and
covered all classes available in the labeled data sets. For the BM and the Endo data set,
balanced accuracy values as reported in the original data set publications [20,21] were
considered as literature benchmark and state-of-the-art performance. For the ISIC data
set, the ISIC 2019 methods paper of the challenge winners Gessert et al. [30] was used as
literature benchmark. All benchmark values were obtained through supervised end-to-end
trained DL, using the maximum available number of labeled data.

The results for the three image modalities are, in terms of balanced accuracy, summa-
rized in Figure 3. Figure 3 also shows the literature benchmark balanced accuracy.

Not surprisingly, improved accuracy and decreased variability of the individual runs
were observed for an increasing number of training samples. However, the accuracy for
the SSL-based approaches starts saturating already at a limited number of labeled samples
per class for all data sets, with the exact number depending on the data set: For the Endo
data set, a saturation at approximately 25 samples can be seen; for the BM data set, the
accuracy converges around 50-100 samples per class; for the ISIC data set, saturation
starts at >500 samples; the exact numbers depend on the classifiers. The later saturation
for the ISIC data set can only partly be associated with the smaller number of classes
and, consequently, the smaller number of absolute samples. The task itself seems to be
more difficult to solve than the other two tasks, which is also reflected in the literature
benchmarks given: The literature benchmark accuracy is at about the same level as for
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the other two tasks, although fewer classes have to be differentiated. As for the different
classifiers, SVM-based classification seems to have a slight advantage over LR-, KNN-
and LL-based classification for limited labeled data scenarios. The performance depends,
however, on the data set.

Absolute number of labeled training samples
200 2k 15k 120k 200 1.5k 7.5k 7.5k 100 800 5.5k 17.5k

Endo data set

0.8

ISIC data set’

Literature benchmark

BM data set |

Literature benchmark

Literature benchmark | L _ L = E= S
- DL benchmark

Accuracy

0 | | | | | | | | | | | | | | | | | | | | | | | |
1 5 10 25 50 100 250 500 1k all 1 5 10 25 50 100 250 500 800 all 1 5 10 25 50 100 250 500 1k all

Maximum number of labeled training samples per class

—+—SSL + SVM  —=—SSL + KNN SSL + LR SSL 4+ LL. —=— DL baseline

Figure 3. Classification balanced accuracy for the different classifiers for different numbers of labeled
samples per class for the three image data sets (BM: bone marrow; Endo: endoscopic images; ISIC:
dermoscopic images). The accuracy is shown for the maximum number of labeled training samples
per class; if the training data set for a particular class contained only a smaller number of images, all
available training images were used. This means that the training for larger sample sizes is partially
biased toward better performance for larger classes due to the unavailability of a sufficient number of
labeled training samples for smaller classes. As detailed in the main text, the literature benchmark
performance refers to accuracy data reported in the context of the publication of the image data sets
(BM, Endo) and a directly associated publication for ISIC ([30]; average accuracy of the 14 models
evaluated in the paper). The DL benchmark line indicates the performance of our DL baseline model
trained on all available labeled samples of the training data sets.

For all data sets, the literature benchmark data were reported as cross-validation
(CV) results on a validation set, with the CV performed to determine the best model and
hyperparameters; no independent test set was used. The values could therefore potentially
be overoptimistic and subject to overfitting. In contrast, our DL baseline models were
evaluated on the unseen test set. In line with the overfitting hypothesis, the test set accuracy
for our DL baseline when trained using all available labeled samples of the training data
set (referred to as DL benchmark in Figure 3) was consistently lower than the literature
benchmark values for the three application examples. The validation set accuracy was,
however, very similar to the reported literature accuracy.

Independent of this aspect: The proposed approach of self-supervised representation
learning and subsequent image classification by conventional ML classifiers breaks the
baseline and the literature benchmark lines with between 5 and 10 (our DL benchmark)
and 25 and 50 labeled samples per class (literature benchmark) for the BM and the Endo
data sets and with between 100 and 250 samples for the ISIC data set (classifier: SVM; see
corresponding quantitative data in Table 1).

On the contrary, the balanced accuracy of our DL baseline, when trained with limited
labeled image data, did not exceed the literature benchmark line for any of our limited label
data scenarios, i.e., with less than 1000 samples per class. In addition, for small sample
size scenarios, a clear performance gap compared to SSL with subsequent ML classification
is visible in Figure 3. For example, for classification using 100 labeled samples per class,
the accuracy for SSL and subsequent SVM classification is between 9% and 17% higher
than the accuracy of the DL baseline. This demonstrates the ability of self-supervised DL
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methods and the proposed approach to achieve strong performance with a minimum of
labeled samples.

Table 1. Balanced accuracy for medical image classification using self-supervised image represen-
tation learning and subsequent SVM classification for different numbers 1 of labeled samples per
class (quantitative data, corresponding to Figures 3 and 5). The DL benchmark values (DL) refer to
model training with the all available labeled training samples and the benchmark performance to
literature values reported in the context of the publication of the image data sets (see text for details).
Best accuracy values for the different data sets are highlighted by bold text.

All Classes Classes > 250 Samples
n BM Endo ISIC BM250+ Endo250+ ISIC250+
1 0.27 00 0.360.03) 0.220.03) 0.260.03) 0.550.05) 0.220.09)
5 0.4800n 0.52 0.02) 0.360.03) 0.46 0.02) 0.78 0.02) 0.34 0.02)
10  0.5600) 0.57 0.02) 0.42 ©0.02) 0.55 .01 0.84 .01 0.40 ©.01)
25  0.650.0) 0.61 .01 0.51 0.01) 0.64 .01 0.88 (0.00) 0.48 0.01)
50 0.7000 0.62 (0.01) 0.56 .01 0.68 0.00) 0.90 .00 0.52 .01
100  0.72 01 0.62 (0.01) 0.62 ©.01) 0.71 ©.00) 0.91 (0.00) 0.57 001
250  0.73 002 0.62 (0.00) 0.67 ©.00) 0.74 (0.00) 0.93 (0.00) 0.62 (001
500 0.7100) 0.62 (0.00) 0.70 .00
1000  0.70 .01 0.62 (0.00) 0.73 (0.00)
DL* 0.51 0.56 0.63 0.72 0.92 0.67
Lit. ¢ 0.69 0.62 0.67 0.71 0.92 n/a

¥ In-house DL benchmark, trained on all labeled training samples, evaluated on test set. ¢ 1jterature benchmark,
trained on all labeled training samples, evaluated with CV.

For further illustration, Figure 4 shows the confusion matrix (CFM) for the BM data
set and SVM-based classification with 100 labeled training samples per class, compared
to the literature benchmark CFM diagonal as reported in [20]. While the overall balanced
accuracy is similar for the two approaches (ours: 0.73; Matek et al.: 0.69), SSL leads to higher
accuracy values for the smaller classes (balanced accuracy for the 50% smallest classes: 0.74
vs. 0.64). In turn, the supervised DL literature benchmark has a slight advantage for the
larger classes (balanced accuracy for the 50% largest classes: 0.71 vs. 0.73). However, our
results are based on only roughly 1% of the labeled data that were used for training the
supervised DL benchmark. Using the same amount of labeled data for training of our DL
baseline leads to a balanced accuracy of 0.56 and worse performance for all classes.

Similar observations also apply for the other two data sets, but SSL for the Endo
and ISIC data require about 10% of the available labeled data to achieve performance
comparable to the literature benchmark values.

3.2. Experiments with Classes with 250+ Samples

Figure 3 further shows that the performance of the ML classifiers only marginally
gains from more than 250 samples per class. For some data set/classifier combinations
(e.g., BM and SVM for more than 100 samples per class, or Endo and KNN for more than
250 samples per class) and the full data set setting (i.e., consideration of all classes), the
accuracy even declines if more labeled training samples per class are used to fit the classifier
parameters. This behavior is only due to a drop in performance for smaller classes and can
be hypothesized to be a consequence of the pronounced class imbalance in the data sets,
which is exacerbated in scenarios with a larger number of labeled training samples. For
the three smallest classes of the BM data set, for instance, the number of available labeled
training images was 6 (abnormal eosinophils), 29 (smudge cells), and 33 (faggot cells). For
the experiments and results described so far, we accounted for class imbalance using the
standard approaches for the ML classifiers (SVM, LR: scaling of class weights inversely
to the class sizes; KNN: weighting of data points inversely to the distances to the query
point). The second experiment series aimed to obtain a sound performance analysis of the
capabilities of self-supervised representation learning independent of potential issues due
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to class imbalance (see Section 2.6); therefore, we repeated the experiments, i.e., classifier
training and evaluation, using only the classes that cover more than 250 samples in the
training data set. For clarification purposes, the corresponding data sets are subsequently
denoted by an appended 250+ (e.g., BM250+).
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Figure 4. (Top): Confusion matrix for bone marrow (BM) image classification using the proposed
workflow (i.e., SSL and subsequent classification with a standard ML classifier) with SVM train-
ing based on only 100 labeled images per class. The class frequencies are shown on the right.
(Bottom): Comparison of diagonal elements of the proposed approach (SSL + SVM), the benchmark
data reported by Matek et al. [20], and our DL baseline model when trained on only 100 labeled
images per class. Please note that it is possible to zoom into the digital version of the figure for full
readability of the details.
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The results are shown in Figure 5. As hypothesized, different from the full data set
experiments, no drop in performance for an increasing number of samples can be seen
for the 250+ data sets, and the general trend is similar as for the full data set experiments.
The literature benchmark line in Figure 5 now refers to the accuracy data reported for the
classes contained in our 250+ data set. For the BM and Endo data sets, again, the proposed
SSL approach achieves similar performance with fewer samples. The specific benchmark
information was unfortunately not available for the ISIC data set.

Absolute number of labeled training samples
4k 120k 120 600 3k 7k 30 300 1.5k 17.5k

BM250+ data set

DL benchmark
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Figure 5. Classification balanced accuracy for the different classifiers for different numbers of labeled
samples per class for the three image data sets, similar to Figure 3, but the experiments were restricted
to classes with more than 250 labeled training samples (BM data set: 16 classes; Endo: 12; ISIC: 5) to
avoid bias of the classifier training toward large classes. In experiments with the number of training
samples per class of more than 250, again, a class imbalance would have biased the results. We,
therefore, focused on experiments with fewer than 250 samples per class, although it is obvious for
the ISIC data set that both the SSL and the DL approaches would gain in performance with more
labeled samples.

The comparison to the literature values is, however, biased because no explicit super-
vised DL model was trained by the authors to differentiate only the 250+ classes. To conquer
the bias, we also re-trained and evaluated our DL baseline models on the 250+ data sets.
Trained on all available labeled samples of the 250+ classes, the accuracy of DL baseline is
now similar to the literature benchmark values. Again, different from the literature values,
the in-house DL benchmark accuracy data were obtained based on a sound test data set.
Training the DL baseline models with limited labeled image data also supports the results
for the full data set experiments: Although the extent of the effect depends on the specific
data set, a clear gap between the SSL-based classification approaches and the DL baseline
models is evident for all data sets for small sample sizes.

Compared to the results for the full data sets, interestingly, the saturation of the
performance curves starts with a higher number of samples per class. As we reduced
the overall number of classes, this indicates that not only the relative amount of samples
(i.e., samples per class) is important but still also the absolute number of samples. This
might again be a potential explanation for the slower increase in performance for the ISIC
data set.

4. Discussion

The present study demonstrates that self-supervised DL feature extraction combined
with conventional ML classification is capable of achieving competitive performance in
medical image classification even under very limited labeled data availability conditions:
Using the DINO framework [19], we achieved state-of-the-art classification performance
on three different public medical data sets of high interest in the community making use
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of only 1% (BM data set) and 10% (Endo and ISIC data sets) of the available labeled data
and approximately 100 labeled samples per class (between 25 and 250, depending on the
data set), respectively. In contrast, corresponding literature benchmark approaches are
based on supervised DL making use of all available labeled image data. When interpreting
the results, it should further be noted that the literature benchmark performance refers
to results for validation data sets (and not test data, as in our study), which tends to
overestimate model performance on a test data set. This hypothesis was supported by the
weaker performance of the baseline DL models that we trained in a supervised end-to-end
approach using the entire labeled training sets and a clean train/test split. Our results
therefore highlight the capability of self-supervision for medical data analysis, a field, in
which data annotation is time consuming, expensive in terms of expert work load, and
eventually a limiting factor for standard supervised DL.

Similar to the computer vision community, there is currently a trend toward releasing
large(r) publicly available annotated medical image data sets [31]. It can be argued that
with the availability of such data sets, the pressure and need to develop label-efficient
learning approaches will be eased. We do not think so. The data sets usually come with
only a single set of labels, tailored to a specific scientific or clinical question. An adjustment
of the specific question require partial or full relabeling of the entire data set.

Furthermore, end-to-end trained DL systems usually need to be re-trained (includ-
ing hyperparameter optimization) after adaptation of the specific research question and
corresponding data relabeling. This is a time-consuming and power-intensive process. In
contrast, SSL-based image representations can be directly used for rephrased research ques-
tions and downstream tasks. For image classification, the use of standard ML approaches
facilitates efficient (i.e., fast, smaller energy consumption) reuse of the SSL features.

At the same time, large data sets hold promise to unlock the full potential of SSL for
medical image analysis, since they cover most common clinical image domains. This opens
the door for efficient combination of public and private (and potentially labeled) image
data sets to tackle specific task and allows researchers who have only access to limited
(labeled) data to effortless enrich their data and to contribute to method development and
medical data analysis.

The demonstrated promising performance of self-supervision for medical image
classification now suggests extending the present study as follows:

First, we focused on two-dimensional image data sets. Typical radiological images
such as computed tomography or magnetic resonance imaging data are usually volume
data, i.e., three-dimensional data were not included. In addition, temporally resolved
image data representing either physiological processes or imaging follow-up data add
another dimension. The potential of self-supervised representation learning for these data
types has still to be explored in detail.

Second, the present study addressed a multi-class and whole image classification set-
ting. Intrinsically, the applied DINO self-supervision framework forces similarity between
global and local crops of the same image, which can be assumed to be well suited for global,
i.e.,, whole image labels. Especially for volumetric medical images and multi label settings
which are also common meaningful representations would also on local changes and/or
multiple pathological alterations in a single image/volume. It remains to be analyzed
whether the learned DINO representations are also capable to achieve state-of-the-art
performance with limited labeled data for these settings.

Third, in line with the second aspect, it will be interesting to explore the capabilities of
different self-supervision approaches like contrastive learning [16,29,32] and, if existing,
to identify well-suited task-specific self-supervision methods. Similarly, a better under-
standing of the impact of different components of SSL frameworks on their performance
(e.g., by corresponding ablation studies) would potentially help to further improve them.
For instance, for the used DINO framework, this applies the data augmentation approaches,
which are currently adapted from the natural image domain and are not necessarily optimal
for the medical image domain or specific subdomains.
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Thus, we will see to which degree the ongoing theoretical and methodical develop-
ments in this field allow an additional performance gain, whether corresponding models
will be taken up more frequently by the community, and whether this eventually allows the
clinical domain experts to spend their valuable time for more useful activities than image
annotation. We hope that the present publication and the corresponding results will be
taken up as benchmark data in the field of SSL-based medical image data classification.
The models, data splits and results are publicly provided to ensure reproducibility.

Author Contributions: M.N. contributed in the experimental design, data analysis, implementation,
and writing of the manuscript. L.W. was involved in the implementation of the code base. T.S. con-
tributed in the experiment design, revised the manuscript, and analyzed the results. R.W. supervised
this work and was substantially involved in experiment design, data interpretation, and manuscript
writing. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.
Institutional Review Board Statement: Not applicable.
Informed Consent Statement: Not applicable.

Data Availability Statement: All three data-sets used in this study are publicly available. The
ISIC [22-26] dataset is available through the following link: https://challenge.isic-archive.com/
data/ (accessed on 23 July 2023). The data-set of bone marrow cells affiliated with the publication
“Highly accurate differentiation of bone marrow cell morphologies using deep neural networks
on a large image data set” [20] is available through the cancer imaging archive: https://wiki.
cancerimagingarchive.net/pages/viewpage.action?pageld=101941770 (accessed on 23 July 2023).
The data-set of endoscopic intervention (HyperKvasir) [21] may be found under the following DOI:
https://doi.org/10.6084/m9.figshare.12759833.v1 (accessed on 23 July 2023), https:/ /doi.org/10.1
7605/OSEIO/MH9IS]J (accessed on 23 July 2023). All code used in context of this work is available
under https:/ /github.com/IPMI-ICNS-UKE/sparsam (accessed on 23 July 2023).

Conflicts of Interest: The authors declare that there are no competing interest.

References

1.

11.

Tschandl, P.; Codella, N.; Akay, B.N.; Argenziano, G.; Braun, R.P.; Cabo, H.; Gutman, D.; Halpern, A.; Helba, B.; Hofmann-
Wellenhof, R.; et al. Comparison of the Accuracy of Human Readers versus Machine-Learning Algorithms for Pigmented Skin
Lesion Classification: An Open, Web-Based, International, Diagnostic Study. Lancet Oncol. 2019, 20, 938-947. [CrossRef] [PubMed]
Irvin, J.; Rajpurkar, P.; Ko, M.; Yu, Y.; Ciurea-Ilcus, S.; Chute, C.; Marklund, H.; Haghgoo, B.; Ball, R.; Shpanskaya, K,; et al.
CheXpert: A Large Chest Radiograph Dataset with Uncertainty Labels and Expert Comparison. Proc. Innov. Appl. Artif. Intell.
Conf. 2019, 33, 590-597. [CrossRef]

Ching, T.; Himmelstein, D.S.; Beaulieu-Jones, B.K,; Kalinin, A.A.; Do, B.T.; Way, G.P; Ferrero, E.; Agapow, PM.; Zietz, M;
Hoffman, M.M.; et al. Opportunities and obstacles for deep learning in biology and medicine. J. R. Soc. Interface 2018, 15, 20170387.
[CrossRef] [PubMed]

Nagendran, M.; Chen, Y.; Lovejoy, C.A.; Gordon, A.C.; Komorowski, M.; Harvey, H.; Topol, E.J.; Ioannidis, ].P.A.; Collins, G.S.;
Maruthappu, M. Artificial Intelligence versus Clinicians: Systematic Review of Design, Reporting Standards, and Claims of Deep
Learning Studies. BM]J 2020, 368. [CrossRef] [PubMed]

Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.; et al.
ImageNet Large Scale Visual Recognition Challenge. Int. . Comput. Vis. 2015, 115, 211-252. [CrossRef]

Lin, T.Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Doll’ar, P.; Zitnick, C.L. Microsoft COCO: Common Objects
in Context. In Proceedings of the Computer Vision—ECCV 2014; Springer International Publishing: Cham, Switzerland, 2014;
pp. 740-755. [CrossRef]

Tendle, A.; Hasan, M.R. A study of the generalizability of self-supervised representations. Mach. Learn. Appl. 2021, 6, 100124.
[CrossRef]

Hendrycks, D.; Mazeika, M.; Kadavath, S.; Song, D. Using self-supervised learning can improve model robustness and uncertainty.
Adv. Neural Inf. Process. Syst. 2019, 32 , 15663-15674.

Shwartz-Ziv, R.; Balestriero, R.; LeCun, Y. What doe we maximize in self-supervised learning? arXiv 2022, arXiv:2207.10081.
Jing, L.; Tian, Y. Self-Supervised Visual Feature Learning With Deep Neural Networks: A Survey. IEEE Trans. Pattern Anal. Mach.
Intell. 2021, 43, 4037-4058. [CrossRef]

Spathis, D.; Perez-Pozuelo, I.; Marques-Fernandez, L.; Mascolo, C. Breaking away from labels: The promise of self-supervised
machine learning in intelligent health. Patterns 2022, 3, 100410. [CrossRef]


https://challenge.isic-archive.com/data/
https://challenge.isic-archive.com/data/
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=101941770
https://wiki.cancerimagingarchive.net/pages/viewpage.action?pageId=101941770
https://doi.org/10.6084/m9.figshare.12759833.v1
 https://doi.org/10.17605/OSF.IO/MH9SJ
 https://doi.org/10.17605/OSF.IO/MH9SJ
https://github.com/IPMI-ICNS-UKE/sparsam
http://doi.org/10.1016/S1470-2045(19)30333-X
http://www.ncbi.nlm.nih.gov/pubmed/31201137
http://dx.doi.org/10.1609/aaai.v33i01.3301590
http://dx.doi.org/10.1098/rsif.2017.0387
http://www.ncbi.nlm.nih.gov/pubmed/29618526
http://dx.doi.org/10.1136/bmj.m689
http://www.ncbi.nlm.nih.gov/pubmed/32213531
http://dx.doi.org/10.1007/s11263-015-0816-y
http://dx.doi.org/10.1007/978-3-319-10602-1_48
http://dx.doi.org/10.1016/j.mlwa.2021.100124
http://dx.doi.org/10.1109/TPAMI.2020.2992393
http://dx.doi.org/10.1016/j.patter.2021.100410

Bioengineering 2023, 10, 895 14 of 14

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

Chowdhury, A.; Rosenthal, ].; Waring, J.; Umeton, R. Applying Self-Supervised Learning to Medicine: Review of the State of the
Art and Medical Implementations. Informatics 2021, 8, 59. [CrossRef]

Krishnan, R.; Rajpurkar, P.; Topol, E.J. Self-supervised learning in medicine and healthcare. Nat. Biomed. Eng. 2022, 6, 1346-1352.
[CrossRef]

Huang, S.C.; Pareek, A.; Jensen, M.; Lungren, M.P,; Yeung, S.; Chaudhari, A.S. Self-supervised learning for medical image
classification: A systematic review and implementation guidelines. NPJ Digit. Med. 2023, 6, 74. [CrossRef]

Azizi, S.; Mustafa, B.; Ryan, F,; Beaver, Z.; Freyberg, J.; Deaton, J.; Loh, A.; Karthikesalingam, A.; Kornblith, S.; Chen, T.; et al. Big
Self-Supervised Models Advance Medical Image Classification. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), Virtual, 11-17 October 2021; pp. 3478-3488.

Chen, T.; Kornblith, S.; Norouzi, M.; Hinton, G. A Simple Framework for Contrastive Learning of Visual Representations.
In Proceedings of the 37th International Conference on Machine Learning, Virtual, 13-18 July 2020; III, H.D., Singh, A., Eds.;
Volume 119, pp. 1597-1607.

Grill, ].B.; Strub, F,; Altché, F.; Tallec, C.; Richemond, P.; Buchatskaya, E.; Doersch, C.; Avila Pires, B.; Guo, Z.; Gheshlaghi
Azar, M; et al. Bootstrap your own latent-a new approach to self-supervised learning. Adv. Neural Inf. Process. Syst. 2020,
33,21271-21284.

Chen, X.; He, K. Exploring simple siamese representation learning. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, Nashville, TN, USA, 20-25 June 2021; pp. 15750-15758.

Caron, M.; Touvron, H.; Misra, I.; ]'egou, H.; Mairal, J.; Bojanowski, P; Joulin, A. Emerging Properties in Self-Supervised Vision
Transformers. In Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), Virtual, 11-17 October
2021; pp. 9650-9660.

Matek, C.; Krappe, S.; Miinzenmayer, C.; Haferlach, T.; Marr, C. Highly accurate differentiation of bone marrow cell morphologies
using deep neural networks on a large image data set. Blood 2021, 138, 1917-1927. [CrossRef]

Borgli, H.; Thambawita, V.; Smedsrud, PH.; Hicks, S.; Jha, D.; Eskeland, S.L.; Randel, K R.; Pogorelov, K,; Lux, M.; Nguyen, D.T.D; et al.
HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy. Sci. Data 2020, 7, 283.
[CrossRef]

Tschandl, P; Rosendahl, C.; Kittler, H. The HAM10000 dataset, a large collection of multi-source dermatoscopic images of
common pigmented skin lesions. Sci. Data 2018, 5, 180161. [CrossRef]

Codella, N.; Rotemberg, V.; Tschandl, P,; Celebi, M.E.; Dusza, S.; Gutman, D.; Helba, B.; Kalloo, A.; Liopyris, K.; Marchetti, M.; et al.
Skin Lesion Analysis toward Melanoma Detection 2018: A Challenge Hosted by the International Skin Imaging Collaboration
(ISIC). arXiv 2019, arXiv:1902.03368.

Combalia, M.; Codella, N.C.E; Rotemberg, V.; Helba, B.; Vilaplana, V,; Reiter, O.; Carrera, C.; Barreiro, A.; Halpern, A.C.; Puig, S.; et al.
BCN20000: Dermoscopic Lesions in the Wild. arXiv 2019, arXiv:1908.02288.

Codella, N.C.E; Gutman, D.; Celebi, M.E.; Helba, B.; Marchetti, M.A.; Dusza, S.W.; Kalloo, A.; Liopyris, K.; Mishra, N.; Kittler, H.; et al. Skin
lesion analysis toward melanoma detection: A challenge at the 2017 International symposium on biomedical imaging (ISBI),
hosted by the international skin imaging collaboration (ISIC). In Proceedings of the 2018 IEEE 15th International Symposium on
Biomedical Imaging (ISBI 2018), Washington, DC, USA, 4-7 April 2018; pp. 168-172. [CrossRef]

Rotemberg, V.; Kurtansky, N.; Betz-Stablein, B.; Caffery, L.; Chousakos, E.; Codella, N.; Combalia, M.; Dusza, S.; Guitera, P;
Gutman, D.; et al. A patient-centric dataset of images and metadata for identifying melanomas using clinical context. Sci. Data
2021, 8, 34. [CrossRef]

Ali, A.; Touvron, H.; Caron, M.; Bojanowski, P.; Douze, M.; Joulin, A.; Laptev, I.; Neverova, N.; Synnaeve, G.; Verbeek, J.; et al.
XCiT: Cross-Covariance Image Transformers. Proc. Adv. Neural Inf. Process. Syst. 2021, 34, 20014-20027.

Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.U.; Polosukhin, I. Attention is All you Need.
Proc. Adv. Neural Inf. Process. Syst. 2017, 30, 5998-6008.

He, K.; Fan, H.; Wu, Y.; Xie, S.; Girshick, R. Momentum Contrast for Unsupervised Visual Representation Learning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13-19 June 2020;
pp. 9729-9738. [CrossRef]

Gessert, N.; Nielsen, M.; Shaikh, M.; Werner, R.; Schlaefer, A. Skin lesion classification using ensembles of multi-resolution
EfficientNets with meta data. MethodsX 2020, 7, 100864. [CrossRef]

Mei, X.; Liu, Z.; Robson, PM.; Marinelli, B.; Huang, M.; Doshi, A.; Jacobi, A.; Cao, C.; Link, K.E.; Yang, T.; et al. RadImageNet: An
Open Radiologic Deep Learning Research Dataset for Effective Transfer Learning. Radiol. Artif. Intell. 2022, 4, €210315. [CrossRef]
Cole, E.; Yang, X.; Wilber, K.; Aodha, O.M.; Belongie, S. When Does Contrastive Visual Representation Learning Work? In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), New Orleans, LA, USA,
18-24 June 2022; pp. 14755-14764. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


http://dx.doi.org/10.3390/informatics8030059
http://dx.doi.org/10.1038/s41551-022-00914-1
http://dx.doi.org/10.1038/s41746-023-00811-0
http://dx.doi.org/10.1182/blood.2020010568
http://dx.doi.org/10.1038/s41597-020-00622-y
http://dx.doi.org/10.1038/sdata.2018.161
http://dx.doi.org/10.1109/ISBI.2018.8363547
http://dx.doi.org/10.1038/s41597-021-00815-z
http://dx.doi.org/10.1109/cvpr42600.2020.00975
http://dx.doi.org/10.1016/j.mex.2020.100864
http://dx.doi.org/10.1148/ryai.210315
http://dx.doi.org/10.1109/cvpr52688.2022.01434

	Introduction
	Methods
	Dino: Knowledge Distillation with No Labels
	Xcit: Cross-Covariance Image Transformer
	Image Classification Based on DINO Representation
	Image Classification Using an In-House End-To-End Trained Supervised DL Baseline
	Image Data Sets
	Bone Marrow (BM) Single Cell Data Set
	Endoscopic (Endo) Image Data Set
	ISIC 2019 and 2020

	Experimental Setup

	Results
	Full Data Set Experiments and Effect of the Number of Labeled Training Samples
	Experiments with Classes with 250+ Samples

	Discussion
	References

