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Abstract: The influence of the coupled electroencephalography (EEG) signal in electrooculography
(EOG) on EOG-based automatic sleep staging has been ignored. Since the EOG and prefrontal EEG
are collected at close range, it is not clear whether EEG couples in EOG or not, and whether or not the
EOG signal can achieve good sleep staging results due to its intrinsic characteristics. In this paper,
the effect of a coupled EEG signal in an EOG signal on automatic sleep staging is explored. The blind
source separation algorithm was used to extract a clean prefrontal EEG signal. Then the raw EOG
signal and clean prefrontal EEG signal were processed to obtain EOG signals coupled with different
EEG signal contents. Afterwards, the coupled EOG signals were fed into a hierarchical neural
network, including a convolutional neural network and recurrent neural network for automatic sleep
staging. Finally, an exploration was performed using two public datasets and one clinical dataset.
The results showed that using a coupled EOG signal could achieve an accuracy of 80.4%, 81.1%,
and 78.9% for the three datasets, slightly better than the accuracy of sleep staging using the EOG
signal without coupled EEG. Thus, an appropriate content of coupled EEG signal in an EOG signal
improved the sleep staging results. This paper provides an experimental basis for sleep staging with
EOG signals.

Keywords: deep learning; EOG; coupled EEG; sleep staging

1. Introduction

Good sleep helps the body to eliminate fatigue and maintain normal brain function-
ing [1]. In contrast, a lack of sleep can lead to depression, obesity, coronary heart disease,
and other diseases [2–5]. However, sleep disorders are becoming an alarmingly common
health problem, affecting the health status of thousands of people [6,7]. To assess sleep
quality and diagnose sleep disorders, signals such as electroencephalography (EEG), elec-
trooculography (EOG), and electromyography (EMG) collected through polysomnography
(PSG) are usually used to stage sleep. An entire night’s sleep can be divided into wake
(W), non-rapid eye movement (NREM, S1, S2, S3, and S4), and rapid eye movement(REM)
stages, according to the Rechtschaffen and Kales (R&K) standard [8] or wake (W), non-rapid
eye movement (NREM, N1, N2, and N3), and rapid eye movement(REM) stages, according
to the American Academy of Sleep Medicine (AASM) standard [9]. In the clinic, sleep
staging is performed manually by experienced experts. The procedure is time-consuming
and labor-intensive. Meanwhile, there is a subjective element in the judgment of experts
and different experts do not fully agree on the classification of sleep stages [10,11]. To re-
lieve the burden on physicians and save medical resources, many studies have focused on
automatic sleep staging using biosignals through machine learning approaches [12–15].
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Automatic sleep staging methods can be divided into traditional machine learning-
based methods and deep learning-based methods. Traditional machine learning-based
methods usually consist of handcrafted feature extraction and traditional classification
methods. Handcrafted feature extraction extracts the features of signals from the time
domain, frequency domain, etc., based on medical knowledge. These extracted features
are then fed into traditional classifiers, such as support vector machines (SVM) [16–18],
random forests (RF) [19,20], etc., for automatic sleep staging. Instead of requiring medical
knowledge as a prerequisite, the deep learning-based method uses networks to automat-
ically extract features. Thus, it has been widely explored in recent research [21]. Some
convolutional neural networks (CNN) [22–24] or recurrent neural networks (RNN) [25]
models have achieved good results in automatic sleep staging. Furthermore, some studies
have combined different network architectures, to incorporate their advantages, such as the
combination of CNN and RNN [26–28], the combination of RNN and RNN [29,30], and the
combination of CNN and Transformer architectures [31,32]. With the development of
machine learning methods, performance in sleep staging has been greatly improved, with
an excellent performance on certain public datasets [33–36]. However, both the traditional
machine learning-based methods and deep learning-based methods apply an EEG signal
as the main or only input signal. The process of acquiring EEG signals is very tedious and
uncomfortable for the subject.

Taking into account the comfort of physiological signal acquisition, some studies
have tried to use certain easy-to-collect signals for sleep staging, such as cardiopulmonary
signals [37–39], acoustic signals [40,41], and EOG signals [42–44]. These signals are rel-
atively easy and comfortable to acquire compared to EEG signals, but the sleep staging
performance with cardiopulmonary and acoustic signals was not satisfactory for clinical
application. Noteworthy, the accuracy of sleep staging using a single-channel EOG signal
was similar to that of a single-channel EEG signal in some studies [28,42]. This suggested
that an EOG signal could also be used for sleep staging with good performance, allowing
comfortable sleep monitoring. Despite the good results yielded by EOG signals in auto-
matic sleep staging, the positions of the acquisition electrodes for the EOG signal and the
prefrontal EEG signal are close to each other, which means that part of the EEG signal
may be coupled in the EOG signal. Comparison of an EEG signal and an EOG signal in
the N3 stage revealed slow wave signals with similar frequencies to those in the Fp1-O1
channel and the E1-M2 and E2-M2 channels (Figure 1). The slow wave signal, as the main
characteristic wave of N3 sleep stage, appears in an EOG signal. Therefore, it is not clear
whether the sleep staging ability of an EOG signal comes from the coupled EEG signal, and
how this coupled EEG could affect the sleep staging results.

(a) (b)

Figure 1. Comparison of EOG signal and prefrontal EEG signal. (a) Comparison of EOG signal and
EEG signal waveforms within one epoch. (b) One epoch of a PSG signal at stage N3, including EOG,
EEG, and ECG signals.

To explore the above issue, we conducted experiments applying data from two public
datasets and one clinical dataset. First, we processed the EEG signal with a blind source
separation algorithm named second-order blind identification (SOBI) [45] to obtain an
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EEG signal without EOG signals. Second, the raw EOG signal and the clean EEG signal
were coupled to obtain a clean EOG signal and EOG signal coupled with different contents
of the EEG signal. Third, the coupled EOG signals with different EEG signal contents
were fed into a hierarchical neural network named two-step hierarchical neural network
(THNN), which consists of a multi-scale CNN and a bidirectional gating unit (Bi-GRU),
for automatic sleep staging. We also performed automatic sleep staging using the EEG
signal with the THNN, to explore the difference in performance between the EOG signal
and the EEG signal. Finally, we considered the impact of EEG signal coupling in EOG
signals on sleep staging.

2. Materials and Methods

In this section, we introduce the subjects selected for this exploration, the blind source
separation method used, as well as the specific structure, details, and training strategy of
the THNN.

2.1. Subjects and PSG Recordings

In this work, we applied two widely used public datasets and one clinical dataset to
conduct the experiment. The details of the three datasets are shown in Table 1.

Table 1. Details of the MASS, DREAMS, and HSFU datasets.

Dataset Subjects Age Healthy Sampling Rate
Stages

W N1 N2 N3 REM Total

DREAMS 20 20–65 Yes 200 Hz 3551 1480 8251 3933 3019 20,234

MASS 62 18–76 Yes 256 Hz 6442 4839 29,802 7653 10,581 59,317

HSFU 26 25–65 No 1024 Hz 7278 2926 9507 3001 4082 27,194

2.1.1. Montreal Archive of Sleep Studies (MASS) Dataset

The MASS dataset was provided by the University of Montreal and the Sacred Heart
Hospital in Montreal [36]. It consists of whole night sleep recordings from 200 subjects
aged from 18 years old to 76 years old (97 males and 103 females), divided into five subsets
SS1–SS5. The SS1 and SS3 subsets have a length of 30 s for each sleep stage, the other
subsets have a sleep stage of 20 s. Each epoch of the recordings in MASS was manually
labeled according to the AASM standard or R&K standard by experts. The amplifier system
for MASS was the Grass Model 12 or 15 from Grass Technologies. The reference electrodes
were CLE or LER. In this experiment, the SS3 subset was used.

2.1.2. Dreams Dataset

The DREAMS dataset was collected during the DREAMS project. It has eight subsets:
subject database, patient database, artifact database, sleep spindles database, K-complex
database, REM database, PLM database, and apnea database [35,46]. These recordings were
annotated as microevents or as sleep stages by several experts. In this work, the subject
database was applied. The subject database consists of 20 whole-night PSG recordings
(16 females and 4 males) derived from healthy subjects, and the sleep stages were cate-
gorized into sleep stages according to both the R&K standard and the AASM standard.
The data collection instrumentation for DREAMS was a digital 32-channel polygraph
(BrainnetTM System of MEDATEC, Brussels, Belgium). The reference electrode was A1.

2.1.3. Huashan Hospital Fudan University (HSFU) Dataset

The HSFU dataset is a non-public database collected in Huashan Hospital, Fudan
University, Shanghai, China, during 2019–2020. Twenty-six clinical PSG recordings were
collected from people who had sleep disorders. The research was approved by the Ethics
Committee of Huashan Hospital (ethical permit No. 2021-811). The PSG recordings were
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annotated by a qualified sleep expert according to the AASM standard. The specific
information of each subject is described in Table A1. The data collection instrumentation for
HSFU was a COMPUMEDICS GREAL HD PSG. The reference electrodes were M1 and M2.

2.2. Blind Source Separation Algorithm

Blind source separation methods are widely used when dealing with coupled signals.
Some common blind source separation methods include fast independent component anal-
ysis (FastICA), information maximization (Infomax), and second-order blind identification
(SOBI); the first two methods require that each channel of the input signal be independent
of each other, whereas SOBI has no such requirement for the input signal.Meanwhile, the ef-
fectiveness of SOBI for processing mixed signals is not affected by the number of signal
channels [47]. Thus, in this experiment, the SOBI method was applied to remove interfer-
ence signals, due to its robustness. The SOBI algorithm was proposed by Belouchrani et al.
in 1997 [45]. This algorithm achieves blind source separation by joint approximate di-
agonalization of the delayed correlation matrix. It is a stable method for blind source
separation. SOBI uses second-order statistics, so that it can estimate the components of
the source signals with few data points. The pseudo-algorithmic of SOBI is as follows
(Algorithm 1): Assuming that the input signal X has M channels and each channel has
N samples, i.e., X ∈ RM×N . After normalization and whitening of the input signal, joint
approximate diagonalization is performed using the covariance of the signal, to obtain the
coupling coefficient. Finally, the original signal is obtained using a matrix inverse operation.

Algorithm 1 SOBI

Input: Input: Data, X ∈ RM×N Output: Output: Data, S ∈ RM×N

1: Normalization X0(t)← X(t)
2: Whitening Z(t)← M(t)X0(t)
3: Calculate the covariance matrix R(τ)← EZ(t + τ)Z(t)
4: while coefficients not converged or maximum iterations number not reached do
5: Joint approximate diagonalization algorithm UT ← UT R(τ)U = I
6: end while
7: Calculate the source signal S(t)← UTZ(t)

2.3. Two-Step Hierarchical Neural Network

In this work, THNN was applied to conduct automatic sleep staging. The specific
structure of THNN is presented in Figure 2, and the specific parameters are shown in
Table A2. THNN can be divided into two parts: the feature extraction module, and the
sequence learning module. The feature extraction module uses a multi-scale convolutional
neural network with two scales to extract features from different scales. The sequence
learning module uses a Bi-GRU network, which can learn the temporal information in the
feature matrix extracted by the feature extraction module. The feature learning module
consists of a two-scale CNN network. The two scales of CNN have different sizes of
convolutional kernel for extracting large-time-span features and short-time-span features
in EEG signals, respectively. Specifically, if the sampling rate of an EEG signal is 128 Hz,
and the convolutional kernel length of the small-scale CNN is 64, then each segment of
the EEG signal is 0.5 s of the sampling signal, which corresponds to 2 Hz. The large-scale
CNN has a convolutional kernel length of 640, thus each segment of the EEG signal is 5 s of
the sampling signal, which corresponds to 0.2 Hz. By designing convolutional kernels of
different sizes, better feature information can be extracted. Suppose the signal S ∈ RL×P is
the input of THNN, where the L is the number of epochs and the P is the length of each
epoch. The process of feature learning is represented as follows:

F1 = scale1(S) (1)
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F2 = scale2(S) (2)

F = concate(F1, F2) (3)

where the scale1(·) is the small scale branch of CNN, scale2(·) is the large scale branch of
CNN, and concate(·) is the concatenation layer. The sequence learning part consists of
Bi-GRU, which handles the time-dependent sequence signals well and has a fast operation
speed in RNN networks [48]. GRU has a fast operation speed, but it still takes a long
time to train when running serially. Therefore, we added a residual structure to the serial
learning module, to speed up the training [49]. Finally, the probabilities of each sleep stage
were output through the softmax layer. The process of the sequence learning part is shown
as follows:

H = GRU(F) (4)

O = residual(H, F) (5)

Y = Dense(O) (6)

where GRU(·) is the Bi-GRU network, H is the temporal feature of each sleep stage
outputted by the Bi-GRU, O is the feature after superposition of the residual module, and Y
is the final sleep stage probability of each epoch.

Figure 2. The structure of THNN. The input signal is first extracted using features at different scales
by the feature extraction part. The features are concatenated and sent to the sequence learning module
for further extraction of the temporal features in the signal.

2.4. Data Preprocessing and Experiment Scheme

In this work, we adopted the Fp1 channel EEG signal, Fp2 channel EEG signal, left
EOG signal, and right EOG signal from the MASS, DREAMS, and HSFU datasets to conduct
the experiments. All the signals used were filtered with a 50 Hz/60 Hz notch filter and
a 0.3–35 Hz band-pass filter. and then the signals were resampled to 128 Hz to fit the
network, as well as to reduce the complexity of operations. Afterwards, the SOBI method
was used to remove the interference signals in the EEG signals and to obtain a clean EEG
signal without the EOG signal. Next, the raw EOG signal and the clean EEG signal were
processed to obtain a clean EOG signal and the EOG signal coupled with different contents
of the EEG signal. The steps are showed in Figure 3. The specific calculation procedure of
the coupled EOG signal is shown in Equation (7).

coupledEOG = rawEOG + a ∗ cleanEEG (7)
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where the cleanEEG is the EEG signal without EOG signals, the coupledEOG is the EOG
signal coupled with the EEG signal, and a is the superposition factor. The content of
EEG signal in the EOG signal was calculated using the correlation coefficient between the
coupled EOG signal and the clean EEG signal on the same side.

correlation = corrcoe f (cleanEEG, coupledEOG) (8)

We performed experiments using EOG signals coupled with different contents of EEG
signal, and the correlation coefficients were set as 0.0, 0.1, 0.2, 0.3, and 0.5. We fed each of
the five EOG signals into the network for automatic sleep staging. In addition, we used the
leave-one-subject-out (LOSO) method for the validation.

Figure 3. The process of obtaining EOG signals coupled with different contents of EEG signal.

3. Results

In this experiment, we first performed a quantitative analysis of the coupled EOG
signal. Then we performed automatic sleep staging with THNN, using EOG signals
coupled with different contents of EEG signals.

3.1. Quantitative Analysis of EOG Signals

The mean absolute error (MAE) was used to evaluate the degree of change between
the coupled EOG signal and the raw EOG signal. Table 2 shows the MAE value between
the raw EOG signals and coupled EOG signals. In addition, the correlation coefficients
of the raw EOG signal and the clean EEG signal are presented in Table 3. It can be seen
that the collected EOG signal indeed coupled with the EEG signal. The method used in
this experiment allowed increasing or decrease the content of EEG signal coupled in the
EOG signal. In addition, the correlation coefficient between the left eye EOG signal and the
EEG signal and the correlation coefficient between the right eye EOG signal and the EEG
signal were not consistent. This was particularly evident for the DREAMS dataset. In the
DREAMS dataset, the correlation coefficient between the raw right eye EOG signal and the
EEG signal was close to 0, demonstrating that there was almost no correlation between
these two signals. This might have been due to the position of the reference electrode
setting during the measurements. In general, the quantitative analysis of the EOG signal
indicated that a portion of the EEG signal was indeed coupled in the EOG.

Table 2. MAE value (uV) between the raw EOG signal and coupled EOG signal.

Dataset MASS DREAMS HSFU

Correlation Coefficient L R L R L R

0.0 5.00 ± 1.24 2.98 ± 1.26 0.21 ± 0.08 0.01 ± 0.01 0.27 ± 0.06 0.32 ± 0.08
0.1 3.86 ± 1.19 2.18 ± 0.91 0.15 ± 0.08 0.02 ± 0.01 0.21 ± 0.06 0.26 ± 0.08
0.2 2.72 ± 1.21 1.42 ± 0.82 0.11 ± 0.07 0.04 ± 0.02 0.15 ± 0.06 0.20 ± 0.08
0.3 1.70 ± 1.13 0.98 ± 0.98 0.08 ± 0.06 0.06 ± 0.03 0.08 ± 0.06 0.13 ± 0.09
0.5 1.70 ± 1.26 2.59 ± 1.75 0.13 ± 0.09 0.11 ± 0.06 0.09 ± 0.06 0.08 ± 0.04

L, left eye; R, right eye.
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Table 3. Correlation coefficient between the raw EOG and clean EEG signal.

Dataset MASS DREAMS HSFU

Right or Left Eye L R L R L R

Correlation coefficient 0.43 ± 0.11 0.30 ± 0.23 0.32 ± 0.12 0.01 ± 0.04 0.40 ± 0.08 0.46 ± 0.10

L, left eye; R, right eye.

3.2. Sleep Staging Performance Using Coupled EOG Signals with THNN

Table 4 shows the detailed sleep staging performance of the different coupled EOG
signals with THNN, including the accuracy, kappa coefficient, F1 score, specificity, and the
precision of each sleep stage. With the two public datasets, the highest accuracy of automatic
sleep staging using EOG signals was over 80%, and for the clinical dataset HSFU, the highest
accuracy of automatic sleep staging using EOG signals was 78.9%. These results indicated
that using the EOG signal for automatic sleep staging could yield good results. Meanwhile,
the accuracy of automatic sleep staging using EOG signals without coupled EEG signals
was also above 77% with the three datasets.

Table 4. Results of the MASS, DREAMS, and HSFU datasets with THNN.

Dataset Cor Acc Kappa B Spec Precision of Each Stage
Wake N1 N2 N3 REM

MASS

Right EOG

0.0 0.790 0.786 0.691 0.885 0.654 0.308 0.825 0.797 0.841
0.1 0.790 0.786 0.689 0.880 0.626 0.353 0.848 0.811 0.847
0.2 0.799 0.795 0.700 0.889 0.674 0.361 0.868 0.805 0.848
0.3 0.804 0.796 0.688 0.883 0.654 0.397 0.848 0.862 0.785
0.5 0.765 0.759 0.669 0.866 0.605 0.391 0.823 0.748 0.831

Left EOG

0.0 0.791 0.786 0.699 0.885 0.629 0.303 0.823 0.792 0.851
0.1 0.792 0.787 0.689 0.883 0.681 0.327 0.845 0.803 0.866
0.2 0.803 0.799 0.696 0.884 0.697 0.343 0.839 0.826 0.880
0.3 0.803 0.798 0.708 0.890 0.690 0.358 0.868 0.801 0.839
0.5 0.762 0.757 0.664 0.865 0.623 0.339 0.819 0.742 0.826

EEG - 0.817 0.806 0.688 0.898 0.665 0.398 0.901 0.741 0.794

DREAMS

Right EOG

0.0 0.811 0.808 0.749 0.896 0.882 0.518 0.794 0.817 0.856
0.1 0.809 0.806 0.749 0.895 0.891 0.578 0.802 0.738 0.744
0.2 0.807 0.803 0.743 0.893 0.874 0.526 0.798 0.777 0.883
0.3 0.797 0.793 0.736 0.888 0.869 0.524 0.784 0.784 0.850
0.5 0.791 0.787 0.725 0.885 0.826 0.498 0.784 0.793 0.839

Left EOG

0.0 0.806 0.803 0.759 0.892 0.880 0.586 0.784 0.779 0.905
0.1 0.800 0.796 0.742 0.889 0.870 0.560 0.786 0.757 0.891
0.2 0.808 0.805 0.750 0.894 0.875 0.587 0.795 0.760 0.899
0.3 0.811 0.807 0.748 0.895 0.896 0.605 0.765 0.792 0.824
0.5 0.809 0.806 0.747 0.896 0.886 0.595 0.810 0.749 0.859

EEG - 0.820 0.816 0.743 0.903 0.887 0.599 0.840 0.811 0.756

HSFU

Right EOG

0.0 0.774 0.766 0.683 0.872 0.916 0.163 0.730 0.702 0.870
0.1 0.778 0.770 0.682 0.878 0.934 0.227 0.763 0.680 0.867
0.2 0.785 0.778 0.676 0.878 0.929 0.275 0.746 0.752 0.823
0.3 0.789 0.782 0.676 0.879 0.928 0.268 0.741 0.751 0.851
0.5 0.782 0.774 0.658 0.879 0.936 0.163 0.774 0.724 0.761

Left EOG

0.0 0.774 0.764 0.654 0.878 0.934 0.136 0.761 0.645 0.800
0.1 0.777 0.769 0.676 0.880 0.939 0.246 0.790 0.633 0.843
0.2 0.788 0.780 0.684 0.884 0.925 0.252 0.790 0.656 0.867
0.3 0.789 0.781 0.683 0.881 0.941 0.333 0.782 0.719 0.816
0.5 0.768 0.759 0.657 0.873 0.900 0.229 0.781 0.665 0.786

EEG - 0.791 0.781 0.656 0.884 0.859 0.263 0.802 0.841 0.703

Cor, correlation; Acc, accuracy; Spec, specificity; EOG, electrooculography; EEG, electroencephalography.
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Moreover, the experimental results showed that the EEG signal coupled in the EOG
signal enhanced the automatic sleep staging results, based on the EOG signal. However,
an increased coupled EEG signal in the EOG signal did not allow cause improvement of
the automatic sleep staging results.Specifically, in the MASS dataset, the best sleep staging
results were obtained when the coupling coefficients of EOG and EEG were 0.3 (left) and 0.3
(right). In the DREAMS dataset, the sleep staging was best when the coupling coefficients
were 0.3 (left) and 0.0 (right). In the HSFU dataset, the best sleep staging effect was found
when the coupling coefficients were 0.3 (left) and 0.3 (right). The best sleep staging results
were obtained when the amount of coupled EEG signal was moderate. Notably, these
coupling coefficients were very close to the correlation coefficients of the raw EOG and
EEG signals. This suggested that the raw EOG signal was a good choice for automatic
sleep staging.

In addition, the classification precision of EOG signals coupled with EEG was higher
for the N1, N2, and N3 stages compared to EOG signals without EEG coupling. In Figure 1b,
it can be observed that the EOG signal possessed some of the recognizable waveform
features of an EEG signal, such as the slow wave signal at the N3 stage. The EOG signal
was coupled, to obtain a portion of the characteristic sleep waveform that would have been
present only in the EEG signal, thus improving the classification accuracy of automatic
sleep staging based on the EOG signal for these sleep stages. In general, the EEG signal
coupled in the EOG signal was helpful for automatic sleep staging based on the EOG signal,
especially for the N1, N2, and N3 stages.

Moreover, we performed sleep staging with the raw EOG signal to show the sleep
staging ability of the raw EOG signal. Table 5 presents the results obtained from automatic
sleep staging using the raw left and right eye EOG signals in each dataset. The results
showed that the raw EOG signal also obtained a good sleep staging performance.

Table 5. Results of sleep staging using raw EOG signals.

Left EOG Right EOG

Dataset Accuracy Kappa F1-Score Accuracy Kappa F1-Score

MASS 0.799 0.793 0.705 0.800 0.793 0.705
DREAMS 0.809 0.806 0.749 0.807 0.803 0.739

HSFU 0.788 0.779 0.666 0.787 0.780 0.689

3.3. Significance Analysis

In addition, we performed significance analysis for all types of signals used in the
experiments, including clean EOG signals, EOG signals coupled with different contents
of EEG signal, raw EOG signals, raw EEG signals, etc. We used a chi-square test to
perform a significance analysis of the sleep stage and the features extracted by the network.
The specific results are shown in Table 6, where the results of the significance analysis of
the coupled EOG signals are the average of the results of the EOG signals with different
coupling coefficients. The results showed that the p-values of all the features of the signals
were less than 0.05. This indicated that there was a significant relationship between the
features extracted from the signals and the classification target.

Table 6. The p-value of the chi-square test for different signals in different datasets.

L R

Dataset Raw EOG Coupled EOG Raw EOG Coupled EOG Raw EEG

MASS 0.011 0.010 0.010 0.010 0.006
DREAMS 0.015 0.013 0.014 0.013 0.009

HSFU 0.023 0.020 0.022 0.021 0.019
L, left eye; R, right eye.
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4. Discussion

This paper investigated the question of whether the sleep staging ability of an EOG
signal derives from the coupled EEG signal, and what effect the EEG signal coupled in the
EOG signal has on sleep staging results. The results showed that good sleep staging results
could be obtained either using EOG signals without EEG signals or coupled EOG signals.
The sleep staging capability of the EOG signal came from its own characteristic information.
Moreover, the accuracy of the sleep staging result using an EOG signal differed from the
sleep staging results using EEG signals by only approximately 2%. This result indicated
that an EOG signal can be used for automatic sleep staging with good results.

4.1. The Influence of Coupled EEG Signals in EOG Signals on Sleep Staging

In manual sleep scoring, the EEG coupled in EOG is usually considered noise or an
interference signal. However, automatic sleep staging methods map the coupled signals
from the time domain to other spatial domains through feature extraction. This allows
the coupled information to be used as additional features to further complement the sleep
features included in the EOG signals. In this experiment, the results showed that compared
with the clean EOG signal, the EOG signal coupled with the EEG signal had a better
performance for the N1, N2, and N3 stages. Note that in manual sleep scoring, the EOG
signal is mainly used to classify the wake and REM stages, whereas the N1, N2, and N3
stages are commonly classified according to the EEG signal [9]. The EEG signal coupled in
the EOG signal may provide features that are not in the EOG signal but are in the EEG signal,
leading to enhancement of the classification results. Figure 4 shows a correlation analysis of
the EOG signals for subjects in the MASS dataset with coupling coefficients of 0.0 and 0.3 for
N1, N2, and N3 stages. A chi-square test was used to examine the correlation between the
features extracted by the network and the classification targets under the null hypothesis
that they have no correlation. In contrast, a larger chi-square value indicated a higher
correlation. The results of the correlation analysis showed that p < 0.05, i.e., the features
extracted from the EOG signals with different coupling coefficients and the classification
targets were significantly correlated. Moreover, comparing the chi-square test results of
the EOG signals with coupling coefficients of 0.0 and 0.3, the chi-square values of the EOG
signals coupled with EEG signals were significantly higher than those of the clean EOG
signals at the N1 and N2 stages. At the N3 stage, the chi-square values of the EOG signal
coupled with the EEG signal and the clean EOG signal were similar. This suggested that
the EOG signal coupled with the EEG signal had more effective features in the N1 and N2
stages to help the classification of sleep stage. Generally, the coupled EEG signal in an EOG
signal can provide additional features that can enhance the classification accuracy of the
N1, N2, and N3 stages, without affecting the classification of the wake and REM stages.

Additionally, except for the right eye EOG signal in the HSFU dataset, the best auto-
matic sleep staging results were achieved when the MAE values between the coupled EOG
signal and the raw EOG signal were the smallest, i.e., the content of the coupled EEG signal
in the EOG signal was close to that in the raw EOG signal. We performed automatic sleep
staging using the raw EOG signal to explore whether the raw EOG signal was sufficient
to obtain a good sleep staging effect without additional EEG signal removal or addition.
The results in Table 5 demonstrate that automatic sleep staging using raw EOG signals
was also able to achieve good results. Fine-tuning the coupling coefficients of EEG and
EOG yielded better sleep staging results, whereas this improvement was not significant
compared to the results using raw EOG signals. This improvement would be lower when
the sleep stages are combined for a four-class or three-class classification task. Specifically,
according to the rules of the AASM [9], stages N1 and N2 can be combined as light sleep
stages and N3 can be considered a deep sleep stage, thus becoming a four-class task (W,
light sleep, deep sleep, REM). Therefore, when using the EOG signal for automatic sleep
staging, the use of the raw EOG signal can yield sufficient sleep staging results. Further
fine-tuning of the EEG and EOG coupling coefficients did not significantly improve the
accuracy of the automatic sleep staging results.



Bioengineering 2023, 10, 573 10 of 15

Figure 4. Results of the chi-square test for EOG signals with different coupling coefficients in the
MASS dataset.

4.2. The Difference of the Sleep Staging Results Using EEG Signal and EOG Signal

The experiment results showed that the difference between automatic sleep staging
using coupled EOG signals and EEG signals was not significant. However, the classifica-
tion accuracy at the N2, N3, and REM stages between using EOG and EEG signals was
significant. Figure 5 shows a comparison of the coupled EOG signal with a 0.3 coefficient
and a raw EEG signal of a subject at the N2, N3, and REM stages in the MASS dataset.
At the N2 stage, the amplitude of the EOG signal was lower compared to the EEG signal,
which led to the values of the extracted features being smaller, resulting in a decrease in
the classification accuracy. For the frequency domain, the energy of the EOG signal was
also lower than that of the EEG signal. At the N3 stage, the waveforms of the EOG and
EEG signals were relatively similar. In the frequency domain, the EOG signal covered a
much lower frequency range and provided less information. In the REM stage, the EOG
signal produced large amplitude changes in a short period of time, which is characteristic
of the REM stage eye movements. These eye movements greatly enhanced the classification
accuracy of the EOG signal in the REM stage. In the frequency domain, the spectral energy
of the EOG signal was also much larger than that of the EEG signal, which contributed
to the high classification accuracy of the EOG signal in the REM stage. Overall, the EOG
signal and the EEG signal both have advantages for sleep staging. The EOG signal contains
features that make it better at classifying the wake and REM stages. The EEG signal is
better at classifying the N1, N2, and N3 sleep stages. The EOG signal coupled with the
partial EEG signal also obtained part of the sleep staging characteristics of the EEG signal,
which provides a good basis for comfortable sleep staging, as well as sleep monitoring
using the EOG signal.

4.3. Limitations and Future Works

Based on this experiment, we need to point out some limitations. First, we explored
sleep staging with the EOG signal in normal subjects and in subjects with sleep disorders.
However, these subjects were all adults. In future work, experimental exploration of
differently aged people could be attempted to extend the applicability of the findings of
this paper. Second, the blind source separation method we used in this work was not
the most advanced, and there are other methods such as artifact subspace reconstruction
(ASR), morphological component analysis (MCA), and surrogate-based artifact removal
(SuBAR). These methods could be tried in future works, to remove interference signals.
Third, we only used one network for sleep analysis of the EOG signals. There are many
better network models available, such as XSleepNet [30], TransSleep [50], AttnSleep [31],
etc. In future work, better networks could be tried, to improve the sleep staging results of
EOG signals. Fourth, in terms of signal acquisition, EMG signals are also easy to acquire.
Meanwhile, the submental EMG signal is of great significance for the differential staging of
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wake and REM stages (being especially important for the differential diagnosis of REM
sleep behavior disorder) [51]. In future work, we could try to use both EOG and EMG
modalities as inputs to the network, to explore a portable sleep monitoring method with a
better staging effect. Finally, EOG signals and EEG signals are complementary to each other
for sleep staging. They should be combined rather than separated. Therefore, in future
work, we will work on combining EEG signals and EOG signals, to improve automatic
sleep staging and to investigate comfortable and efficient sleep monitoring, based on the
fact that both prefrontal EEG and EOG signals are easy to acquire.

(a)

(b)

Figure 5. Comparison of time and frequency domains of a coupled EOG signal with a 0.3 coupling
coefficient and an EEG signal in the N2 and REM stages in the MASS dataset. (a) Comparison of the
time domain and frequency domains of the EOG signal with the best results and EEG signal in the
N2 stage in MASS dataset. (b) Comparison of time domain and frequency domains of the EOG signal
with the best results and the EEG signal in the REM stage for the MASS dataset.

5. Conclusions

In this paper, we investigated the effect of the EEG signal coupled in an EOG signal
on sleep staging results. Two publicly available datasets and one clinical dataset were used
for the experiment. The SOBI method was applied to obtain a clean EEG signal. The clean
EEG signal and the raw EOG signal were used to obtain a clean EOG signal and EOG
signal coupled with different contents of the EEG signal. Afterwards, a THNN was used to
perform automatic sleep staging with coupled EOG signals. The results showed that the
sleep staging capability of the EOG signal was not derived from the coupled EEG signal
but from its own feature information. Meanwhile, the EOG signal coupled with the EEG
signal had better classification performance for the N1, N2, and N3 stages. The coupled
EEG signal could complement the feature information lacking in the EOG signal, especially
in the N1 and N2 stages. In addition, the amount of coupled EEG signal was similar to
the amount of EEG signal contained in the raw EOG signal. Higher or lower levels than
this could result in a certain reduction in the accuracy of the sleep staging results. This
paper provided an explorative experimental analysis of automatic sleep staging using EOG
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signals. Moreover, it is excepted to provide an experimental basis for comfortable sleep
analysis, home sleep monitoring, etc.
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Appendix A

Table A1. Details of the subjects in the HSFU dataset.

No. Gender Age Diagnosis W N1 N2 N3 REM Total Stages

1 Female 61 AHI in REM 621 28 182 48 63 938
2 Female 45 Insomnia 147 70 415 176 206 1014
3 Female 41 Insomnia and OSA 532 100 170 131 86 1019
4 Female 65 RLS and insomnia 782 4 123 57 77 1044
5 Female 38 OSA 259 44 319 157 205 984
6 Male 64 PLMs 178 157 434 0 188 958
7 Male 50 Insomnia and OSA 174 108 381 140 181 984
8 Male 42 OSA and PLMs 149 116 455 84 179 983
9 Male 52 RLS 129 95 491 65 196 976
10 Male 25 OSA 148 73 571 119 61 972
11 Male 56 OSA 286 173 285 43 172 961
12 Male 29 OSA 81 84 442 197 163 967
13 Male 29 OSA 125 48 405 185 209 972
14 Male 37 RBD and OSA 234 199 389 131 104 938
15 Male 52 Insomnia and OSA 177 259 337 72 103 948
16 Male 52 OSA 247 172 305 121 202 1047
17 Male 62 RLS and OSA 359 129 359 104 103 1055
18 Male 38 OSA 172 159 506 103 195 1135
19 Male 38 OSA 277 102 359 135 154 1029
20 Male 38 OSA 151 87 377 167 265 1047
21 Male 41 Insomnia and OSA 217 101 433 94 196 1041
22 Male 49 OSA 321 194 408 1 53 977
23 Male 52 Insomnia and OSA 159 97 368 315 180 1121
24 Male 49 OSA 264 72 381 151 206 1075
25 Male 57 RLS and OSA 544 161 156 17 48 926
26 Male 58 RLS and OSA 329 37 197 274 165 1002

AHI, apnea–hypopnea index; REM, rapid eye movement; OSA, obstructive sleep apnea; RLS, restless leg syn-
drome; PLMs, periodic leg movements; RBD, rapid eye movement sleep behavior disorder.

http://www.ceams-carsm.ca/en/MASS
http://www.tcts.fpms.ac.be/%7Edevuyst/#Databases
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Table A2. Parameters of the THNN.

Layer/Block Parameters Input Shape Output Shape

Input - - 3840*1*1
Conv1 N: 128, k: 64, s: 6 3840*1*1 640*1*128

Maxpool1 k: 8, s: 8 640*1*128 80*1*128
Dropout1 A = 0.5 80*1*128 80*1*128

Conv1 N: 128, k: 6, s: 1 80*1*128 80*1*128
Conv1 N: 128, k: 6, s: 1 80*1*128 80*1*128
Conv1 N: 128, k: 6, s: 1 80*1*128 80*1*128

Maxpool1 k: 4, s: 4 80*1*128 20*1*128
Flatten1 - 20*1*128 2560
Conv2 N: 128, k: 640, s: 64 3840*1*1 60*1*128

Maxpool2 k: 6, s: 6 60*1*128 10*1*128
Dropout2 A = 0.5 10*1*128 10*1*128

Conv2 N: 128, k: 10, s: 1 10*1*128 10*1*128
Conv2 N: 128, k: 10, s: 1 10*1*128 10*1*128
Conv2 N: 128, k: 10, s: 1 10*1*128 10*1*128

Maxpool2 k: 2, s: 2 10*1*128 5*1*128
Flatten2 - 5*1*128 640
Concat - 2560 + 640 3200
Dense - 3200 800
Dense - 800 400

Bi-GRU l: 2, h: 200, sl: 15 400 400
Add - 400 400

Dropout 0.5 400 400
Dense - 400 200
Dense Softmax 200 3

THNN, two-step hierarchal neural network. Conv1, Maxpool1, SE block1: represents the convolutional layer,
the pooling layer and the SE block in the first CNN branch. Conv2, Maxpool2, SE block2: represents the
convolutional layer, the pooling layer, and the SE block in the second CNN branch. N: number of filters in each
convolution. k: kernel size. s: stride. l: number of layers in Bi-GRU. h: number of hidden layer neurons of Bi-GRU.
sl: sequence length in Bi-GRU.
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