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Abstract: Using ultrasound imaging to diagnose liver steatosis is of great significance for preventing
diseases such as cirrhosis and liver cancer. Accurate diagnosis under conditions of low quality, noise
and poor resolutions is still a challenging task. Physiological studies have shown that the visual cortex
of the biological visual system has selective attention neural mechanisms and feedback regulation of
high features to low features. When processing visual information, these cortical regions selectively
focus on more sensitive information and ignore unimportant details, which can effectively extract
important features from visual information. Inspired by this, we propose a new diagnostic network
for hepatic steatosis. In order to simulate the selection mechanism and feedback regulation of the
visual cortex in the ventral pathway, it consists of a receptive field feature extraction module, parallel
attention module and feedback connection. The receptive field feature extraction module corresponds
to the inhibition of the non-classical receptive field of V1 neurons on the classical receptive field. It
processes the input image to suppress the unimportant background texture. Two types of attention
are adopted in the parallel attention module to process the same visual information and extract
different important features for fusion, which improves the overall performance of the model. In
addition, we construct a new dataset of fatty liver ultrasound images and validate the proposed
model on this dataset. The experimental results show that the network has good performance in
terms of sensitivity, specificity and accuracy for the diagnosis of fatty liver disease.

Keywords: fatty liver ultrasound images; liver steatosis; biological vision; self-attention; transformer

1. Introduction

Fatty liver disease (the abnormal accumulation of fat in hepatocytes exceeding 5%) is
generally considered to be the main cause of liver diseases such as cirrhosis, liver cancer,
liver failure, etc. [1,2]. Therefore, the diagnosis and classification of fatty liver have practical
significance for the prevention of such diseases and human health. Currently, ultrasound
is widely used for the diagnosis of fatty liver due to its advantages of being non-invasive,
low-cost, and wide availability. Clinicians evaluate the images by observing features such
as enhanced liver and kidney echogenicity, blurred portal or hepatic vein vessels, and bright
liver echogenicity in ultrasound images [3]. However, the low quality of ultrasound images,
containing speckle noise and blur, and the subjective nature of the assessment (susceptible
to clinician experience and ultrasound acquisition equipment settings [4,5]) have led to
a certain degree of misdiagnosis [6,7]. In addition, several studies have shown that the
sensitivity of ultrasound diagnosis is 93% when steatosis exceeds 30%, and if steatosis is
less than 20%, the specificity and sensitivity of ultrasound images are poor [3]. Therefore,
using ultrasound imaging to diagnose liver steatosis has always been a challenging visual
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task. How to design high-performance and high-accuracy classification models is still an
urgent problem to solve.

To achieve better performance in fatty liver ultrasound image classification, some
researchers have improved the quality of ultrasound images by reducing speckle noise,
which enhances the accuracy of the model’s classification. In addition, earlier research
methods have been used to diagnose liver steatosis levels more accurately by applying
complex algorithms [8], statistical models [9], image processing techniques [10], or tradi-
tional machine learning methods [11], such as liver and kidney index (HRI), gray-level
co-occurrence matrix (GLCM) [12,13], and machine learning methods (support vector ma-
chines and K-nearest neighbors, etc.). These efforts have improved the accuracy of fatty
liver diagnosis to some extent. However, early research methods still have some problems
and limitations, such as the potential to blur images when reducing speckle noise, the need
to rely on skill in selecting regions of interest (ROI), the subjective experience of clinicians
when diagnosing using complex algorithms or image processing techniques, the need to
manually design features when utilizing traditional machine learning methods, and the
inability of such features to be optimized as the data set changes. In recent years, with
the wide applications of CNN in the field of computer vision, more and more scholars
have proposed liver ultrasound image classification methods based on CNN, and obtained
good performance. For example, Zhang et al. [14] used a shallow CNN-based model
to extract texture features from ultrasound images and detect the level of liver steatosis.
Reddy et al. [15] trained and tested the proposed CNN method using 48 × 48 texture
patches and achieved an accuracy of 93.5%. Biswas et al. [16] proposed a two-class CNN
architecture for fatty liver disease classification. It achieved a 100% classification accuracy
by evaluating ultrasound images of 63 patients (27 normal/36 abnormal) under tenfold
cross-validation conditions. Later, Byra et al. [17] used CNN models trained on other tasks
for fatty liver ultrasound image classification by transfer learning, and compared the results
with those of HRI and GLCM. The results showed that CNN pre-trained on other tasks
produced better results. In addition, Kuppili et al. [18] proposed an extreme learning ma-
chine (ELM)-based fatty liver classification method with an average classification accuracy
of 92.4%. Meng et al. [19] proposed a fully connected neural network (FCNet) to achieve
liver fibrosis classification by training and testing using regions of interest with an accuracy
of 63.24%.

Compared with earlier research methods, the convolutional neural network-based
liver ultrasound classification method obtains better classification performance by extract-
ing texture features in images, grayscale features, and fusing feature information at different
scales, and does not require extensive hand-designed features and subjective experience.
However, as deep learning techniques continue to evolve, some researchers have found it
difficult to achieve performance breakthroughs with models based solely on experience
and experiments. For this reason, some researchers [20–22] have proposed new bionic
models inspired by the biological vision mechanism, and have achieved good performance
in various visual tasks. For example, Grigorescu et al. [23] proposed a contour detection
model to suppress the image background texture based on the inhibitory effect of the
non-classical receptive field (nCRF) response on classical receptive field (CRF)response.
Yang et al. [24] combined the color antagonism mechanism in the visual pathway with
the spatial sparseness strategy (SSC), and proposed an Color-Opponency and Spatial
Sparseness Constraint (SCO) model for edge detection. Later, inspired by them, some
researchers further proposed a deep learning model combining biological vision. For
example, Tang et al. [20] proposed a biologically inspired model for contour detection
by simulating nCRF modulation using deep learning techniques, and achieved good per-
formance. Lin et al. [21] simulated the information processing transfer mechanism of
retina/LGN to design the pre-enhanced network, and achieved high-performance extrac-
tion of image edges by combining the encoding network-decoding network. Fan et al. [22]
proposed a convolutional neural network for facial expression recognition, and achieved
performance improvement by using knowledge transfer learning (KTL) to simulate the
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cognitive learning ability of humans. Figure 1 shows the process and connection between
the biological visual system and neural network in processing visual information.
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Figure 1. Processing and transmission of visual information in ventral pathway. Among them,
the blue arrow indicates the processing and transmission direction of visual information in the
ventral channel, and the green arrow indicates the processing and transmission direction of the
dorsal channel.

Moreover, transformers have also attracted the attention of computer vision
researchers [25–27]. The Swin Transformer [27] achieved the best performance in mul-
tiple computer vision tasks, breaking the dominance of CNN in computer vision tasks.
Later, some researchers were inspired to combine biological vision with transformers,
and proposed an edge detection model that simulates visual pathways [28] and an edge
detection network that simulates the selective mechanism of the visual cortex [29], which
have achieved good performance. This also provides a good theoretical basis and direction
for our research.

In this paper, inspired by the selective mechanism in the visual cortex, we propose
a Bio-inspired network (BiNet) for ultrasonic image classification of fatty liver. First, we
use the attention mechanism to simulate the selection mechanism of the visual cortex and
carry out step-by-step processing and feature extraction on the input image to achieve the
extraction of the region of interest in the fatty liver ultrasound image. Secondly, according
to the inhibitory effect of the nCRF response of primary visual cortex neurons on the
CRF response, a receptive field feature extraction module is designed to extract texture
features in input images, suppress useless background information, and enhance the
feature extraction ability of the model. Finally, we use the full connection layer to classify
the extracted features and output the final prediction results. In addition, we change
the previous method of extracting features using the attention mechanism, and design
new parallel attention blocks to achieve better performance by integrating more feature
information. The contributions of this paper are summarized as follows:

1. A Bio-inspired network (BiNet) for liver ultrasound image classification is presented
by simulating the selective mechanism and feedback regulation mechanism of the
ventral pathway visual cortex using a self-attention mechanism, and realized the
extraction of important features in ultrasound images. In addition, a receptive field
feature extraction module is designed based on the inhibition characteristics of the V1
neuron nCRF response to the CRF response, which further improves the accuracy of
liver ultrasound image classification;
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2. A new parallel attention module is proposed. Unlike the previous attention methods
that process input features sequentially, the parallel attention block has the same input.
The input features are processed by two different attention paths at the same time,
after which the outputs of both are fused and passed to the next stage as the input. By
integrating more characteristic information, the module makes different information
fully integrated and improves the overall performance of the model;

3. A new dataset for fatty liver ultrasound image classification is constructed to train,
validate, and test the proposed method. A total of 250 liver ultrasound images
are collected in the new dataset, including 100 normal liver ultrasound images and
150 abnormal liver ultrasound images.

The rest of the paper is organized as follows: In Section 2, we describe the proposed
method in detail. In Section 3, we present the results of the proposed method on different
datasets and compare them with other methods. In Sections 4 and 5, we discuss and
summarize this work.

2. Materials and Methods
2.1. Datasets

In this section, we test the proposed method on two different datasets. The first dataset
is proposed by Byra et al. [17], which was collected from 55 participants with 550 images
in total. The other dataset is a self-built database, which was collected from elderly medical
examination patients over 65 years of age who visited the Tiaodenghe Community Health
Service Center in the Chenghua District of Chengdu between 2020 and 2022. A total of
250 images were selected from the 1265 participants after excluding images that were
ambiguous due to large liver area occupancy, gas interference, and obesity. They included
100 ultrasound images of normal livers and 150 ultrasound images of moderately severe
fatty livers. The diagnosis was reviewed and confirmed by two doctors. The images are
3-channel RGB with 8-bit depth per channel and a size of 720 × 480. We then divided the
training verification set and the test set according to the ratio of 4:1. To better train the
proposed model, we carried out data enhancement on the training set and verification
set by randomly scaling, flipping, and rotating different angles, and finally formed a new
amplification dataset. Figure 2 shows ultrasound images of the normal and the fatty
liver patients randomly selected from our dataset, as well as the results after rotation at
different angles.
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2.2. Selective Mechanisms of the Visual Cortex in the Biological Visual System

It has been shown that the visual cortex is an integral part of the biological visual
system for processing visual information. The visual cortex can be divided into the “ventral
pathway” and “dorsal pathway” according to the direction in which visual information is
processed and transmitted. Among them, the transmission process from V1→V2→V4→IT
is called the “ventral pathway”, which mainly deals with color, shape, and direction
information used for object shape recognition and classification in visual information. The
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processing and transmission process from V1→V2→V3→MT is called “dorsal pathway”,
which is mainly used for the analysis of moving objects [30–32]. In this paper, we perform
feature extraction and classification on ultrasound images of fatty livers, so we need to focus
on the ventral pathway, which is more important for object recognition and classification.
The blue and green arrows in Figure 1 indicate the direction of information transmission in
the ventral and dorsal pathways, respectively.

With the continuous exploration of researchers, some experts and scholars [33–36]
found the selective mechanism in the visual cortex, and inspired by this, proposed a
widely used attention mechanism. Studies in neuroscience have also shown that selective
mechanisms exist in V1, V2, and V4 of the biological visual pathway when processing
visual information. That is, they respond differently to different information, and pay more
attention to some sensitive and important information, while ignoring some details that
are considered unimportant. In addition to the selective attention mechanism, in biological
visual systems, receptive fields are areas of neurons that vigorously respond to optimal
stimuli. The CRF is the area of the cell that responds to bars or edges of optimal size
and orientation. When a cell is activated by a stimulus in its CRF, another stimulus that
occurs simultaneously outside the region will have an inhibitory effect on the cell response,
and the part that has an effect outside the region is called the nCRF. The receptive field
regulation mechanism of neurons in the V1 region can effectively suppress background
textures in the image, which is beneficial for efficient feature extraction [20,23]. As a high-
level cortical region in the biological visual pathway, the IT region plays an important role
in object recognition, classification, and feature integration [37,38]. It has been shown that
when the IT area is damaged, it directly affects the brain’s ability to recognize objects [38].
Inspired by the study, we design a BiNet algorithm for liver ultrasound image classification
by simulating the selection mechanism and feedback regulation mechanism of the visual
cortex. The algorithm can selectively extract the regions of interest in the ultrasound image
according to the global information of the image. Subsequently, accurate classification
of fatty liver ultrasound images is achieved by using classification blocks to simulate the
function of IT layers to integrate information based on the connection between neural
networks and biological vision, BiNet models V1, V2, V4, and IT in the ventral pathway,
and forms a reasonable correspondence with them in terms of function and structure.

2.3. Overall Network Structure

Figure 3 shows the overall structure diagram of the Bio-inspired network (BiNet)
proposed in this paper. It mainly includes two parts: feature extraction and classification.
The feature extraction part performs the step-by-step extraction of feature information
by superimposing a parallel attention block (PA block) and down-sampling module (DS).
Using the down-sampling module as the boundary, the feature extraction part is divided
into three stages, which respectively correspond to V1, V2, and V4 regions in the biological
vision system. The first stage corresponds to V1, and includes a patch embedding (PE)
operation, a parallel attention block, a receptive field feature extraction module (RFFE),
and a down-sampling module to realize the preliminary processing of information. Among
them, RFFE simulates the inhibition characteristics of the nCRF to CRF response in the
primary visual cortex region V1, realizes the inhibition of background texture in the image,
and enhances the feature extraction capability of the model in the first stage, which is
described in detail in Section 2.4. The second stage corresponds to V2, and contains a
parallel attention block and down-sampling module, which realizes the further processing
of the information in the first stage. The third stage corresponds to V4, which contains two
parallel attention blocks and down-sampling modules. Through processing the information
of the first two stages, more advanced characteristic information is obtained. After that, the
feedback adjustment mechanism of the higher visual cortex to the primary visual cortex in
the visual system was simulated to establish the feedback connection. Finally, the feature
information processed step by step was passed to the classification block, which was then
processed by the LN layer, the global average pooling layer, and the fully connected layer
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to output the final prediction results. The classification block corresponds to the IT layer in
the biological vision system, and achieves the integration function of feature information.
In BiNet, the parallel attention block simulates the selective mechanism of the visual cortex
in the biological vision system, which can selectively extract important features from the
global information, while achieving the level-by-level extraction of image features. Specific
implementation is as follows:

F0 = PE(I) + USi−1(Fi) + US3(F4), (1)

F1 = DS(PA(F0) + RFFE(F0)), (2)

Fi = DS(PA(Fi−1)), (3)

l = CB(F4), (4)

where I ∈ R3×H×W represents the input liver ultrasound image (H and W denote height and

width). F0 ∈ R2(C×4×4)×H
4 ×

W
4 , Fi ∈ R

2(i+1)(C×4×4)× H
2(i+2) ×

W
2(i+2) , C = 3, i ∈ 2, 3, F4 = PA(F3).

l represents the final classification result. PE is a patch embedding operation that imple-
ments a transformation process of token information by mapping each patch information
to a high-dimensional space. The detailed process is PE = LN(Flatten(Conv2D(I))) LN
represents the Layer Normalization operation used. Flatten indicates flattening, con-
verting multi-dimensional data into one-dimensional data. Conv2D represents a two-
dimensional convolution operation. USi−1 represents the up-sampling operation, and
i − 1 represents the number of up-sampling. PA is a parallel attention block; the specific
operation is shown in Equations (9)–(13). In the formula, DS and CB can be expressed
as DS = Linear(LN(Cat(Fi))), Cat indicates a concatenation operation, where i ∈ 2, 3,
CB = Linear(Flatten(Adaptiveaveragepooling1d(LN(Fi)))), i = 4, Linear indicates the
fully connected layer. DS implements a patch merging operation in addition to down-
sampling the feature map [27].

2.4. Receptive Field Feature Extraction Module

The receptive field of V1 neurons in the biological vision system shows the inhibition of
the periphery to the center, that is, the inhibition of the nCRF response to the CRF response.
When extracting feature information, this inhibition is manifested as the inhibition of
background texture, which is helpful to extract lines and useful features in the image.
Figure 4a shows the scope of action of CRF and nCRF. Some researchers [20,23] have realized
the extraction of effective features such as object contour by simulating this characteristic of
the receptive field of neurons in the V1 region. Tang et al. [20] proposed a new biomimetic
model by combining deep learning with the inhibition of CRF responses by nCRF responses.
Inspired by this, we use the attention mechanism to simulate V1 selectivity in the first
stage. Meanwhile, the receptive field feature extraction module is designed to simulate the
inhibition effect of the nCRF response on the CRF response, which enhances the feature
extraction capability of the first stage, and improves the performance of the model. The
detailed construction is shown in Figure 4. The input image is processed by two 5 × 5
and two 3 × 3 convolution layers, and fused to obtain the result of the simulated nCRF
response. The input image is also convolved with a 3 × 3 map to obtain the simulating
CRF response. Then, the result of the nCRF response is removed from the result of the
CRF response, and the result after the inhibition of the CRF response is obtained. The “−”
represents the result to be suppressed, and “+” represents the response before inhibition.
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The following formula is the specific operation of Figure 4a,b. Equation (5) is the
suppression term of the CRF response and nCRF by the difference of Gaussian (DOG)
simulation in traditional methods. More is explained in [23]. Equations (6)–(8) are specific
operations of simulating the non-classical receptive field response and suppressing the
classical receptive field response.

DoGσ(x, y) =
1

2π(4σ)2 e
− x2+y2

2(4σ)2 − 1
2πσ2 e−

x2+y2

2σ2 , (5)

nCRF = C5×5(C5×5(I))−C3×3(C3×3(I)), (6)

CRF = C3×3(I) (7)

Output = CRF− nCRF (8)

where I ∈ R3×H×W represents the input liver ultrasound image (H and W denote height
and width). Cm×n is the convolution, m and n are the size of the convolution kernel,
m, n ∈ 1, 3, 5.

2.5. Parallel Attention Block

The Swin Transformer [27] addresses the high complexity of the previous transformer
layer [39] by introducing self-attention mechanisms and local window movement. More-
over, in Swin, if the input image I ∈ R3×H×W is given, Swin first divides the input into
multiple non-overlapping S × S local windows, and then calculates the concern of feature
F in each S × S window. Relevant parameters are calculated as follows:

Q = WqF, K = WkF, V = WvF, (9)

where Wq, Wk, and Wv represent different mapping matrices. Q, K, and V to calculate the
self-attention matrix:

Attention(Q, K, V) = softmax

(
QKT
√

d
+ b

)
V, (10)

where b is the position deviation that can be learned; since the initial transformer layer
computes self-attention multiple times in parallel, it is called multi-head self-attention
(MSA). By combining with multi-layer perceptron (MLP), MSA can better extract the
feature information of each window. In Swin [27], MSA is changed to Window Multi-head
Self-Attention (WMSA) and Shift Window Multi-head Self-Attention (SWMSA). The input
images are first processed by WMSA to calculate the attention within a window, and later
by SWMSA to calculate the attention between different windows. In order to establish long-
term relationships of feature information, WMSA and SWMSA can be used interchangeably
when constructing the network.

Recently, Swin has achieved the best results in some visual tasks with its hierarchical
design and extraction of global features. The proposed WMSA and SWMSA also show
strong and effective feature extraction ability when dealing with global features. However,
the diagnosis of hepatic steatosis by ultrasonic images requires the extraction of distinct
features from ultrasonic images. This is also the key problem to improve the diagnostic
accuracy of hepatic steatosis. Therefore, inspired by biological vision mechanisms, we
use attention mechanisms to simulate selective neural mechanisms in ventral pathways to
design parallel attention blocks that can simultaneously process input images. Its structure
is shown in Figure 5. In the parallel attention module, the input images are processed by
WMSA and SWMSA, respectively, and the two do not interfere with each other during
processing, after which the outputs of the two are fused after a series of calculations and
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residual connections to achieve the extraction and fusion of different feature information.
In addition, WMSA and SWMSA simulate the selective mechanism of the visual cortex
in the biological visual system, and realize the extraction of globally effective features by
processing input images. The specific calculations are as follows:

F′ = MLP(LN(WMSA(LN(F)) + F)) + (WMSA(LN(F)) + F), (11)

F′′ = MLP(LN(SWMSA(LN(F)) + F)) + (SWMSA(LN(F)) + F), (12)

Fout = F′ + F′′ , (13)
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Figure 5. Detailed structure of parallel attention block. The input features are processed by two
different attention paths, where one attention path only computes the attention within a window
and no information is exchanged between different windows. The other attention path fuses the
information between the different windows. The output of the last two attention paths is fused as the
input for the next stage.

MLP and LN are represented as follows:

MLP = Linear(GELU(Linear(x))), (14)

y =
x− E[x]√
Var[x] + ε

× γ+ β, (15)

where ε is a small constant such that Var[x] + ε > 0. γ is the gain and β is the bias, and the
combination keeps the information from being corrupted. More details are given in [40].

2.6. Implementation Details and Evaluation Metrics Methods

We implement our model on Pytorch. In training, we use migration learning methods
to initialize the modified BiNet with parameters from the Swin Transformer pre-trained
on ImageNet-1K [41]. We update the parameters using the Adam optimizer, setting the
global learning rate to 0.0001, epoch to 10, and weight decay to 5 × 10−2. The size of the
input image is 224 × 224. The device used is an NVIDIA GeForce 1080Ti GPU. For fair
comparison, we use the same evaluation criteria as in the previous work [1,2,14,42,43]
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and calculate the accuracy, sensitivity, and specificity of the model. In addition, we also
calculate the F1 score of the proposed model. The specific calculations are as follows:

Accuracy =
TP + TN

TP + FP + TN + FN
, (16)

Sensitivity =
TP

TP + FN
, (17)

Specificity =
TN

TN + FP
, (18)

F1− score =
2× P× R

P + R
, (19)

where TP, TN, FP, and FN represent the number of true positive, true negative, false positive,
and false negative detection in the classification process, respectively. P is for precision,
where P = TP/(TP + FP), and it represents the proportion of true positives in true positives
and false positives. R is for recall rate, also known as sensitivity, which represents the
proportion of true positives in true positives and false negatives.

3. Results

In this section, we make a detailed experimental analysis of the proposed diagnostic
method of liver steatosis on the dataset proposed in this paper and publicly available datasets.

3.1. Comparison of Results under Different Parameters

Aiming at the parameter setting in the training process, we conduct quantitative
research and comparison on the BiNet model on the dataset. First, the results for different
epochs of training and testing under the same conditions are shown in Table 1. By compari-
son, we can get the best performance of the model when epoch is 10. In addition, we adopt
the same method to train and test the results of different learning rates under the same
conditions. Table 2 shows the experimental results for different learning rates, from which
we can find that the model has the best performance when the learning rate is set to 0.0001.

Table 1. Comparison of results of different training epochs.

Method Epoch Accuracy
(Validation)

Accuracy
(Test) Sensitivity Specificity F1-Score

BiNet 5 94.0% 96.0% 100.0% 92.0% 0.96

BiNet 8 98.5% 96.0% 100.0% 92.0% 0.96

BiNet 10 99.8% 98.0% 100.0% 96.0% 0.98

Table 2. Comparison of results of different learning rates.

Method Lr Accuracy
(Validation)

Accuracy
(Test) Sensitivity Specificity F1-Score

BiNet 0.001 81.5% 82.0% 64.0% 100.0% 0.78

BiNet 0.00001 98.3% 90.0% 80.0% 100.0% 0.89

BiNet 0.0001 99.8% 98.0% 100.0% 96.0% 0.98

3.2. Result Verification of Parallel Attention Blocks

To further validate the effectiveness of parallel attention blocks in BiNet, we conduct
detailed ablation experiments on the dataset presented in this paper. First, we train and
test the original Swin Transformer, after which we add the design parallel attention blocks
to the backbone network, BiNet, to train and test it. In addition, to demonstrate that the
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parallel attention block can adequately fuse the outputs of the two attention paths, we
also test the results when there is only one attention path in BiNet separately. That is,
the results when only WSMA and only SWMSA are used. BiNet-w/o-SWMSA indicates
that only WMSA is used, and BiNet-w/o-WMSA indicates that only SWMSA is used. All
experimental results are shown in Table 3, and the training process of BiNet-w/o-SWMSA
and BiNet-w/o-WMSA is shown in Figure 6. As can be seen from the experimental results
in Table 3, BiNet achieves the best results on both the validation and test sets after using
the parallel attention block, and outperforms the other models by 2–4% in accuracy. This
also indicates that the parallel attention block proposed in this paper is more competitive
than the original processing method, and can achieve more accurate liver ultrasound
image classification.

Table 3. Effectiveness of parallel attention blocks in BiNet.

Method Accuracy
(Validation)

Accuracy
(Test) Sensitivity Specificity F1-score

Swin_original 99.4% 96.0% 92.0% 100.0% 0.96

BiNet 99.8% 98.0% 100.0% 96.0% 0.98

BiNet-w/o-SWMSA 99.8% 96.0% 92.0% 100.0% 0.96

BiNet-w/o-WMSA 99.6% 98.0% 96.0% 100.0% 0.98
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3.3. Comparison with Other Models

As shown in Figure 7, we train and verify BiNet’s loss curve and accuracy curve on
the amplified data set. In addition, we also conduct a detailed evaluation of the training
model on the test set. Table 4 compares our proposed method, BiNet, with other diagnostic
methods for hepatic steatosis. Figure 8 shows the results before and after BiNet processing.
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Table 4. Comparison of BiNet with other methods. † indicates the results of the reference.

Authors Dataset Accuracy Sensitivity Specificity F1-Score

Acharya et al. [44] Private 93.3% † - - -

Sharma et al. [45] Delta Diagnostic Centre Patiala,
India, Private 95.55% † - - -

Andrea et al. [46] Coimbra University Hospital,
Private

kNN:74.05% †
ANN:76.92% †
SVM: 79.77% †

- - -

Gaber et al. [42] Private 95.71% † 97.05% † 94.44% † 0.956

Zhang et al. [14] Private 90.0% † 81.0% † 92.0% † -

Byra et al. [17]
Medical

University of Warsaw, Poland,
Publicly available

96.3% † 100.0% † 88.20% † -

BiNet (ours)
Medical

University of Warsaw, Poland,
Publicly available

99.1% 100.0% 98.7% 0.986

BiNet (ours) Private 98.0% 100.0% 96.0% 0.980

As can be seen from Figure 7, BiNet gradually decreases the loss value and increases
the accuracy rate during the training process without large fluctuations, and the model
gradually converges and achieves a better performance. In addition, it can be seen from
Table 4 that BiNet has achieved good results among all the methods, and its accuracy,
sensitivity, and specificity are all higher than other methods. This further demonstrates
that our method is highly competitive among all diagnostic methods for steatosis.
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4. Discussion

As we mentioned in the introduction, hepatic steatosis diagnosis has important im-
plications for preventing liver disease and maintaining human health. However, the
ultrasound images widely used in the diagnosis of hepatic steatosis usually have problems,
such as low quality, noise interference, and dependence on the doctor’s experience, which
affect the accuracy of the diagnosis of hepatic steatosis. To this end, some researchers
have proposed ways to improve image quality, build complex models, and use machine
learning methods to address these problems. These methods overcome the problems in the
diagnosis of hepatic steatosis to a certain extent, and improve diagnostic accuracy, but there
are still some limitations. After that, the convolutional neural network has been widely
used in various fields because of its excellent performance in various visual tasks and image
processing tasks. The diagnostic method of liver steatosis based on the convolutional neural
network has also been proposed by researchers and achieved high accuracy. However, with
the gradual deepening of research, some researchers found that it is difficult to improve the
performance of the model only by relying on experience and a large number of experiments,
and it usually leads to complex models, low efficiency, and occupying a lot of computing
resources. In recent years, the process and physiological mechanism of visual information
processing in biological visual systems have received much attention from researchers.
Based on the physiological mechanisms in biological vision systems, some researchers
have proposed methods combined with deep learning to achieve good results in various
computer vision tasks.

Inspired by the ventral pathway in the biological vision system, we design the BiNet for
the diagnosis of fatty degeneration in liver ultrasound images by combining the receptive
field regulation mechanism of neurons in the V1 region. Moreover, the selectivity mecha-
nism of V1, V2, and V4 regions, and the feedback regulation mechanism of higher cortical
regions to lower cortical regions are designed and implemented. The model performance
is verified by experiments on datasets. However, our approach has certain limitations. In
this work, we mainly focus on the function of the ventral pathway in the biological visual
system and its physiological mechanism. However, in the real biological visual system, the
processing and transmission of visual information start from the photoreceptors, and the
visual information goes through a series of processing steps before being transmitted to the
V1 region. Moreover, BiNet is only trained and tested on two datasets, and its scalability is
somewhat limited. The BiNet presented here mimics the physiological mechanisms of the
visual cortex in the ventral pathway and the processing of visual information in the ventral
pathway, making its structural design more interpretable. In this paper, instead of using
only deep learning or biological vision, we model the selection mechanism of the visual
cortex using the attention mechanism. This provides a new direction for further research
and promotes the integration of biological vision and computer vision. In future work,
we may also incorporate more effective biological vision mechanisms into deep learning
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methods to improve the overall performance of the model. The classification performance
will be improved as more datasets become available.

5. Conclusions

In this paper, we propose a biologically inspired network for the diagnosis of hepatic
steatosis by simulating the selection and feedback regulation mechanisms of the visual
cortex in biological visual systems. Different from the previous CNN-based method, BiNet
can not only extract simple features in liver ultrasound images, but also selectively extract
areas of interest in ultrasound images through the attention mechanism to achieve accurate
image classification. We conducted detailed experiments and evaluations of BiNet on the
dataset, and the results showed that BiNet achieved optimal performance with accuracy,
sensitivity, and specificity of 98.0%, 100%, and 96.0%, respectively. It can also be seen that
the model proposed in this paper is competitive among all methods, which is conducive
to reducing the pressure on doctors in clinical practice and reducing the occupation and
consumption of resources. Moreover, in this paper, instead of using only deep learning
or biological vision, we model the selection mechanism of the visual cortex using the
attention mechanism. This provides a new direction for further research and promotes the
integration of biological vision and computer vision. In future work, we may also consider
incorporating more effective biological vision mechanisms into deep learning methods to
improve the overall performance of the model.
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