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Abstract: The identification of drug–drug and chemical–protein interactions is essential for under-
standing unpredictable changes in the pharmacological effects of drugs and mechanisms of diseases
and developing therapeutic drugs. In this study, we extract drug-related interactions from the
DDI (Drug–Drug Interaction) Extraction-2013 Shared Task dataset and the BioCreative ChemProt
(Chemical–Protein) dataset using various transfer transformers. We propose BERTGAT that uses a
graph attention network (GAT) to take into account the local structure of sentences and embedding
features of nodes under the self-attention scheme and investigate whether incorporating syntactic
structure can help relation extraction. In addition, we suggest T5slim_dec, which adapts the autore-
gressive generation task of the T5 (text-to-text transfer transformer) to the relation classification
problem by removing the self-attention layer in the decoder block. Furthermore, we evaluated the
potential of biomedical relation extraction of GPT-3 (Generative Pre-trained Transformer) using
GPT-3 variant models. As a result, T5slim_dec, which is a model with a tailored decoder designed for
classification problems within the T5 architecture, demonstrated very promising performances for
both tasks. We achieved an accuracy of 91.15% in the DDI dataset and an accuracy of 94.29% for the
CPR (Chemical–Protein Relation) class group in ChemProt dataset. However, BERTGAT did not show
a significant performance improvement in the aspect of relation extraction. We demonstrated that
transformer-based approaches focused only on relationships between words are implicitly eligible to
understand language well without additional knowledge such as structural information.

Keywords: DDI (drug–drug interaction); CPR (chemical–protein relation); transformer; self-attention;
GAT (graph-attention network); relation extraction; ChemProt; T5 (text-to-text transfer transformer)

1. Introduction

With the rapid progress in biomedical studies, it is a very challenging issue to ex-
tract efficiently useful information described in the biomedical literature. According to
LitCOVID [1], over 1000 articles were published in just three months from December 2019,
when COVID-19 was first reported, to March 2020. In PubMed [2] which is a biomedical
literature retrieval system, more than 35 million biomedical articles are included. Therefore,
life science researchers cannot keep up with all journals relevant to their areas of interest and
select useful information from the latest research. In order to manage biomedical knowl-
edge, curated databases such as UniProt [3], DrugBank [4], CTD [5], and IUPHAR/BPS [6]
are constantly being updated. However, updating or developing a database manually can
be time-consuming and labor-intensive work, and the speed is often slow, which makes
automatic knowledge extraction and mining from biomedical literature highly demanding.
Consequently, many pieces of valuable information with complex relationships between
entities still remain unstructured and hidden in raw text.
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Recently, AI algorithms have been used to analyze complex forms of medical and life
science data to assist human knowledge or to develop protocols for disease prevention
and treatment. Moreover, deep learning techniques have been actively applied to various
biomedical fields such as drug and personalized medicine development, clinical decision
support systems, patient monitoring, and interaction extraction between biomedical en-
tities. For example, protein–protein interaction in biomedical entities are very crucial for
understanding various human life phenomena and diseases. Many biochemistry studies
go beyond the molecular level of individual genes and focus on the networks and signaling
pathways that connect groups or individuals that interact with each other. Similarly, interest
in the integration and curation of relationships between biological and drug/chemical
entities from text is increasing.

One of valuable information of drugs and chemical compounds is how they inter-
act with certain biomedical entities, in particular genes and proteins. As mentioned in
the study [1], metabolic relations are related to construction/curation of metabolic path-
ways and drug metabolism such as drug–drug interaction and adverse reactions. In-
hibitor/activator associations are related to drug design and system biology approaches.
Antagonist and agonist interactions helps in drug design, drug discovery, and understand-
ing mechanism of actions. Drug–drug interaction (DDI) can be defined as a change in
the effects of one drug by the presence of another drug. Since such information prevents
dangers or side-effects caused by drugs, it is also important to extract useful knowledge
from pharmaceutical papers.

Compared to other fields, texts of biomedical publications are more easily accessible
due to the publicly available database MEDLINE [7] and the search system PubMed [2]
However, the complexity and ambiguity in biomedical text are much greater than those of
general text. One of characteristics of biomedical text is that multiple biomedical entities
appear within a single sentence and one entity may be interacted with multiple entities. In
particular, it is very difficult to infer which pairs contain actual relations because all entities
in a single sentence share the same context, as shown in Figures 1 and 2. In this work, the
relation extraction is simplified as classification task, where the problem is to classify which
interaction exists between the given pre-recognized entities at sentence level.
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The main objectives of this study are as follows: (1) we apply transfer transformer
learning models, which have made impressive performances and progresses in recent years
across a wider range of NLP tasks, to the detection of drug-related interactions in biomedical
text, and aim to demonstrate which models are effective in biomedical relation extraction.
The transformers generate abstract contextual representations of tokens very well by
incorporating inter-relations of all tokens in a sequence with the concept of self-attention.
As baseline models, three different dominant types of transformers: encoder-only model
such as Google’s BERT (Bidirectional Encoder Representations from Transformers) [8],
decoder-only model such as OpenAI’s GPT-3 (Generative Pre-trained Transformer) [9],
and encoder–decoder structure of Google’s T5 (Text-To-Text Transfer Transformer) [10] are
chosen to establish a performance benchmark for our proposed methods. All experiments
are conducted using ChemProt corpus [11] and DDI corpus [12] which are a collection of
text documents that contains information about chemical/drug–protein/gene interactions
and drug–drug interactions, respectively.

(2) The second objective of this study is to investigate the effects of syntactic structure
of sentences on biomedical relation extraction by incorporating dependencies between
words to enhance self-attention mechanism. According to previous studies, syntactic clues
such as grammatical dependencies of a sentence help relation extraction. Some studies [13]
have demonstrated that removing tokens outside the subtree rooted at the lowest common
ancestor of the two entities or SDP (shortest dependency path) word sequence between
two entities from the parse tree can improve relation extraction performance by eliminating
irrelevant information from the sentence. However, this simplified representation by
considering only the SDP word sequence may fail to capture contextual information, such
as the presence of negation, which could be crucial for relation extraction [14].

In this work, we propose BERTGAT, a newly developed structure-enhanced encoding
model that combines the graph-attention network (GAT) [15] with BERT. We investigate
its effectiveness on relation extraction by taking into account not only word token infor-
mation but also grammatical relevance between words within the attention scheme. To
incorporate syntactic information, each dependency tree structure is converted into cor-
responding adjacency matrix. The GAT model uses an attention mechanism to calculate
the importance of words within the input graph. This can allow for the extraction of more
relevant information.

(3) Finally, we tailor T5, the encode–decoder transformer which has demonstrated high
performances in text generation task, to efficiently handle discriminative, non-autoregressive
tasks such as our relation classification problem. Since T5 transformer is designed for text-
to-text tasks such as text generation and machine translation, the decoder generates output
tokens autoregressively based on previous tokens. This can be less efficient for classification
tasks where a single label or output is required. Consequently, decoder’s role is not much
in classification tasks. We suggest T5slim_dec, which determines the interaction category by
removing the self-attention block of T5’s decoder input.
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The rest of the paper is organized as follows. In Section 2, related works in the field
of biomedical relation extraction is presented. Section 3 briefly describes the dataset and
provides necessary background information about transformers to help readers better
understand the rest of the paper. Section 4 introduces the baseline models and proposed
approaches in detail. Data statistics, results, and analysis are discussed in Section 5, along
with comparisons with state of the art approaches and limitations. Finally, conclusions and
outlooks are reported in Section 6.

2. Related Works

In the DDI (drug–drug interaction) extraction task [12], traditional deep-learning sys-
tems, such as convolutional neural networks (CNNs) [16] and recurrent neural networks
(RNNs) [17] have shown better performances than feature-based approaches. Recently,
the transformer-based models including BERT [8], RoBERTa [18], MASS [19], BART [20],
MT-DNN [21], GPT-3 [9], and T5 [10] have demonstrated remarkable improvement in
performance across various NLP (Natural Language Processing) tasks by obtaining contex-
tualized token representation through a self-supervised learning on a large-scale raw text
such as masked language model. The transformer model is originated from the “Attention
Is All You Need” paper [22] researched by Google Brain and Google Research. They also
attempted the transfer learning which the weights pretrained on a large-scale text dataset
for a specific task such as masked language modeling, next sentence prediction or next
token prediction were applied to downstream task by fine-tuning the pretrained models
on the downstream task. As a result, pretrained language models tend to perform better
than learning new knowledge from scratch with no prior knowledge because they utilize
previously learned results.

The pretraining on large-scale raw texts has also significantly improved performance in
biomedical domain. BERT based on encoder structure and its variants such as SCIBERT [23],
BioBERT [24], and PubMedBERT [25] have been successfully applied in biomedical field.
Since previous methods consider only the context around entities in the text, some research
has encoded various knowledge besides input tokens, resulting in more informative input
representations for downstream tasks [26,27].

Asada et al. [26] explored the impact of incorporating drug-related heterogeneous
information on DDI extraction, and achieved an F-score of 85.40. They reported it as
state-of-the-art performance. They constructed a HKG (heterogeneous knowledge graph)
embedding vectors of drugs by performing a link prediction task which predicts an entity,
t, that forms triple (h, r, t) for a given entity, h and relation pair, r on the PharmaHKG
dataset. The dataset contains graph information: six nodes (entities), i.e., drug, protein,
pathway, category, and ATC (Anatomical Therapeutic Chemical) code, molecular structure
from different databases/thesauruses and eight edges (relations): category, ATC, pathway,
interact, target, enzyme, carrier, and transporter. The input sentence S was tokenized into
sub-word tokens by the BERT tokenizer and extended by adding KG vectors of two drugs.
Thus, the input sentence is represented with {[CLS], w1, . . . wm1, . . . , wm2, . . . ; [SEP],
[KGm1] [KGm2]}, where wi corresponds to subword and m1, to drug1 and m2, to drug2, and
[KGm1] and [KGm2] represent knowledge embeddings for each drug entity.

Similarly, Zhu et al. [28] utilized drug descriptions from Wikipedia and DrugBank to
enhance the BERT model with the semantic information of drug entities. They used three
kinds of entity-aware attentions to get sentence representation with entity information,
mutual drug entity information, and drug entity information. The mutual information
vector of two drug entities was obtained by subtracting the BioBERT embeddings of two
drugs. For drug description information, all drug description documents were fed into
Doc2Vec model and obtained its vector representations for each drug entity appearing in
the 2013 DDI corpus. The vectors for entity information were fed into attention layers and
retrieve sentence representation vectors integrating entity’s multiple information. They
reported 80.9 (micro F1-score) on DDI corpus.
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LinkBERT [29] used hyperlinks to create better context for learning general-purpose
LMs (language model). The hyperlink can offer new, multi-hop knowledge, which is
not available in the single article alone. It creates inputs by placing linked documents
in the same context window. They joined the segments of two different documents on
BERT via special tokens to form an input instance: [CLS] XA [SEP] XB [SEP], where XA
segment belongs to document A and XB segment belongs to document B. They used the
Document Relation Prediction (DPR) objective for pretraining, which classifies the relation
of two segments XB to XA as contiguous (XB is direct continuation of XA), random, and
linked. They achieved a performance of 83.35 (micro F1-score) on DDI classification task.
SciFive [30] and T5-MTFT [31] pretrained on biomedical text using T5 architecture also
showed good performance in relation extraction. In particular, SciFive was pretrained on
PubMed abstracts and outperformed other encoder-only models.

3. Preliminaries
3.1. Data Sets and Target Relations

The evaluation of transformers is conducted on two datasets, namely ChemProt [11]
and DDI [12] which are used for RE (relation extraction) between drug-related entities.
This paper is not intended to validate different RE methods across various datasets, but
rather than focuses on extraction of drug-related interactions and perform a more in-
depth evaluation.

In ChemProt track corpus in BioCreative VI, interactions are annotated to explore
recognition of chemical–protein relations from abstracts, as shown in Table 1. The corpus
contains directed relations from chemical/drug to gene/protein, indicating how the chemi-
cal/drug interacts with the gene/protein. Chemical–protein relations, referred to as ‘CPR’,
are categorized into 10 semantically related classes that share some underlying biological
characteristics. For instance, the interactions such as “activator”, “indirect upregulator”
and “upregulator”, which result in an increase in the activity or expression of a target gene
or protein, belong to CPR:3 group. The interactions such as “downregulator”, “indirect
downregulator”, and “inhibitor” interactions which all decrease the activity or expression
of a target gene or protein, belong to CPR:4. For this task, chemical and protein/gene
entity mentions were manually annotated. In the track, only relations belonging to the
following five classes were considered for evaluation purposes: CPR:3, CPR:4, CPR:5,
CPR:6, and CPR:9.

Table 1. Interaction classes of ChemProt Corpus.

Class
Group ChemProt Relations Semantic Meaning

CPR:0 UNDEFINED
CPR:1 PART-OF Part-of
CPR:2 DIRECT-REGULATOR, INDIRECT-REGULATOR, REGULATOR Regulator
CPR:3 ACTIVATOR, INDIRECT-UPREGULATOR, UPREGULATOR Upregulator or activator

CPR:4 DOWNREGULATOR, INDIRECT-DOWNREGULATOR,
INHIBITOR Downregulator or inhibitor

CPR:5 AGONIST, AGONIST-ACTIVATOR, AGONIST-INHIBITOR Agonist
CPR:6 ANTAGONIST Antagonist

CPR:7 MODULATOR, MODULATOR-ACTIVATOR,
MODULATOR-INHIBITOR Modulator

CPR:8 COFACTOR Cofactor
CPR:9 SUBSTRATE, SUBSTRATE_PRODUCT-OF, PRODUCT-OF Substrate or product-of

CPR:10 NOT Not

In the DDIExtraction 2013 shared task, five types of interactions are annotated, as
shown in Table 2. The false pairs, which are drug pairs that do not interact, were excluded
in the evaluation to simplify the evaluation and enable better comparability between
systems in the shared task. Tables 3 and 4 display the number of instances for each class.
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Figures 1 and 2 illustrate examples of interactions in ChemProt and DDI, respectively. For
example, the first sentence in Figure 2 states that ‘mineral oil’ and ‘fat-soluble vitamins’ have
a DDI-mechanism relationship, while there is no interaction (false) between ‘fat-soluble
vitamin’ and ‘vitamin d preparations’. The interaction between ‘mineral oil’ and ‘vitamin d
preparation’ is a DDI-mechanism. Since three interactions appear in one sentence, when
creating instances, separators such as ** (## and ** for ChemProt) are added before and
after the target entities to indicate the desired interaction pair.

Table 2. Interaction classes of DDI 2013 Corpus.

Relation Class Semantic Meaning

DDI-Mechanism a pharmacokinetic interaction mechanism is described in a sentence
DDI-Effect the effect of an interaction is described in a sentence

DDI-Advice a recommendation or advice regarding the concomitant use of two drugs is described in an
input sentence

DDI-Int the sentence mentions that interaction occurs and does not provide any detailed information about
the interaction

DDI-False non-interacting entities

Table 3. The instances of the ChemProt corpus.

Dataset CPR:0 CPR:1 CPR:2 CPR:3 CPR:4 CPR:5 CPR:6 CPR:7 CPR:8 CPR:9 CPR:10

train 0 550 1656 784 2278 173 235 29 34 727 242
dev 1 328 780 552 1103 116 199 19 2 457 175
test 2 482 1743 667 1667 198 293 25 25 644 267

Table 4. The instances of the DDI extraction 2013 corpus.

Corpus Advice Effect Mechanism Int False

train 826 1687 1319 188 15842
test 218 356 302 96 4782

3.2. Transformer and Attention

Before explaining our transformer approaches, we will first introduce the concept
of the transformer model and attention. The transformer was designed for sequence-to-
sequence tasks. It uses stacked self-attentions to encode contextual information of input
sequence. Attention is a mechanism which enables a model to focus on relevant parts
of the input sequence to enhance the meaning of the word of interest [32]. The inputs
to the transformer model are word embedding vectors. The model weighs these vectors
according to their neighboring context within the sentence. For example, in the sentence,
“He swam across the river to the other bank”, the word, ‘bank’ has a contextualized vector
which is closer to the meaning of ‘sloping raised land’ rather than ‘a financial institution’
by focusing on the words “swam” and “river”.

The attention provides contextualized representation for each word and captures
relatedness between other words occurred in the sequence. BERT processes input tokens
through transformer encoder blocks and returns a hidden state vector for each token. These
hidden state vectors encapsulate information about each input token and the context of the
entire sequence.

The attention score, as represented by Equation (1), is computed after creating a
query( Qi), key( Ki), and value(Vi) embedding vector for each token in a sentence. The
calculation involves three parts: (1) computing the attention score between query and key
using a dot-product similarity function, (2) normalizing the attention score using softmax,
and (3) weighting the original word vectors according to surrounding context using the
normalized attention weights.
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Qi = QWQ
i , Ki = KWK

i , Vi = VWV
i

headi = Attention(Qi, Ki, Vi) = so f tmax
(

QiKT
i√

dk

)
Vi

so f tmax(si) =
esj

∑n
j=1 esj

Multihead(Q,K,V) = Concat(head1, head2, . . . , headh)WO

(1)

In Equation (1), dk is the dimension of query/key/value and n is the sequence length.
The matrix multiplication QKT computes the dot product for every possible pair of queries
and keys. If two token vectors are close (similar) to each other, their dot product is going
to be big. The shape of each matrix is n × n, where each row represents the attention
score between a specific token and all other tokens in the sequence. The softmax and
multiplication with value matrices represents a weighted mean and

√
dk is a scaling factor.

With multi-headed self-attention, multiple sets of Q/K/V weight matrices are used to
reflect different representation of the input sequence.

As a result, the attention operation helps focus more on the values associated with
keys that have higher similarities and capture important contextual information in the
sequence. It produces a contextualized representation of the whole sequence and can
be interpreted as connection weights between each word token and all other words in a
given sequence. Figure 3 shows how to compute multi-head self-attention for an example
sentence: “concomitant administration of other @DRUG$ may potentiate the undesirable
effect of @DRUG$.” In the case, “concomitant” might be highly associated with “adminis-
tration” by the self-attention. The outputs of the attention mechanism are concatenated
before being further processed and fed to a FFNN (feed-forward neural network). The
transformer encoder takes the input sequence and maps it into a representational space. It
generates dembed-dimensional vector representation for each position of the input, as shown
in Figure 3, which is then sent to the decoder.
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In addition to word embedding, transformer also employs positional embedding to
represent a token’s positional information. This allows for parallel processing with causal
masking, which restricts the use of future information during training by masking future
tokens that appears after the current position in the input. The positional embedding
vector to each input token can be easily computed using sine and cosine functions with
Equation (2), where dmodel represents the dimension of the input embedding vector.

The transformer consists of a stacked encoder and decoder, both of which are built with
two sublayers: multi-head self-attention layers as mentioned earlier and fully connected
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FFN (FeedForward Neural Network) layers. The FFN consists of two linear transformations
with the ReLU (Rectified Linear Unit) activation as shown in Equation (3). To prevent
the model from losing important features of input data during training, residual connec-
tions, as shown in Equation (4), are employed around each of the sub-layers, followed by
layer normalization:

PE(pos,2i) = sin

(
pos

10000
2i

dmodel

)
, PE(pos,2i+1) = cos

(
pos

10000
2i

dmodel

)
(2)

FFN(x) = max(0, xW1 + b1)W2 + b2 (3)

LayerNorm(x + Sublayer(x)) (4)

Besides the two sub-layers, the decoder has an additional sublayer called multi-head
cross attentions, which considers the relationship between the output of the encoder and
the input of the decoder. The output of the encoder is transformed into a set of K and V
vectors and utilized in the cross-attention. The cross attention adopts Q matrix from the
self-attention layer of decoder and K and V matrix from the encoder, respectively. Unlike
its operation in the encoder, the self-attention layer in the decoder is modified to prevent
positions from attending to subsequent positions by masking. This masking ensures that
the predictions for position i can depend only on the known outputs at positions less than i.

In practice, the encoder maps an input sequence to a sequence of continuous contextual
representation. Given the input representation, the decoder auto-regressively generates
an output sequence, one element at a time, using the previously generated elements as
additional input when generating the next.

4. Methods

In this section, we first describe three transformers used as baseline models and
introduce proposed models, BERTGAT and T5slim_dec for relation extraction.

4.1. Baseline Methods

As baseline models for our research on interaction extraction, we employed three
types of transformer: BERT (encoder-only) [8], GPT3 (decoder-only) [9], and T5 (encoder–
decoder) [10]. First, BERT is bidirectional transformer which uses only encoder block of the
transformer. For a detailed structure and implementation, please refer to the study [22].
BERT is pretrained on two unsupervised tasks: (1) masked language model (MLM), where
some of the input tokens are randomly masked and the model is trained to predict the
masked tokens and (2) next sentence prediction (NSP), where the model is trained to predict
whether one sentence follows another, as shown in Figure 4. It uses WordPiece tokenizer
and has a special classification token ‘[CLS]’ in the first token of every sequence which
corresponds to the aggregated whole sequence representation.

Bioengineering 2023, 10, x FOR PEER REVIEW 9 of 25 
 

 

Figure 4. Pretraining methods of transformers. 

We initialized the model with SCIBERT [23] for drug-related relationship extraction 

in order to leverage the domain specific knowledge and then fine-tuned all of the 

parameters using labeled ChemProt and DDI dataset. SCIBERT has the same architecture 

as BERT but was pretrained on scientific texts, which consist of 1.14 million papers from 

the computer science domain (18%) and the broad biomedical domain (82%), sourced  

from Semantic Scholar [33]. In addition, in-domain WordPiece vocabulary on the scientific 

corpus was newly constructed. Ultimately, we fed the special ‘[CLS]’ token vector of the 

final hidden layer into a linear classification layer with softmax output to classify the 

interaction types. 

Secondly, we employed the text-to-text transfer transformer (T5) [10], which is an 

encoder–decoder model. In the research, the authors experimented with various types of 

transformers and demonstrated that the encoder–decoder transformer architecture, 

combined with the denoising (masked language modeling) objective, yielded the best 

performance for most NLP tasks. T5 was pretrained with self-supervision through a 

learning objective called span-based language masking, in which a set of consecutive 

tokens are masked with sentinel tokens and the target sequence is predicted as a 

concatenation of the real masked spans, as shown in Figure 5. The tokens for pretraining 

were randomly sampled, and dropped out 15% of tokens in the input sequence. It used 

SentencePiece tokenizer [34] to encode text. 

 

Figure 5. T5’s pretraining scheme. 

In general, encoder-only model such as BERT are easily applicable to classification or 

prediction tasks by using the ‘[CLS]’ token, which provides a summary representation of 

the entire input sentence. On the contrary, T5 treats every text processing problem into a 

text-to-text generation problem that takes text as input and produce new text as output. 

Therefore, our relation classification problem is treated as a generation task for interaction 

types. Initially, we used the pretrained parameters of the SciFive [30] model and then 

finetuned it on our specific dataset in relation extraction tasks. The SciFive model was 

retrained on various text combination, which consisted of the C4 corpus [35], PubMed 

abstracts, and PMC full-text articles, to optimize the pretrained weights from T5 in the 

context of biomedical literature. Consistent with the original T5 model [10], SciFive 

Figure 4. Pretraining methods of transformers.

We initialized the model with SCIBERT [23] for drug-related relationship extraction in
order to leverage the domain specific knowledge and then fine-tuned all of the parameters
using labeled ChemProt and DDI dataset. SCIBERT has the same architecture as BERT but
was pretrained on scientific texts, which consist of 1.14 million papers from the computer
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science domain (18%) and the broad biomedical domain (82%), sourced from Semantic
Scholar [33]. In addition, in-domain WordPiece vocabulary on the scientific corpus was
newly constructed. Ultimately, we fed the special ‘[CLS]’ token vector of the final hidden
layer into a linear classification layer with softmax output to classify the interaction types.

Secondly, we employed the text-to-text transfer transformer (T5) [10], which is an
encoder–decoder model. In the research, the authors experimented with various types
of transformers and demonstrated that the encoder–decoder transformer architecture,
combined with the denoising (masked language modeling) objective, yielded the best
performance for most NLP tasks. T5 was pretrained with self-supervision through a
learning objective called span-based language masking, in which a set of consecutive tokens
are masked with sentinel tokens and the target sequence is predicted as a concatenation of
the real masked spans, as shown in Figure 5. The tokens for pretraining were randomly
sampled, and dropped out 15% of tokens in the input sequence. It used SentencePiece
tokenizer [34] to encode text.
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In general, encoder-only model such as BERT are easily applicable to classification or
prediction tasks by using the ‘[CLS]’ token, which provides a summary representation of
the entire input sentence. On the contrary, T5 treats every text processing problem into a
text-to-text generation problem that takes text as input and produce new text as output.
Therefore, our relation classification problem is treated as a generation task for interaction
types. Initially, we used the pretrained parameters of the SciFive [30] model and then
finetuned it on our specific dataset in relation extraction tasks. The SciFive model was
retrained on various text combination, which consisted of the C4 corpus [35], PubMed
abstracts, and PMC full-text articles, to optimize the pretrained weights from T5 in the
context of biomedical literature. Consistent with the original T5 model [10], SciFive learned
to generate a target text sequence for a given text input sequence using a learning objective
known as span-based mask language modeling. The output sequence is generated during
the decoding phase by applying beam search algorithm. This involves maintaining the top
n probable output sequences at each timestep and finally generating the output sequence
with the highest probability.

Finally, we employed GPT-3 (Generative Pretrained Transformer) [9] which utilizes
constrained self-attention where every token can only attend to its left context. As a
decoder-only transformer, it was pretrained on a diverse range of web text to predict the
next token in an autoregressive manner given the preceding text. It can generate words
only conditioned on the left context, so it cannot learn bidirectional interactions.

Previous pretrained models have a limitation in that they need additional large, labeled
datasets for a task-specific fine-tuning process to achieve desirable performance. Thus,
GPT2 was designed as a general language model for various NLP tasks without the need
for extensive fine-tuning. It is capable of performing downstream tasks with little or no
fine-tuning, including zero-shot and few-shot learning scenarios, where only a few labeled
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examples are available for fine-tuning. However, the results were not satisfactory in some
tasks. They still need fine-tuning on task-specific labeled data to improve the performance.

In contrast, GPT-3 increased the capacity of transfer language models to 175 billion
parameters, thereby allowing the model to utilize its language skills to comprehend tasks
with a few examples or natural language instructions. GPT-3 has demonstrated strong
performance across a wide range of downstream tasks with a meta-learning technique
called ‘in-context learning’, which allows a language model to develop a broad set of skills
and policies for tasks and pattern recognition abilities during unsupervised pretraining.
This enables the model to rapidly adapt to a desired task during inference time. Its large-
scale, autoregressive language model trained on a massive amount of text data has a deep
understanding of the rich context of language and enables the model to generate text, which
is similar to human writing.

To achieve this, example sequences for various tasks are used as text input to the
pretrained model. For instance, sequences for addition can provide a context for performing
arithmetic addition, while error correction sequences can demonstrate how to correct
spelling mistakes. Given the context, the model can learn how to perform the intended task
and utilize the language skills learned during the pretraining phase.

Recently, OpenAI announced ChatGPT (GPT-3.5) and GPT-4, generative AI models
based on reinforcement learning from human feedback (RLHF) and ultra-language models,
which have shown very impressive results in generating responses. In this paper, we
partially evaluated the potential of GPT-3 on relation extraction using GPT-Neo 125 M
and GPT-Neo1.3B models [36] which are dense autoregressive transformer-based language
models with 125 M and 1.3 billion parameters trained on 8 million web pages.

4.2. Self-Attention Using Dependency Graph: BERTGAT

In this section, we describe BERTGAT to encode the syntactic structure with graph-
attention network (GAT) [15]. It leverages the overall graph structure to learn complex
relationships between entities, enabling the classification of various types of relationships.
In general, dependency trees provide a rich structure to be exploited in relation extraction.
Parse trees can have varying structures depending on the input sentences, which may
differ in terms of length, complexity, and syntactic construction. Thus, organizing these
trees into a fixed-size batch can be difficult. Unlike linear sequences, where tokens can
be easily aligned and padded, the hierarchical structure of parse trees complicates this
process. In sequence models, padding is used to create equal-length inputs for efficient
batch processing. However, for parse trees, padding is not straightforward, as it involves
adding artificial tree nodes that might disrupt the tree’s structure and introduce noise to
the model. Due to these difficulties, it is usually hard to parallelize neural models working
on parse trees.

On the contrary, models based on the SDP (shortest dependency path) between two
entities are computationally more efficient, but they might exclude crucial information
by removing tokens outside the path. In addition, some studies stated that not all tokens
in the dependency tree are needed to express the relation of the target entity pair. They
have utilized SDP [37] or subtree rooted at the lowest common ancestor (LCA) of the
two entities [14] to remove irrelevant information. However, SDP can lead to loss of
crucial information and easily hurt robustness. For instance, according to the research by
Zhang et al. [14], in the sentence “She was diagnosed with cancer last year, and succumbed
this June”, the dependency path ‘She←diagnosed→cancer’ is not sufficient to establish
that cancer is the cause of death for the subject unless the conjunction dependency to
succumbed is also present. In order to incorporate crucial information off the dependency
path, they proposed a path-centric pruning strategy to keep nodes that are directly attached
to the dependency path.

To address the issue, we here adapt the graph attention network to consider syntactic
dependency tree structure by converting each tree into corresponding adjacency matrix.
The graph attention [15] is jointly considered in self-attention sublayer to encode the
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dependency structure between tokens into vector representations. That helps to capture
relevant local structures of dependency edge patterns that are informative for classifying
relations by considering the relationships between each node and its neighbors, assigning
greater weights to more important neighboring nodes. This approach allows for more
effective learning of node representations of graph data, ultimately helping to represent
node features more accurately.

For this, the Stanford dependency parser [38] is utilized to retrieve universal depen-
dencies for each sentence. A dependency tree is a type of directed graph where nodes
correspond to words and edges indicate the syntactic relations between the head and
dependent words. In this work, if there is a dependency between node i and node j, then
its opposite direction of dependency, node j and node i is also included. The dependency
types of edge such as ‘subj’ and ‘obj’ are not considered. A self-loop is also considered for
each node in the tree. Since BERT takes as subword units generated by tokenizer instead of
word-based linguistic tokens of a parse tree, we introduce additional edges to handle unit
differences. Figure 6a shows the architecture of BERTGAT.
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Given a graph with n nodes, we can represent the graph with an n× n adjacency matrix
A, where Aij is 1 if there is a direct edge going from node i to node j. The encoder consists
of two sublayers: multi-head self-attention layer and multi-head self-graph attention layer.
The final hidden layer of the encoder is fed into a linear classification layer to predict
a relation type, which is followed by a softmax operation. That is, the output layer is
one-layer task-specific feed-forward network for relation classification.

The output of the BERT model is a contextualized representation for each word in the
given text, which is expressed as the hidden state vector of each word. This output vector
contains contextual information about the corresponding word. The input to GAT consists
of a set of the hidden state vectors obtained from BERT, h = {h1, h2, . . . , hV}, which serve
as the initial feature vectors for each token in the text.

The GAT layer in Figure 6a produces a new set of node features, h′ = {h′1, h′2, . . . , h′V},
as its output and V is the number of nodes. The Equations (5) and (6) are used to obtain GAT
representation. In this study, we follow the formulation of the Graph Attention Network
(GAT) as proposed in the original paper by Veličković et al. (2018) [15]. The GAT model is
defined by Equations (5) and (6).

In the beginning, a shared linear transformation, parameterized by weight matrix w
is applied to each node to transform the input features into higher-level features. Here,
w is a learnable linear projection matrix. Subsequently, a self-attention mechanism a is
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performed on the nodes and attention coefficients e are computed for every pair of nodes.
To calculate the connection importance of node j to node i, the masked attention coefficient
ei,j is computed according to Equation (5) only when j is a neighbor of node i in the graph.
Ni represents the set of i ‘s one-hop neighbors, including the i node itself, as a self-loops
are permitted.

While the multi-head self-attention layer in Figure 6a uses a scaled dot product
function as a similarity function, the GAT layer uses a one-layer feedforward neural
network denoted as a after concatenating the key and query. The scoring function e
computes a score for every edge (j,i), which indicates the importance of the neighbor j
to the node i. It assigns negative value if there is no connection and then the resulting
αi,j is normalized with softmax, as shown in Equation (5). It makes the coefficients easily
comparable across different nodes. In the equation, the attention mechanism a is a single-
layer FFNN, parametrized by a weight vector a and LeakyReLU nonlinearity activation
function is applied where T represents transposition and || is the concatenation operation.

ei,j = a
(
whi, whj

)
, j ∈ Ni

a : LeakyReLU
(
Linear

(
concat

(
whi, whj

)))
)

αi,j = softmax
(
ei,j
)
=

exp(ei,j)
∑k∈Ni

exp(ei,k)
=

exp(LeakyReLU(aT[whi||whj]))
∑k∈Ni

exp(LeakyReLU(aT[whi ||whk ]))

(5)

The normalized attention coefficients α are used to compute a weighted sum of the cor-
responding neighbors and to select its most relevant neighbors, as shown in Equation (6). It
utilizes the attention mechanism to aggregate neighborhood representations with different
weights. That is, each node gathers and summarizes information from its neighboring
nodes in the graph. The aggregated information and value is combined and serves as the
final output representation for every node. In this way, a node iteratively aggregates the
information from its neighbors and updates the representation. To perform multi-head
attention, K heads are used. Here, σ refers to the ReLU activation function and αi,j

k means
normalized attention coefficients computed by the k-th attention mechanism. Finally, we
use averaging and activation function and then add a linear classifier to predict for the
relation type.

h′ i = σ
(

∑j∈Ni
αi,jWhj

)
h′ i = ||Kk=1σ

(
∑j∈Ni

αi,j
kWkhj

)
(mutli_head)

h′ i = LeakyReLU

(
1
K

K
∑

k=1
∑

j∈Ni

αk
i,jW

khj

)
(6)

Figure 7 visualizes an example of graph self-attention for an entity node “Sympath-
omimetic Agents” in the sentence, “Concomitant administration of other Sympathomimetic
Agents may potentiate the undesirable effects of FORADL.” The interaction type between
the two entities, Sympathomimetic Agents” and “FORDAL” is classified as “DDI-effect”.
In the Figure, (a) displays the sentence’s dependency structure, (b) shows the same de-
pendency structure in the form of a graph, (c) presents the adjacency table reflecting the
dependency relationships among words, and (d) illustrates the transformation of the vector
representation of node 5, “sympathomimetic agents” through graph attention. In addition,
this model can incorporate off-connection but useful information by employing a residual
connection around each of the two sub-layers, followed by layer normalization. That is,
the output of GAT sublayer is LayerNorm(x + GAT_Sublayer(x)), where x is the output of
BERT’s self-attention sublayer.

Thus, this model reflects both contextual relatedness and syntactic relatedness be-
tween tokens. In addition, the GAT model applies attention to the features of each node’s
neighbors to combine them and create a new representation of the node. Therefore, by
utilizing attention weights that reflect the importance of edge connections, the neighbor
information includes not only directly connected nodes but also indirectly connected nodes,
effectively capturing local substructures within the graph.
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4.3. T5 with Non-Autoregressive Decoder: T5slim_dec

As mentioned earlier, T5 [10] converts all text-based language tasks into text-to-text
format. As a result, our interaction classification problem is transformed into a relation type
generation task, where the model generates a corresponding interaction label between the
mentioned entities for a given input sentence. For example, the output label, “DDI-effect”
is tokenized as ‘<s>’, ‘_ DD’, ‘I’,’ –‘, ‘effect’, ‘</s>’ and “AGONIST” is as ‘<s>’, ‘_AG’,
‘ON’, ‘IST’, and ‘</s>‘ in T5. These tokens correspond to decoder’s inputs. Similar to the
encoder, the decoder input of target sequence is also embedded, and its positional encoding
is added to indicate the position of each word. The self-attention layer in the decoder only
allows earlier position tokens to attend to the output sequence by masking future position
tokens. This means that the decoder generates output tokens auto-regressively, predicting
one token at a time based on the previous tokens, as shown in Equation (7), until a special
end symbol, ‘</s>’, is reached indicating the decoder has completed its output. For a
given input sequence X, the target sequence Y with a length m is generated through a chain
of conditional probabilities based on the left-to-right sequential dependencies, where y<i
denotes the target tokens up to position i.
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P(Y|X) = ∏m
i=1 p(yi|y<i, X) (7)

The model learns to predict the next token in a sentence more accurately, as it uses
teacher forcing to feed the decoder with the actual target tokens from the ground truth data
instead of with its own generated previous tokens, during the training phase. The output
sequence is generated by searching for the most likely sequences of tokens. By incorporating
beam search, T5 can produce more coherent, accurate, and contextually appropriate text
outputs. However, to perform classification task under the text-to-text framework, the
target label is treated as output text, which is typically a single word or short string. Thus,
the autoregressive task, typically used for generating sequences of output text, is not
required for class inference. In our work, the output of T5 corresponds to single interaction
string, which represents a label such as “DDI-effect” or “AGONIST”. The decoder generates
output tokens, each of which represents a specific class from a limited set of class labels.
As mentioned in Liu et al.’s study [36], the decoder parameters in T5 model are highly
under-utilized for the classification task, in contrast to the typical encoder–decoder models
where the decoder layers account for more than half of the total parameters. As a result,
when there is only one output token, the decoder has limited previously generated tokens
as inputs, which reduces the role of the self-attention mechanism. In such cases, most
of the information is passed from the encoder to the decoder and is processed in the
cross-attention layer.

Thus, we removed the self-attention block in the decoder, as shown in Figure 6b and
tailored the T5 model to fit our interaction-type classification task in a non-autoregressive
manner. This approach is inspired by the EncT5 model [39], an encoder-only transformer
architecture which reuses T5 encoder layers without code changes. However, we still
retained the cross-attention layers to take into account the relationships between the input
sentence and output interaction category. The cross-attention plays a role in combining
two embedding sequences of the same dimension. It transfers information from an input
sequence to the decoder layer to generate output token, which represents the interaction
label. The decoder processes the representation of the input sequence through the cross-
attention mechanism, yielding a new context-sensitive representation. The embedded
vector of the interaction label serves as the query, while the output representation of the
encoder is used as both the key and value for the inputs in the cross-attention layer.

For this, we add target labels to vocabulary sets to handle these as whole tokens
rather than separated tokens. We also opt for more lexically meaningful labels such
as ‘ACTIVATOR’, ‘AGONIST’, ‘AGONIST-ACTIVATOR’, and ‘AGONIST-INHIBITOR’
instead of generic labels such as “CRP:1” or “CRP2”. The model will learn the mapped
embedding for this token and the learned embedding will then determine how to optimally
pool or aggregate information from the encoder. Finally, the decoder’s output is fed
into a linear classifier (a fully connected layer), which transforms the high-dimensional
context representation into the size of the number of possible labels. The linear classifier
generates decoder_output_logits, which represent the raw and unnormalized output values
associated with each label in the vocabulary. The decoder_output_logits are passed through
softmax function to convert them into a probability distribution over the entire set of
possible labels. The label associated with the highest probability is selected as the output
text. We will refer to this model as T5slim_dec. Figure 6b presents the overall architecture of
T5slim_dec.

Figure 8 visually compares the operational mechanisms of T5 and T5slim_dec, highlight-
ing their differences. As shown in the Figure 8, T5 generates one token at a time based on
the input sequence and the previously generated token in the auto-regressive decoding
process. For each step of this process, the model calculates decoder_output_logits for all
tokens in vocabulary. The token with the highest probability is selected and included in the
output sequence and then combines the tokens to form the final readable output text.
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5. Results and Discussion
5.1. Experimental Setup

In this section, we discuss the results of transformers we suggested in the previous
section and how they can be interpreted in comparison to previous studies. All codes were
implemented with HuggingFace’s transformers [40] which is a platform that provides APIs
and many libraries to access and train state-of-the-art pretrained models. It is available
from the HuggingFace hub. We utilized the AdamW optimizer in conjunction with the
cross-entropy loss function for training models.

The experimental results were obtained in a GPU-accelerated computing environment
using an NVIDIA Tesla V100 32 GB GPU and Google Colab Pro+ with an NVIDIA A100
SXM4 80 GB GPU. To evaluate the model performance, accuracy and F1-score are adopted
for evaluation metrics. The accuracy means the proportion of correctly predicted data out
of the total data and F1-score is the harmonic mean of precision and recall, designed to
balance the two values, as in Equation (8).

Accuracy = TP+TN
TP+TN+FP+FN

Precision = TP
TP+FP , Recall(sensitivity) = TP

TP+FN

F1− score = 2× Precision×Recall
Precision+Recall

(8)

5.2. Baseline Models

We will begin by presenting the experimental result for the baseline models. In case
of encoder–transformer, ‘SCIBERT-uncased’ pretrained model [23] which has the same
structure used in BERT [8] were utilized. The model was trained from scratch using the
SCIVOCAB, a new WordPiece vocabulary on scientific corpus using the SentencePiece
library. Unlike BERT, the model allows maximum sentence length up to 512 tokens. In our
relation classification the final vector of the ‘[CLS]’ token was fed into a linear classification
layer with softmax outputs to classify interactions. According to the original SCIBERT
study [23], the model achieved a micro F1-score of 0.8364 on the ChemProt dataset. How-
ever, in our own experiments, we observed a slightly lower performance with 0.8169. In
classification tasks for which every case is guaranteed to be assigned to exactly one class,
micro-F1 is equivalent to accuracy.

For T5 [10], our tasks were fine-tuned using ‘SciFive-large-Pubmed_PMC’ pretrained
model [30]. The model was first initialized with pretrained weights from the base T5
model and then re-trained on C4 [35], PubMed abstracts, and PMC full-text articles. It has
24 decoder/encoder layer and 16 heads. The input length, target length and dmodel are
512, 16, and 1024, respectively. SciFive [30] used the SentencePiece model [34] for the base
vocabulary. Its relation extraction performances on ChemProt and DDI sets were reported
as 0.8895 and 0.8367 (micro F1-score), respectively. In our experiment, SciFive pretrained
model demonstrated performances of 0.9100 and 0.8808 for the same set. The number of
beams was set to 2 during the decoding phase.

In case of GPT-3 model, it is one of the largest generative language models with
175 billion parameters, trained on a massive text data set. It is capable of generating
high-quality text on a wide range of tasks. However, GPT-3 is not open-source and is
only available through OpenAI’s API. Therefore, for our experiment, we fine-tuned our
tasks using EleutherAI’s pretrained models instead. EleutherAI has released several open-
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source language models called GPT-Neo which perform similarly to GPT-3 but with fewer
parameters. Nevertheless, the GPT-NeoX-20B still has 20 billion parameters and requires a
large amount of RAM to load the model as well as high-quality computing power to run
efficiently. In this experiments, smaller models, such as GPT-Neo1.3b and GPT-Neo125M,
were to reduce resource requirements. For future work, the performance of ChatGPT or
GPT-4 will be evaluated in the context of biomedical relation extraction to further explore
their potential in this domain. Table 5 presents the number of entities in the datasets.

Table 5. The number of entities.

Dataset Entity Type Number of
Entities

ChemProt Protein–Chemical 10,031
DDI Drug–Drug 4920

5.3. Results of the Proposed Models

Table 6 displays the overall performances (accuracy) of the five attempted methods
including BERTGAT and T5slim_dec. To simplify parsing and reduce the unnecessary com-
plexity caused by multi-word entity terms in a sentence, entities were masked as entity
classes with special @CHEM$ (chemical), @PROT$ (protein), and @DRUG$ (drug) tokens.
The term “entity masking” in Table 6 indicates those entity replacements. Experiments
were conducted on both original datasets as to which entity mentions are kept and datasets
with masked entity names. In general, entity masking is known to be beneficial in the
generalization capabilities of relation extraction models by encouraging them to focus
on context rather than specific entity mentions. This results in better performance when
dealing with new and unseen entities and mitigates the risk of overfitting. In Table 6, it is
shown that entity masking in DDI interaction extraction proved to be somewhat effective.
On the other hand, in the interaction extraction in ChemProt, using the actual tokens of
entities rather than their classes resulted in better performance. One possible reason for this
is that the training and evaluation datasets are extracted from the same domain and similar
entities are likely to appear more frequently, which can contribute to better performance
when not masking entities.

Table 6. Experimental results.

Method ChemProt Accuracy
(Micro F1-Score)

DDI Accuracy
(Micro F1-Score)

Entity
Masking

Actual Relation
Type

Class Group
(CPR) Entity Masking 4Classes 5Classes

-False

SCIBERT 0.8169 0.8844

SCIBERT O 0.7852 0.8764 O 0.8703 0.9292

BERTGAT O 0.8089 0.8812

GPT-Neo125M 0.7647 0.8483

GPT-Neo1.3b 0.8204 0.9010 0.8950 0.9261 0.6711

GPT-Neo1.3b O 0.8282 0.9013 O 0.8978 0.9314 0.7263

T5sciFive 0.8408 0.9100 0.8808 0.9413 0.7268

T5sciFive O 0.8223 0.9022 O 0.9031 0.9412 0.7324

T5slim_dec 0.8746 0.9429 O 0.9193 0.9533 0.7998

Note that although the ChemProt corpus contains 10 types of relation group classes,
only 5 relation types (CPR:3, CPR:4, CPR:5, CPR:6, and CPR:9) were designated to be
evaluated in the BioCreative task. In this experiment, two evaluations were conducted: one
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using the group classes of the CPR-format to which interaction types belong and the other
using actual relation types instead of the group classes directly. Consequently, recognizing
the interaction class group led to a higher F1-score.

In the case of DDI, the ‘4classes’ in Table 6 indicates that the training and testing
were conducted on the four classes (advice, effect, mechanism, int) following the 2013
DDIExtraction shared task evaluation. On the other hand, ‘5classes’ refers to the results
of training and testing on the five classes, including ‘DDI-false’. In the table, ‘-false’
indicates the accuracy of interaction labels excluding the cases where the gold label is
‘DDI-false’ during evaluation. In practice, because there were many instances of DDI-false
and they were relatively easier to predict, the model achieved a higher F1-score on the
5classes evaluation.

Even though, BERTGAT showed some improvement compared to BERT using entity
classes, the performance was still not satisfactory. One reason, the parser is more likely
to encounter parsing errors when faced with the complicated biomedical entities and ex-
pression. Although the attention mechanism used in GAT allows the model to consider
indirectly connected nodes as well as directly connected nodes and BERT’s context repre-
sentation was used as input feature vector for each node, which make it robust to parsing
errors, this method partially depends on a correct parse tree to extract crucial information
from sentences. Thus, the accurate performance gain of this approach can be accessed
on the availability of human-annotated parses for both training and inference. Currently,
the effect of incorporating dependency tree information into pretrained transformer re-
mains uncertain. The BERTGAT was experimented only on ChemProt datasets due to the
parsing problem.

Another reason could be that the multi-head attention model based on tokens implic-
itly encodes syntax well enough since it allows the model to learn from input sequence in
multiple aspects simultaneously, with each head collecting information from a different
subset. This multi-head structure enables the model to analyze the input from various per-
spectives and make more accurate predictions without restriction of external dependency
structure. Thus, implicit syntactic knowledge within sentences might be learned well by
transformer models based solely on tokens.

As a result, T5slim_dec exhibited the best performances on both the ChemProt and
DDI datasets and T5 model fine-tuned with SciFive also demonstrated good performances
on the datasets. Specially, T5slim_dec demonstrated noticeable improvements in F1-score,
compared to the original T5 model. It showed a 6.36% increase from 0.8223 (F1-score) to
0.8746 on the ChemProt task and a 2.4% increase from 0.89 to 0.9115 on the DDI task. The
results indicate that the T5slim_dec model is performing well on the interaction classification
task by tailoring the decoder structure.

Tables 7 and 8 show the F1-scores per interaction type. In addition, macro F1-score,
micro F1-score, and weighted F1-score were considered as evaluation metrics as well as
standard F1-score. Analyzing these metrics can provide a more comprehensive understand-
ing of the models’ performances in multiclass classification by taking into account different
aspects of class distribution and the relative importance of each class. In terms of per-class
recognition rate, ‘DDI-int’ had the lowest recognition rate in the DDI dataset while “DOWN-
REGULATOR’ had lowest recognition rate in the ChemProt dataset. One possible reason
for the low performance, the ‘DDI-int’ relation have relatively fewer instances (5.6%) in the
DDI corpus compared to other relations. Similarly, the classes ‘AGONIST-ACTIVATOR’,
and ‘AGONIST-INHIBITOR’ and ‘SUBSTRATE__PRODUCT-OF’ appeared infrequently in
the training dataset, with only 10, 4, and 14 occurrences, respectively. This limited number
of examples in the training data may impact the model’s ability to accurately recognize
related interactions.
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Table 7. F1-score per DDI type.

Relation Type
4Classes 5Classes

Precision Recall F1-Score Support Precision Recall F1-Score Support

DDI-advise 0.9420 0.9548 0.9483 221 0.9019 0.8733 0.8874 221
DDI-effect 0.8706 0.9722 0.9186 360 0.7928 0.8611 0.8256 360
DDI-false 0.9767 0.9820 0.9794 4782
DDI-int 0.9474 0.5625 0.7059 96 0.8125 0.4062 0.5417 360
DDI-mechanism 0.9628 0.9437 0.9532 302 0.8467 0.8411 0.8439 302

Accuracy 0.9193 979 0.9533 5761
Macro avg. 0.9307 0.8583 0.8815 979 0.8661 0.7927 0.8156 5761
Weighted avg. 0.9227 0.9193 0.9151 979 0.9528 0.9533 0.9518 5761
Micro avg. 0.9193 0.9193 0.9193 979 0.9533 0.9533 0.9533 5761

Table 8. F1-score per ChemProt interaction.

Relation Type Precision Recall F1-Score Support

ACTIVATOR 0.8571 0.8836 0.8702 292
AGONIST 0.8333 0.9066 0.8684 182
AGONIST-ACTIVATOR 0 0 0 4
AGONIST-INHIBITOR 0 0 0 12
ANTAGONIST 0.9257 0.9352 0.9304 293
DOWNREGULATOR 0.2381 0.2083 0.2222 72
INDIRECT-DOWNREGULATOR 0.7884 0.8765 0.8301 340
INDIRECT-UPREGULATOR 0.8416 0.8114 0.8262 334
INHIBITOR 0.9354 0.9466 0.941 1255
PRODUCT-OF 0.8804 0.8482 0.864 191
SUBSTRATE 0.9505 0.8896 0.919 453
SUBSTRATE_PRODUCT-OF 0.5 1 0.6667 1
UPREGULATOR 0 0 0 41

Accuracy 0.8746 3470
Macro avg. 0.5961 0.6389 0.6106 3470
Weighted avg. 0.8682 0.8746 0.8709 3470
Micro avg. 0.8746 0.8746 0.8746 3470

Additionally, Figure 9 shows that ‘DDI-int’ was frequently confused with ‘DDI-effect’
or ‘DDI-false’. The reason may be that this type is assigned when a drug–drug interaction
appears in the text without any additional information, which can lead to potential confu-
sion. As shown in Figure 10, ‘DOWNREGULATOR’ interactions in ChemProt dataset were
frequently misclassified as different interaction types belonging to the same class group,
such as ‘INDIRECT-DOWNREGULATOR’ or ‘INHIBITOR’, as ‘AGONIST-ACTIVATOR’
was often misclassified as ‘AGONIST’ with the same CRP group. Since there might be
similarities among them related to their interactions. This makes it difficult for the model
to distinguish between them. For example, the ‘DOWNREGULATOR’ represents a chem-
ical that decreases a protein’s activity, while the ‘INHIBITOR’ refers to a chemical that
suppresses a specific protein’s function. Both classes have a similarity in that they both
decrease or inhibit a protein’s activity.

5.4. Comparisons with Other Systems

We also compared T5slim_dec, which showed the best performance, with other previous
studies in terms of per-class F1-score per for DDI extraction. As shown in Table 9, T5slim_dec
outperformed other two approaches for DDI interaction extraction across all DDI types on
the ‘4classes’ evaluation. Additionally, in the ‘5classes’ evaluation, our model performed
well compared to others, except for ‘DDI-int’. Since there were limited studies reporting
per-class F1-score, few comparisons were presented in Tables 9 and 10. Zhu et al. [28]
constructed three different drug entity-aware attentions to get the sentence representations
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by using external drug description information, mutual drug entity information, and
drug entity information, based on BioBERT. Sun et al. [41] proposed a recurrent hybrid
convolutional neural network for DDI extraction and introduced an improved focal loss
function to handle class imbalance in the multiclass classification task.
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Table 9. Comparisons of per-class F1-scores with other methods (DDI dataset).

Interaction Type T5slim_dec
(4Classes)

T5slim_dec
(5Classes)

Zhu et al.
[28]

Sun et al.
[41]

DDI-advise 0.9483 0.8874 0.860 0.805
DDI-effect 0.9186 0.8256 0.801 0.734
DDI-int 0.7059 0.5417 0.566 0.589
DDI-mechanism 0.9532 0.8439 0.846 0.782

Table 10. Comparisons of per-class F1-scores with other method (ChemProt dataset).

Interaction Type T5slim_dec
F1-Score

Asada et al.
F1-Score [26]

ACTIVATOR 0.8702 0.771
AGONIST 0.8684 0.790
AGONIST-ACTIVATOR 0 0
AGONIST-INHIBITOR 0 0
ANTAGONIST 0.9304 0.919
DOWNREGULATOR 0.2222 ?
INDIRECT-DOWNREGULATOR 0.8301 0.779
INDIRECT-UPREGULATOR 0.8262 0.752
INHIBITOR 0.941 0.853
PRODUCT-OF 0.864 0.669
SUBSTRATE 0.919 0.708
SUBSTRATE_PRODUCT-OF 0.6667 0
UPREGULATOR 0 ?
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Table 10 shows the comparison of per class F1-score in the ChemProt dataset. Asada
et al. [26] encoded sentence representation vectors by concatenating the drug knowledge
graph embedding with word token embedding. The knowledge graph embedding took
into account various external information, such as hierarchical categorical information,
interacting protein information, related pathway information, textual drug information,
and drug molecular structural information. Our T5slim_dec model achieved better classifi-
cation results for all ChemProt interaction types compared to the current state-of-the-art
(SOTA) system [26]. T5slim_dec model with previous systems on DDI and ChemProt relation
extraction. Based on the evaluation metric F1-score, our system showed very promising
performance in both interaction extraction tasks.

Consequently, T5slim_dec effectively extracted drug-related interactions compared to
previous state-of-the-art systems without utilizing external information for entities, simply
by tailoring the encoder–decoder transformer architecture to suit the classification task and
by not tokenizing the decoder input.

Finally, Table 11 shows an overall performance comparison of our T5slim_dec model
with previous systems on DDI and ChemProt relation extraction. The notation ‘CPR’
indicates that the model determines an interaction type by CPR class group, as mentioned
earlier. Our experiments showed that SciFive [30], a T5 model trained on large biomedical
corpora for domain-specific tasks, performed competitively on both DDI and ChemProt
datasets, achieving an accuracy of 0.90 for the 4classes of DDI and 0.91 for the CPR class
group of ChemProt. According to our knowledge, SciFive is a state-of-the-art system for
drug-related interaction extraction.

Table 11. Comparisons with previous SOTA systems.

Method

Accuracy
(Micro F1-Score)

DDI

Accuracy
(Micro F1-Score)

ChemProt
Our

Experiment
Our

Experiment

CNN (Liu et al., 2016) [16] 0.6701
BiLSTM (Sahu and Anand, 2018) [17] 0.6939

BioBERT (Lee et al., 2019) [24] 0.7646
SCIBERT (Beltagy et al., 2019) [23] 0.8364 0.8169
BioMegatron (Shin et al., 2020) [42] 0.77

KeBioLM (Yuan et al., 2021) [27] 0.8190 0.775
PubMedBERT(Gu et al., 2021) [25] 0.8236 0.7724

SciFive (Phan et al., 2021) [30] 0.8367 0.90314classes 0.8895 0.9100CPR
BioM-BERT (Alrowili et al., 2021) [43] 0.80

BioLinkBERT (Yasunaga et al., 2022) [29] 0.8335 0.7998
PubMedBERT+HKG (Asada et al., 2022) [26] 0.8540

BioBERT+multi entity-aware attention (Zhu et al.) [28] 0.8090

Our Method (T5slim_dec) 0.95335classes
0.91154classes

0.8746
0.9429CPR

As a result, our T5slim_dec model outperformed SciFive with an accuracy of 0.91 for the
4class classification and 0.95 for the 5class classification in the DDI dataset. Additionally, our
model achieved an accuracy of 0.94 for the CPR-based class group and 0.87 for 13 interaction
types. As shown in the table, encoder-only transformers such as BioBERT, SCIBERT,
PubMedBERT, BioM-BERT, and BioLinkBERT exhibited lower performance than encoder–
decoder transformer models such as T5 and T5slim_dec. Moreover, the PubMedBERT + HKG
model, which leverages external knowledge, also showed strong classification accuracy.

5.5. Limitations

In this section, we will address several limitations that need to be considered for future
improvements. The BERTGAT model encoded dependencies between tokens by converting
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each tree into a corresponding adjacency matrix. Although the model utilized an attention
mechanism to calculate the importance of words within the input graph structure and
incorporated BERT’s contextualized representation as embedding feature vectors for input
graph nodes, it still requires more sophisticated techniques for incorporating syntactic
and semantic information to enhance biomedical relation extraction performance. This
is further complicated by errors in the dependency tree which can potentially introduce
confusion in relation classification, emphasizing the need for a method that is robust to such
issues. Even though the attention mechanism used in GAT allows the model to consider
indirectly connected nodes and capture complex relationships in the graph, it is necessary
to develop strategies that effectively address these challenges.

In addition, as shown in Figure 10, the T5slim_dec occasionally misclassifies terms
with opposite meanings, such as confusing ACTIVATOR with INHIBITOR and AGONIST
with ANTAGONIST. This indicates a need for further in-depth research and investigation
regarding negation handling to improve the model’s performance in such cases.

Furthermore, due to computing limitations, we were unable to fully validate the
performance of GPT-3 in this study, and GPT-Neo1.3b did not outperform the T5 model.
Recently, ultra-large language models such as ChatGPT (GPT-3.5) and GPT-4 have demon-
strated remarkable performances in text generation. Therefore, further research to explore
the potential of ChatGPT or GPT-4 APIs on biomedical interaction extraction is needed.

Finally, the transformer models we proposed were currently designed to perform
sentence-level relation extraction, even though transformers can handle multiple sentences
simultaneously by using [SEP] to separate them. Thus, they have limitations in handling
n-ary relation or cross-sentence n-ary relation extraction tasks, as there could be more than
two entities across multiple sentences.

6. Conclusions

In this work, we demonstrated the effectiveness of transfer learning that utilizes trans-
former models pretrained on a large-scale language dataset and fine-tuned the parameters
on relation extraction task dataset.

Although we did not compare the performance of high-capacity parameter models
such as GPT-3 or GPT-3.5 (Instruct GPT, ChatGPT) on the relation extraction task, the
encoder–decoder transformer T5 consistently demonstrated strong performance in drug-
related interaction classification.

We proposed T5slim_dec, a modified version of T5 for interaction classification tasks
by removing the self-attention layer from the decoder and adding the target labels to the
vocabulary. As a result, T5slim_dec can handle the target labels as whole tokens rather
than requiring them to be predicted sequentially in an autoregressive manner. The model
demonstrates the effectiveness for DDI and ChemProt interaction extraction tasks and
achieved improved classification performance compared to state-of-the-art models.

The relation extraction can be a challenging task for transformer models when dealing
with complex sentence structures. This difficulty arises from several factors, including long
or nested sentences, entities spanning multiple sentences, and domain-specific language
structure. To address this difficulty, we incorporated explicit syntactic information to
enhance context vector representation of a sentence using structural information of the
sentence. We presented BERTGAT to augment the transformer with dependency parsing
results. However, that model did not demonstrate a significant performance improvement
and additional research is required.

The proposed DDI extraction method can be applied to pharmacovigilance and drug
safety surveillance by identifying potential adverse drug interactions. The ChemProt ex-
traction can be utilized in drug discovery and development by facilitating the identification
of potential protein targets for new drugs.
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