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Abstract: Feature selection methods are essential for accurate disease classification and identifying
informative biomarkers. While information-theoretic methods have been widely used, they often
exhibit limitations such as high computational costs. Our previously proposed method, ClearF,
addresses these issues by using reconstruction error from low-dimensional embeddings as a proxy
for the entropy term in the mutual information. However, ClearF still has limitations, including a
nontransparent bottleneck layer selection process, which can result in unstable feature selection. To
address these limitations, we propose ClearF++, which simplifies the bottleneck layer selection and
incorporates feature-wise clustering to enhance biomarker detection. We compare its performance
with other commonly used methods such as MultiSURF and IFS, as well as ClearF, across multiple
benchmark datasets. Our results demonstrate that ClearF++ consistently outperforms these meth-
ods in terms of prediction accuracy and stability, even with limited samples. We also observe that
employing the Deep Embedded Clustering (DEC) algorithm for feature-wise clustering improves
performance, indicating its suitability for handling complex data structures with limited samples.
ClearF++ offers an improved biomarker prioritization approach with enhanced prediction perfor-
mance and faster execution. Its stability and effectiveness with limited samples make it particularly
valuable for biomedical data analysis.

Keywords: feature selection; feature scoring; information theory; entropy; mutual information
(MI); dimension reduction; low-dimensional embedding; reconstruction error; principal component
analysis (PCA); clustering

1. Introduction

In the field of bioinformatics, accurate disease classification is crucial for effective
diagnosis and treatment. Furthermore, the precise identification and selection of relevant
biomarkers is essential to predict disease risk or aid in drug development [1]. As a result,
a significant amount of research is currently being conducted in biomarker detection.
Feature selection methods [2–4] are widely used in this context to identify and prioritize
biomarkers from large and complex datasets [5,6]. These methods are particularly valuable
in bioinformatics, where datasets often have a high number of features relative to the
number of samples. By reducing the dimensionality of such data, feature selection can help
identify the most informative biomarkers, facilitating accurate disease classification. Many
feature selection algorithms have been developed to precisely select the most relevant
biomarkers. This is crucial to better understand the underlying mechanisms of disease
development and prognosis and to develop more targeted therapies.

Feature selection methods can be broadly classified into supervised and unsupervised
approaches, where supervised approaches utilize class labels to identify relevant features,
while unsupervised approaches do not [7]. As supervised approaches are more suitable
for targeting specific diseases and finding relevant biomarkers, this study utilizes super-
vised feature selection methods for effective biomarker prioritization. There are various
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supervised feature selection methods, such as statistical methods [8,9], similarity-based
approaches [10,11], and information-theoretic methods. Information-theoretic methods
perform feature selection by quantifying the amount of mutual information, which is a
measure of entropy and conditional dependencies between data variables and their labels.
Information-theoretic methods have been widely studied for feature selection, and their
effectiveness has been demonstrated by promising experimental results [12–16]. Recently,
innovative approaches like MI-VIF [17] have emerged, which combine variance inflation
factor and mutual information, offering a solution to the collinearity problem that leads
to unstable parameter estimation. In addition, a methodology named Relevance based on
Weight Feature Selection (RWFS) [18] has been proposed. This method is based on two
types of changed ratios in relation to feature relevance evaluation: one for the undeter-
mined amount of information and the other for the established amount of information.
These strategies have demonstrated their effectiveness by improving performances

However, these methods often suffer from high computational costs, and they may
require discretization of continuous variables, which may lead to information loss [19].
To address these issues, we have previously proposed ClearF [20], which uses the re-
construction error of a low-dimensional embedding method as a proxy for the mutual
information. ClearF assigns supervised scores to features by applying unsupervised class-
wise low-dimensional embedding, which has been demonstrated to be effective in several
benchmark datasets. However, ClearF has a limitation in that the selection process of
the bottleneck layer is not transparent, requiring the selection of feature size in advance,
followed by a greedy search. Consequently, the process can be complicated, unstable, and
time-consuming, depending on the experimental setup. Furthermore, due to the parti-
tioning of the entire dataset based on class labels and the subsequent embedding of each
partition, the sample size becomes significantly smaller. This may introduce the risk of
generating unstable outcomes during the feature selection process.

In this paper, we propose ClearF++ to address the limitations of ClearF. ClearF++
simplifies the process of determining the number of uncertain bottleneck layers and further
improves performance through feature clustering. First, we propose a method to increase
convenience and stabilize the process by simply fixing the number of bottleneck layers
to a single value. In addition, we apply a feature-wise clustering method to mitigate the
problem of embedding too many features at once and only reflecting the importance of a few
features. This method allows for the selection of important features by clustering similar
features together, thus reducing the number of embedded features. In summary, ClearF++
addresses the limitations of ClearF by simplifying the selection process of bottleneck layers
and improving performance through feature clustering. Figure 1 illustrates the proposed
architecture, and the entire process is shown in the pseudocode presented in Algorithm 1.

Algorithm 1 Algorithm ClearF++: Supervised feature scoring method using feature clus-
tering in the class-wise embedding and reconstruction method.

1: function CLEARF++(X, Y, k, l)
2: Input:

X = {X1, X2, . . . , Xs} ∈ Rn×s: Data matrix (n features and s samples)
Y = {y1, y2, . . . , ys}: Label vector
k: Number of clusters
l: Number of classes

3: Output:
F = { f1, f2, . . . , fn}: Feature scores

4: Perform feature-wise clustering on data X:
5: Apply DEC clustering method that divides n features into k clusters to obtain

C = {C1, C2, . . . , Ck}, where each cluster Ci ∈ Rci×s.
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Algorithm 1 Cont.

6: for i = 1, . . . , k do
7: Fi ← CLEARF(Ci, Y, l, 1)
8: end for
9: Aggregate feature scores for each cluster and rank features to obtain F

10: return F
11: end function

12: function CLEARF(X, Y, l, d)
13: Input:

X = {X1, X2, . . . , Xs} ∈ Rn×s: Data matrix
Y = {y1, y2, . . . , ys}: Label vector
l: Number of classes
d: Number of components

14: Output:
F = { f1, f2, . . . , fn}: Feature scores

15: Using label vector Y, divide X into L = {L1, L2, . . . , Ll}, where each divided data
Lj ∈ Rn×lj .

16: Perform low-dimensional embedding on X with d components and reconstruct to
calculate the feature-wise reconstruction error:

17: RX = {r(X,1), r(X,2), . . . , r(X,n)}
18: for j = 1, . . . , l do
19: Perform low-dimensional embedding on Lj and reconstruct to calculate the

feature-wise reconstruction error:
20: Rj = {r(j,1), r(j,2), . . . , r(j,n)}
21: end for
22: Rsum = sum(R1, R2, . . . , Rl)
23: F = RX-Rsum
24: return F
25: end function

Figure 1. Overview of ClearF++, a supervised feature scoring method that utilizes feature clustering
in a class-wise embedding and reconstruction method: (A) Description of how the entirety of the
data are divided into multiple partitions using feature-wise clustering. (B) Description of the process
of calculating feature importance using ClearF++.
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2. Materials and Methods
2.1. ClearF-One: Simplifying Bottleneck Layer Selection

To tackle the instability issue in the bottleneck layer selection process within ClearF,
we propose a refined approach called ClearF-one. In this modified method, the bottleneck
layer is set to a single layer rather than employing a greedy search to determine the optimal
number of bottleneck layers. As the size of the bottleneck layer increases, a broader
range of information is selected, resulting in the dilution of focusing important parts.
By constraining the number of layers to one, only the most informative features from
each class’s embedding are selected, aligning with the theoretical foundation of ClearF. In
summary, ClearF-one serves as an enhanced version of ClearF that addresses instability in
the feature selection process by simplifying the bottleneck layer to a single layer.

2.2. ClearF++: Advanced Feature Selection via Feature-Wise Clustering

As described above, ClearF-one fixes the bottleneck layer to a single layer, resulting
in features with strong signals for each class that are likely to have high scores. However,
ClearF-one can be disadvantageous in selecting multiple features due to the limited amount
of expressed information. To overcome this limitation, we propose a novel method that
divides the data into several partitions through feature-wise clustering and applies ClearF-
one to each cluster. As shown in Figure 1A, feature-wise clustering is performed to divide
the data into units of each cluster with similar features. When we perform feature-wise
clustering, the Deep Embedding Clustering (DEC) method [21] is applied, which is a
method of unsupervised learning that combines deep neural networks with clustering
algorithms. Next, ClearF-one is applied to each of the clustered data to calculate the
feature score. Finally, ClearF++ produces a high feature score when it exhibits a significant
difference between classes, such as in case 2 of Figure 1B. Features with no significant
difference between classes, such as case 1, are not scored high. This approach allows the
most informative features to produce high scores by calculating a class-wise reconstruction
error. The above process is performed for each cluster, as depicted in Figure 1B, extracting
features that encapsulate important characteristics unique to each cluster.

Our proposed method ClearF++ has several advantages over ClearF and ClearF-one.
It is particularly useful when an appropriate number of features must be selected from
data with a large number of features, such as in biomarker identification. Additionally,
it can be applied when the number of samples is too small compared with the number
of features, making it difficult to learn ClearF stably. In summary, ClearF++ divides the
data into feature-wise clusters and applies ClearF-one to each cluster, enabling us to select
multiple informative features from a large number of features.

3. Results
3.1. Datasets

We conducted an experiment on the gene expression data of lung cancer patients using
the ARCHS4 dataset [22], which has been used in several studies [23,24]. We removed genes
that had more than 25% zero expression across all samples. The experiment was tested with
8710 genes and 3079 samples. Out of the 3079 samples, 1158 samples belong to the A549
cells (non-small-cell lung cancer) and 1921 samples belong to the IMR90 cells (normal lung
fibroblast). Additionally, we performed experiments on several benchmark datasets. To
externally validate our results, we further conducted the experiments over two additional
benchmark datasets, colon and ALL/AML leukemia datasets [7]. The ALL/AML dataset
consists of 72 samples, 47 samples belong to acute lymphoblastic leukemia (ALL) and
25 samples belong to acute myeloid leukemia (AML) [25]. Gene expression levels were
measured using Affymetrix high-density oligonucleotide arrays containing 7129 genes. The
colon dataset consists of 62 samples, of which 22 are normal and 40 are colon tumor tissue
samples [26]. Gene expression levels were measured using Affymetrix oligonucleotide
arrays containing expression levels for the 2000 genes with the highest minimal intensity
across the samples, as it is prepared in the paper [26].
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3.2. Performance Evaluation on Multiple Benchmark Datasets

We compared the performance of several feature selection algorithms, including
MultiSURF, IFS, and ClearF, to demonstrate the effectiveness of our proposed method
in extracting the most relevant features for lung cancer classification using the ARCHS4
dataset. The selected features from each method were used for classification and their AUCs
were compared. We performed 10-fold cross-validation by dividing the entire dataset into
10 folds, with one fold for test data and the remaining folds for training data. Each feature
selection algorithm was applied solely to the training data to select important features. A
classification algorithm was then applied using only the selected features, and the average
AUC of the 10-fold cross-validation was measured. The classification model is a basic
four-layer DNN, consisting of an input layer, two hidden layers, and an output layer. The
sizes of the hidden layers were determined as the number of selected features * 2 and the
number of selected features, respectively. The hyperbolic tangent served as the activation
function. The Adam optimizer was employed for learning with a learning rate of 1 × 10−3

and 500 epochs using a full batch.
To validate the stability and effectiveness of our proposed method, ClearF++, we

conducted a performance comparison using the ARCHS4 lung cancer dataset and several
benchmark datasets, such as colon and ALL/AML. The results are displayed in Table 1.
These experiments demonstrate that ClearF++ mostly outperforms (p-value < 0.05) other
feature selection methods, such as MultiSURF [11], IFS [27], and ClearF [20], across the
ARCHS4, colon, and ALL/AML datasets. ClearF++ achieved the highest performance
across most of the feature subsets, reaching its best performance at 60 features both in
the colon dataset (AUC = 0.826) and the ARCHS4 lung dataset (AUC = 0.983). Likewise,
in the ALL/AML dataset, excluding the comparison with ClearF when the number of
features was 60, ClearF++ outperformed other methods (p-value < 0.05), achieving the best
performance at both 45 and 60 features (AUC = 0.949). Overall, these results highlight the
consistent and enhanced performance of ClearF++ across varying numbers of features,
showing the robustness and effectiveness of ClearF++. To show the statistical significance
of the improvement, we included the results of a paired t-test between ClearF++ and other
methods in Table S2 of the Supplementary Material, aligning with the results in Table 1. The
results predominantly affirmed the notable superiority of our proposed method compared
with other methods, with the exceptions of the case where ClearF++ vs. ClearF selected
60 features in the ALL/AML dataset, and the case where 45 features were selected in the
colon dataset.

Table 1. Performance comparison on several benchmark datasets across a varying number of features.
The performance was measured with the average AUC of 10-fold cross-validation.

n 1
Colon ALL/AML ARCHS4

MultiSURF IFS ClearF ClearF++ MultiSURF IFS ClearF ClearF++ MultiSURF IFS ClearF ClearF++

15 0.648 0.749 0.707 0.805 0.906 0.913 0.912 0.947 0.925 0.927 0.949 0.959
30 0.711 0.672 0.765 0.773 0.927 0.926 0.921 0.940 0.944 0.953 0.943 0.973
45 0.703 0.658 0.801 0.751 0.938 0.915 0.927 0.949 0.955 0.955 0.952 0.980
60 0.723 0.761 0.815 0.826 0.927 0.915 0.949 0.949 0.969 0.949 0.951 0.983

1 The number of features.

3.3. Performance Evaluation Across Varying Feature and Sample Sizes

To assess the stability of our proposed method with a limited number of data samples,
we evaluated lung cancer classification performance using only 5% of the training data
samples from the ARCHS4 dataset. The number of features to be selected increased by 5,
starting from 10, in accordance with the experimental procedure employed in the previous
study [20].

Figure 2 presents the experimental results on the ARCHS4 lung cancer dataset, using
only 5% of the training samples. Our proposed method, ClearF++, exhibited superior
performance compared with ClearF and other comparable feature selection algorithms. As
displayed in Figure 2A, we observed that the stability of ClearF++ was preserved, while
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other methods yielded relatively unstable and poor performances with a limited number
of samples.

Figure 2. (A) Performance comparison across varying numbers of features between ClearF++ and
other algorithms. The experiment was obtained using only 5% of the sample for training. (B) A
comparative experiment measuring performances as the number of samples changes. The experiment
was conducted by fixing the number of features at 45.

In Figure 2B, we conducted experiments with varying numbers of samples to investi-
gate the stability of ClearF++ across different sample sizes, fixing the number of features
at 45. The experimental results reveal that ClearF++ and MultiSURF showed stable and
improved performance across varying numbers of features, even with a small sample size.
However, ClearF++ outperformed other methods when more than 10% of the samples were
used, whereas MultiSURF exhibited no improvement when larger sample sizes were used
and even suffered from slight performance degradation.

These results indicate that our proposed method, ClearF++, demonstrates impressive
stability and performance even when dealing with a limited number of data samples. In
comparison with other feature selection algorithms, ClearF++ consistently outperforms
them, particularly when utilizing more than 10% of the training samples. This highlights the
robustness and effectiveness of ClearF++ in various feature or sample size scenarios. These
findings emphasize the potential of ClearF++ as a robust and effective feature selection
technique, capable of maintaining its performance across a range of feature or sample sizes.

3.4. Effect of Feature-Wise Clustering Algorithms

We conducted an ablation study to confirm that our proposed method, ClearF++,
indeed contributes to performance improvement compared with the previously proposed
method, ClearF. For low-dimensional embedding, KernelPCA with an RBF kernel that
showed the best performance in ClearF was utilized in ClearF-one and ClearF++. For the
clustering method in ClearF++, k-means and DEC [21] were used. The ablation study
was conducted on the ARCHS4 lung cancer dataset, with the results shown in Figure 3.
Figure 3A displays the results for the entire samples, while Figure 3B presents the result
using only 5% of the samples for training.
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Figure 3. Performance evaluation of ClearF-based methods with various experimental settings in a
lung cancer dataset. ClearF-one limits the number of bottleneck layers to 1, and ClearF++ applies
feature-wise clustering in the proposed algorithm; thus, two clustering algorithms were compared.
(A) Results using entire samples. (B) Results using 5% of samples for training.

The experimental results show that ClearF-one, which substantially restricts the num-
ber of bottleneck layers, contributes to performance improvement, particularly when only a
small portion of samples (5%) is used for training. This suggests that ClearF-one is effective
in handling limited data samples and can still yield improved performance by simplifying
the architecture, reducing the complexity, and focusing on the most relevant features. It
is noteworthy that in the context of k-means clustering, the results yielded from training
with only 5% of the samples shortly underperformed in comparison with those obtained
from ClearF-one without clustering. Under the constraints of a small data size, k-means
clustering appeared to struggle in achieving effective clustering. However, when we em-
ployed the more sophisticated clustering algorithm, DEC, we observed stable and enhanced
performances when feature-wise clustering was applied. Particularly, DEC outperformed
k-means clustering in terms of performance when a larger number of features were being
selected, both in the scenarios with all samples in Figure 3A and with a small number of
samples in Figure 3B. This suggests that DEC may be more suitable for handling complex
data structures and capturing underlying patterns in the data when compared with the
k-means clustering algorithm, particularly in situations with limited data samples.

We evaluated ClearF++ performance by employing two different clustering methods
with varying numbers of clusters. Figure 4A presents the results using the DEC clustering
algorithm, while Figure 4B shows the results using k-means clustering. The results reveal
that DEC with 15 clusters yielded the best performance, while k-means clustering achieved
optimal results with 5 clusters. Although the best performances of these two clustering
methods were comparable (close to AUC = 0.98), k-means clustering showed considerable
variance depending on the number of clusters. In contrast, DEC demonstrated smaller vari-
ance and consistently higher performance across different cluster numbers. Consequently,
while both clustering methods (DEC and k-means) can achieve comparable performances,
DEC not only improved performances but showed more consistent and reliable results
across different numbers of clusters. It suggests that the choice of clustering algorithm is
important and that the proposed feature-wise clustering idea of ClearF++ contributes to
more robust and improved performances.
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Figure 4. Performance evaluation based on varying numbers of clusters in the lung cancer dataset. F
represents the number of selected features. (A) Performances of ClearF++ when DEC clustering is
applied. (B) Performances of ClearF++ when k-means clustering is applied.

3.5. Computational Cost Validation

To verify the computational efficiency of ClearF++ over other methods, we measured
and compared the CPU time by running each method 10 times. The experiment utilized
data containing 5000 randomly generated features and 5000 samples. As shown in Table 2,
ClearF++ showed a substantially faster execution time than MultiSURF and IFS. While it
showed a slightly slower execution time than ClearF due to the inclusion of clustering time,
the improved performance ensures its competitiveness and effectiveness in comparison
with other methods.

Table 2. Computational costs comparison of ClearF++ and other feature selection methods.

Methods IFS MultiSURF ClearF ClearF++

CPU times (s) 398.91 ± 17.22 78,515.59 ± 346.53 132.68 ± 6.51 166.85 ± 10.77

3.6. Functional Enrichment Analysis

To identify high-scoring features, we analyzed the ARCHS4 dataset using ClearF++,
which demonstrated improved performance in our experiments. Since scores were cal-
culated for each of the 10 folds, we defined an integrated scoring method. The top 100
features in each fold were assigned scores in descending order, ranging from 100 to 1 point.
We then calculated the rank scores by averaging the scores obtained across all folds. The
50 highest-scoring genes are shown in Table S1. Furthermore, to investigate the biological
relationships among the selected genes, we performed pathway and gene ontology enrich-
ment analysis using ToppGene [28] on the top 50 genes. The results are shown in Table 3,
respectively.

In biomarker detection, high classification accuracy of selected features does not
guarantee that features associated with the disease are selected. Considering that the
purpose of our algorithm is to select features for identifying important biomarkers, it
is crucial to determine whether the top-scoring features are associated with the target
disease. The 50 genes with high scores in our method are shown in Table S1. We performed
enrichment analysis using these 50 genes.

The enrichment analysis results conducted with ToppGene [28] reveal that several
genes related to the glycosaminoglycan (GAG) metabolism pathway received high scores.
The extracellular matrix (ECM) regulates cell fate, and glycosaminoglycans (GAGs) are
major macromolecules that compose the ECM, which play well-known roles in cancer
angiogenesis, proliferation, invasion, and metastasis [29]. GAGs have been widely studied
as treatments for cancer, inflammation, infection, and lung diseases, and one study [30]
clarified the role of GAGs, contributing to future research.
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Table 3. Pathway and gene ontology enrichment analysis results using ToppGene on the top 50
ranked genes. The 10 most significant gene ontology (GO) terms that have the lowest p-values
are shown, as well as pathway and disease terms with significant p-values (p < 0.05) from the
enrichment analysis.

Category ID Name p-Value q-Value 1 q-Value 2 HC 3 HCG 4

BP GO:0032963 collagen metabolic process 2.89× 10−8 5.13× 10−5 5.13× 10−5 7 144
BP GO:0030042 actin filament depolymerization 5.03× 10−7 8.95× 10−4 3.68× 10−4 5 71
BP GO:0032964 collagen biosynthetic process 6.63× 10−7 1.18× 10−3 3.68× 10−4 5 75
MF GO:0044877 protein-containing complex binding 7.35× 10−7 2.09× 10−4 2.09× 10−4 16 1726
BP GO:0001568 blood vessel development 8.27× 10−7 1.47× 10−3 3.68× 10−4 13 1152
BP GO:0035904 aorta development 1.47× 10−6 2.62× 10−3 4.71× 10−4 5 88
BP GO:0001944 vasculature development 1.87× 10−6 3.33× 10−3 4.71× 10−4 13 1239
BP GO:0030198 extracellular matrix organization 2.21× 10−6 3.93× 10−3 4.71× 10−4 8 394
BP GO:0043062 extracellular structure organization 2.25× 10−6 4.00× 10−3 4.71× 10−4 8 395
BP GO:0045229 external encapsulating structure organization 2.38× 10−6 4.24× 10−3 4.71× 10−4 8 398

Disease C0268362 Osteogenesis imperfecta type III (disorder) 1.90× 10−6 3.42× 10−3 3.42× 10−3 3 11

Pathway 1269980 Heparan sulfate/heparin (HS-GAG) metabolism 1.82× 10−5 5.99× 10−3 1.82× 10−3 4 54
Pathway 1309217 Defective B3GALT6 causes EDSP2 and SEMDJL1 2.21× 10−5 7.26× 10−3 1.82× 10−3 3 19
Pathway 1269015 Defective B3GAT3 causes JDSSDHD 2.21× 10−5 7.26× 10−3 1.82× 10−3 3 19
Pathway 1269014 Defective B4GALT7 causes EDS, progeroid type 2.21× 10−5 7.26× 10−3 1.82× 10−3 3 19

Pathway 1269981 A tetrasaccharide linker sequence is required for GAG
synthesis 5.84× 10−5 1.92× 10−2 3.20× 10−3 3 26

Pathway 1269011 Diseases associated with glycosaminoglycan
metabolism 5.84× 10−5 1.92× 10−2 3.20× 10−3 3 26

Pathway 1269982 HS-GAG biosynthesis 9.99× 10−5 3.29× 10−2 4.69× 10−3 3 31

Pathway M39870 Type I collagen synthesis in the context of osteogenesis
imperfecta 1.21× 10−4 3.97× 10−2 4.97× 10−3 3 33

Pathway 1268756 Unfolded Protein Response (UPR) 1.48× 10−4 4.88× 10−2 5.42× 10−3 4 92

1 Bonferroni q-value, 2 FDR B&H q-value, 3 Hit Count in the query list, 4 Hit count in the genome.

Among the GAG-associated genes that received high scores in our method are GPC1,
NDST1, CSPG4, and SDC3. An experiment involving CSPG4-specific mAb 225.28 demon-
strated the regression induction of tumor metastasis in a lung metastasis model [31].
Endothelial cell (ECs) junction disassembly, a key step in inflammation, allows for vascular
leakage during disease, and thrombin-cleaved fragments of the SDC3 ectodomain promote
this process in human lung microvessels in certain cases [32]. NDST1 participates in the
synthesis of the heparan sulfate (HS) chain of HSPG, and a study [33] found that it may
provide an explanation for the clinical observation that heparin can improve outcomes in
small-cell lung cancer (SCLC). Another study [34] suggested that NDST1 is associated with
angiogenesis and tumor growth in lung tumors. There is also a study that recommended
the use of glypican-1 (GPC1) as an additional positive marker for lung squamous cell
carcinoma [35]. These findings suggest that analyzing the effects of NDST1 and SDC3
expression on pulmonary blood vessels in relation to GAGs may be helpful in diagnosing
and treating lung cancer.

Additionally, enrichment analysis results using the top 50 genes with high scores
(Table 3) reveal that 7 genes related to the collagen metabolic process are included in the
biological process. These genes are P3H3, MRC2, MMP14, ENG, EMILIN1, CREB3L1, and
COL1A1, with CREB3L1, EMILIN1, and COL1A1 ranking 1st, 3rd, and 4th, respectively.
Impaired collagen metabolism is accompanied by increased prolidase activity in lung cancer
squamous epithelium [36]. Furthermore, idiopathic pulmonary fibrosis (IPF) is associated
with an increased risk of lung cancer with elevated collagen and prolidase activity [36–38].
On the other hand, Prolidase Deficiency (PD) and osteogenesis imperfecta (OI) share similar
phenotypes [37]. Notably, our enrichment analysis includes CREB3L1 and COL1A1, which,
out of the top 10 genes, are associated with osteogenesis imperfecta type III (disorder). The
expression of β1 integrin, which has been shown to regulate prolidase activity, is decreased
in OI [37,39,40]. However, there is no difference in the levels of β1 integrin between healthy
lung cells and cancer cells, suggesting that prolidase regulation in lung cancer may involve
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a different mechanism [36,37]. Therefore, studying the role of prolidase, CREB3L1, and
COL1A1 gene expression in lung cancer appears to be significant.

In addition to the aforementioned genes, we found several high-scoring genes (shown
in Table S1) that have been linked to lung cancer in multiple studies. The CREB3L1 gene has
been associated with lung cancer growth due to its involvement in the activation of alpha-
smooth muscle actin (α-SMA)-positive cancer-associated fibroblasts (CAFs) [41]. SYDE1
is associated with epithelial–mesenchymal transition (EMT) reversal, which is associated
with the progression of various tumors, including lung cancer [42]. Reduced EMILIN-1
production in some tumor types is associated with higher proliferation of tumor cells in
breast and lung cancer [43]. Another study [44] suggested that COL1A1 can be a potential
biomarker for poor progression-free survival and chemoresistance in metastatic lung cancer.
Serum CKAP4 levels can distinguish lung cancer patients from healthy controls, making it
a potential serum diagnostic marker for lung cancer [45]. Carbohydrates associated with
LAMP1 play a crucial role in determining lung metastasis [46]. A potential target of TAF15
concerning resistance to radiotherapy, essential for non-small-cell lung cancer treatment,
has been proposed [47]. TBX2 subfamily methylation may serve as a potential biomarker
for early detection and intervention in non-small-cell lung cancer [48]. Consequently, the
genes selected by our method are shown to be biomarker candidates for lung cancer.

4. Discussion

We evaluated the suitability of our methodology for biomarker detection from a
machine learning perspective. The results in Figure 2 demonstrate that our proposed
method is effective when selecting a small number of features. Particularly, when combined
with Figure 3, ClearF-one generally yields favorable results when selecting from 10 to
25 features, and ClearF++ shows improvement when selecting from 30 to 50 features.
Given the importance of selecting a small number of features in biomarker discovery,
our method can be considered suitable. Moreover, our approach demonstrates stable
performance even with a small sample size, as shown in Figure 2B. In the biomedical field,
insufficient learning samples are often encountered, and our method proves effective in
such cases. Additionally, as shown in Table 2, our method can be effectively employed in
environments with limited computational power due to its advantageous execution time.

The results in Figure 3 indicate that ClearF++ can show degraded performances
compared with the model without clustering (ClearF-one) when the number of features
is small. This is likely because ClearF-one effectively selects a small number of features
when only certain information remains after embedding the entirety of the data into
a single bottleneck layer. However, when the number of features increases, it suffers
from performance degradation due to information loss. In contrast, ClearF++ extracts
information for each cluster, which provides more robust and improved performances
when selecting multiple features.

Our method addresses the sensitivity issue related to the number of bottleneck layers in
the previously proposed method, ClearF, but still requires many parameter adjustments. In
particular, determining the number of clusters remains a challenge in clustering. Although
Figure 4 shows that our method is not highly sensitive to the number of clusters within
a range of 5 to 20 clusters, an exceptionally higher number of clusters, such as 50 or 100,
led to instability in clustering results and a substantial performance decrease. Through our
experiments, we discerned that the optimal number of clusters likely resides within the 5 to
20 range. However, this range may vary with different datasets according to their sample
sizes. Accordingly, future research could focus on the automatic selection of the number of
clusters. Further, there is still an issue in setting the model structure or learning method
in the part that utilizes DEC. This issue can be addressed in future studies. Furthermore,
our method exhibits flexibility towards a range of clustering algorithms. Our experimental
findings, as illustrated in Figure 3, indicated that employing a more sophisticated clustering
technique could result in more stable and improved performances. Thus, future research
that utilizes advanced clustering methods could potentially enhance performances.
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5. Conclusions

In this study, we developed an improved feature selection algorithm for identifying
biomarkers that can be used for disease prediction and biomedical data analysis. Our
experimental results demonstrate several advantages of our method, including improved
prediction performance and faster execution Furthermore, it shows substantially stable
performance even with a limited number of samples, making it particularly effective for
biomedical data analysis, where the available sample size is often insufficient.

One limitation of our method is that it requires determining the optimal number of
clusters, which can vary across different datasets. In this study, we experimented with
several scenarios to select the most appropriate parameters. However, automatic parameter
selection methods can be exploited in future work to address this issue.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/bioengineering10070824/s1, Table S1: List of the highest-scoring
50 genes in the ARSCH4 lung cancer dataset; Table S2: Results of statistical significance tests between
ClearF++ and three other methods: MultiSURF, IFS, and ClearF, corresponding to the results presented
in Table 1. The p-value was measured through a paired t-test between ClearF++ and other methods
across three different datasets.
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