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Abstract: This study presents wrapper-based metaheuristic deep learning networks (WBM-DLNets)
feature optimization algorithms for brain tumor diagnosis using magnetic resonance imaging. Herein,
16 pretrained deep learning networks are used to compute the features. Eight metaheuristic opti-
mization algorithms, namely, the marine predator algorithm, atom search optimization algorithm
(ASOA), Harris hawks optimization algorithm, butterfly optimization algorithm, whale optimization
algorithm, grey wolf optimization algorithm (GWOA), bat algorithm, and firefly algorithm, are used
to evaluate the classification performance using a support vector machine (SVM)-based cost function.
A deep-learning network selection approach is applied to determine the best deep-learning network.
Finally, all deep features of the best deep learning networks are concatenated to train the SVM model.
The proposed WBM-DLNets approach is validated based on an available online dataset. The results
reveal that the classification accuracy is significantly improved by utilizing the features selected using
WBM-DLNets relative to those obtained using the full set of deep features. DenseNet-201-GWOA
and EfficientNet-b0-ASOA yield the best results, with a classification accuracy of 95.7%. Additionally,
the results of the WBM-DLNets approach are compared with those reported in the literature.

Keywords: brain MRI; deep learning networks; wrapper-based metaheuristic algorithms; brain
tumor detection; image processing

1. Introduction

Uncontrolled cell development causes brain abnormalities, such as brain tumors. This
syndrome has been associated with a considerable number of deaths worldwide and is
commonly recognized as a lethal disease [1]. Brain tumors, whether benign or malignant,
cause damage to adjacent brain tissue owing to the increased pressure exerted on the
skull [2]. In 2022, approximately 88,970 people suffered brain tumors, among which 63,040
were benign, whereas the remaining 25,930 were malignant [3,4]. Gliomas, meningiomas,
and pituitary gland tumors are several types of tumors that may affect the human brain [5,6].
Hence, the early detection of brain tumors is critical for timely and efficient treatment.

Neuro-oncologists can effortlessly and rapidly diagnose brain tumors using computer-
aided diagnostic (CAD) technologies. The development of new imaging technologies, such
as magnetic resonance imaging (MRI), to visualize the characteristics of brain tumors has
increased in recent years. MRI is a useful technique that offers detailed scans of tissues and
organs. Owing to its noninvasive nature, MRI is the most reliable method for locating and
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measuring brain tumors [7]. Correctly analyzing multidimensional MRI data can assist
in localizing and tracking disease development and advising on treatment. These scans
provide vital information regarding the size, shape, and location of brain tumors without
exposing the patient to significant levels of ionizing radiation [8]. Radiologists use MRIs
to assess and treat brain tumors. Hence, a major concern in radiology is the assessment
of brain tumors using imaging techniques for various brain lesions. Several significant
obstacles must be overcome to manage brain tumors, including early identification and
therapy, which are crucial for patient survival.

In healthcare imaging, machine learning has been utilized for disease diagnosis
in breast [9,10], brain [11–13], and lung [14,15] tumors. Recently, research on brain
tumor segmentation, with numerous segmentation methods using different datasets,
has increased considerably. Currently, three types of segmentation models have been
developed [16]: supervised machine learning [17], clustering-based segmentation [18,19],
and deep learning [13].

The segmentation challenge was reformulated using supervised learning algorithms
as a tumor pixel classification problem. This approach produces the desired segmentation
classes as the output of the model after feeding the retrieved features of the image as
the input. A previous study [17] presented a hybrid random forest and active contour
model for brain tumor classification. Another study used support vector machine (SVM)
to categorize brain tumors [20,21]. Both the aforementioned studies utilized brain MRI to
detect brain tumors. Owing to the similarity of the brain MRI scans, the precision of the
model was low for the subcategorization of brain tumors.

Clustering-based segmentation methods divide MRI scans into distinct subcate-
gories and pinpoint the area of interest in each scan. In this method, pixels with a high
degree of similarity within each region are categorized as belonging to a particular
region. By contrast, pixels that differ from those inside an area are classified as regions
that do not belong to the area of interest. K-means clustering is a popular unsupervised
machine-learning approach for separating an area of interest from other components of
an image. It has been applied for segmenting brain tumors with fair precision as it uses
a modest amount of processing time and power [22], and is most effective when large
datasets are used. Its flaws include susceptibility to outliers and inadequate definition
of the tumor region [23]. In one study, the authors extracted KAZE and speeded up
robust local-level features to classify brain MRIs into glioma, meningioma, no tumor,
and pituitary classes [18]. Subsequently, they used 8 × 8 pixels for feature extraction,
and applied k-means clustering to segment 400 features for each descriptor. The model
yielded an accuracy of 95.33% for the multiclass problems. In a subsequent study [19],
the authors applied the PSO-based ReliefF algorithm to remove redundant features. They
reduced the feature vector from 800 to 169 and achieved an accuracy of 96.30% using the
k-fold method. In another study, the tumor area was compared with other brain imaging
areas [24] and the expected tumor parts could not be distinguished with certainty. Clus-
tering may lead to imprecise tumor size identification, resulting in ineffective therapy
and higher morbidity and fatality rates.

Deep learning segmentation models accurately calculate the features of brain MRI
images using the layers of a deep learning network [25]. A deep learning network was
developed to segment complete and masked brain MRI images into two categories [26].
The proposed model had classification accuracies of 92.9% and 89.5% for a complete MRI
and a mask, respectively. Abiwinanda et al. [27] presented a simplified deep learning
network architecture to categorize MRI images into subgroups; the accuracy of this
model was only 84.19%. In another study, a 22-layer deep learning network exhibited
an accuracy of 95.56% for tertiary class problems (glioma, meningioma, and pituitary
gland tumor) [28]. Subsequently, the authors applied data augmentation to balance the
data; nevertheless, the use of data augmentation in real-time applications was unreli-
able. A 25-layer deep learning network reported an accuracy of 92.66% [29]. Pretrained
networks, such as GoogleNet and ResNet-50, also reported classification accuracies of
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98% and 97.2% for brain tumor detection, respectively [30,31]. Training a pretrained
model requires considerable time. To address this problem, a study computed deep fea-
tures using pretrained networks and utilized them to train conventional classifiers [32].
The concatenated deep features of ShuffleNet V2, DenseNet-169, and MnasNet yielded
an accuracy of 93.72% using the SVM model. However, reportedly, the training time
of the model was prolonged because of the large size of the training feature vectors.
Therefore, the feature removal technique can be applied to improve model accuracy.
Dokeroglu et al. [33] recently examined different wrapper-based feature-selection ap-
proaches. Wrapper techniques investigate the performance of each feature subset and
combine a metaheuristic optimization algorithm with a classifier.

Therefore, in this study, wrapper-based metaheuristic deep-learning network
(WBM-DLNet) feature optimization approaches were investigated to improve the clas-
sification accuracy of brain MRI scans. First, brain MRI scans were preprocessed to
resize and reduce noise. Various pretrained models, such as DarkNet-19, DarkNet-53,
DenseNet-201, EfficientNet-b0, GoogLeNet365, GoogLeNet, Inception-ResNet-v2,
Inception-v3, MobileNet-v2, NASNet-Mobile, ResNet-101, ResNet-50, ResNet-18, Shuf-
fleNet, SqueezeNet, and Xception, were used to extract information from brain MRI
images. Wrapper approaches with various metaheuristic optimization algorithms, such
as the marine predators algorithm (MPA), atom search optimization algorithm (ASOA),
Harris hawks optimization algorithm (HHOA), butterfly optimization algorithm (BOA),
whale optimization algorithm (WOA), grey wolf optimization algorithm (GWOA), bat
algorithm (BA), and firefly algorithm (FA), were used to examine the classification
performance using SVM. An empirical approach was used to select the best network.
Based on the results of various feature subsets, a new concatenated feature vector was
formed to evaluate the performance. The performance of the proposed framework was
evaluated using an online brain MRI dataset.

2. Methods and Materials
2.1. Brain MRI Dataset

In this study, a collection of brain MRI images available online was used. The dataset
utilized herein was retrieved from the Kaggle website [34] and comprised four brain MRI
classes. Table 1 presents information on the brain MRI dataset.

Table 1. Details of online brain MRI dataset.

Glioma Tumor Meningioma Tumor No Tumor Pituitary Tumor

Brain MRI images
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2.2. Preprocessing

Preprocessing is required to eliminate unnecessary information and reduce noise from
brain MRI scans. Cropping is typically employed for removing nonbrain regions and
reducing noise. In this study, a cropping approach was employed to compute the extreme
points of the brain area. Dilation and erosion processes, the two fundamental morphological
processes, were applied to reduce noise. In an image, dilation involves adding pixels to
object borders, whereas erosion involves removing pixels from object boundaries. The size
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and shape of the structuring element used to process the image determine the number of
pixels added to or subtracted from the objects. Additional information on the preprocessing
can be found in [32,35]. In addition, the preprocessed images were scaled to meet the input
requirements of the pretrained networks employed in this study.

2.3. Deep Feature Extraction

Features are the primary factors when categorizing images. Identifying essential
features is vital for improving classification performance. Although brain MRI feature
extraction can be performed manually or using a deep learning network, manual extraction
is very time-consuming. The considerable diversity in brain MRI scans determines their
accuracy. By contrast, deep learning neural networks employ a combination of convolu-
tional, pooling, and fully connected layers to build the model. Pretrained deep learning
models can extract deep features using the transfer learning method when the dataset is
sufficiently small. Figure 1 illustrates the concept of deep feature extraction using a trained
model (GoogLeNet).
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Deep neural networks that have been trained on extensive image classification tasks
are known as pre-trained deep learning models and are capable of extracting hierarchical
features from images. These deep features are acquired by passing an image through the
network and analyzing the activation of one or more layers, thus indicating the response
of the network to various image features. These activations may be used to categorize or
compare images and feed them into other classical machine learning models, such as SVM.

DarkNet-19, DarkNet-53, DenseNet-201, EfficientNet-b0, GoogLeNet365, GoogLeNet,
Inception-ResNet-v2, Inception-v3, MobileNet-v2, NASNet-Mobile, ResNet-101, ResNet-50,
ResNet-18, ShuffleNet, SqueezeNet, and Xception were the prominent pre-trained CNN
models used in this study. Each of these models contains distinguishing features that
capture multiple aspects of images, such as local and global patterns or fine-grained details.
These models can be used in a range of computer vision applications, such as object
identification, image segmentation, and image retrieval.
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2.4. Wrapper-Based Feature Selection Approach

Feature selection is essential in numerous machine-learning applications because
it affects model accuracy. Therefore, relevant features must be utilized to effectively
characterize and classify items. However, the inclusion of irrelevant features may lead to
low accuracy. Therefore, the most valuable features must be determined to increase the
classification accuracy of the model. During the feature-selection procedure in this study, a
subset of a wider set of features was selected to build the machine learning model. Note
that a specific criterion is used to assess the quality of the new subset [36]. This can be
accomplished using various strategies, such as filter-based, wrapper-based, or embedded
feature selection [37]. These approaches can also assist in minimizing model complexity,
thus resulting in quicker and more efficient processing.

In this study, wrapper-based algorithms were used to select the most appropriate
features for training a machine learning model. Wrapper algorithms are machine learning
methods for evaluating the performance of a group of features when used with a particular
model (the “wrapper”) [38]. The goal of the wrapper is to assess the impact of the selected
features on the accuracy of the model. The wrapper algorithm either selects the current
subset of features or seeks an improved subset based on the evaluation results. This
procedure is repeated until an optimal subset of features is obtained. Figure 2 illustrates
the concept of the wrapper approach. For optimal feature selection, this study employed a
variety of metaheuristic algorithms and wrapper-based approaches.
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The goal of metaheuristic techniques is to estimate the solutions to complex problems.
They are referred to as “meta” because they integrate multiple low-level heuristics to
manage high-level optimization tasks [39]. Examples of metaheuristic algorithms include
MPA, ASOA, HHOA, BOA, WOA, GWOA, BA, and FA [33,40]. In wrapper feature selection
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methods, learning algorithms evaluate the performance of the resulting feature subsets
during classification. Metaheuristics are used as search algorithms to identify new optimal
subsets [41]. The cost functions of all optimization methods are specified in Equation (1).

min(I) = ω(1 − Accuracy) + σ

(
number of selected features

Total number of features

)
(1)

where, the value of ω and σ are 0.99 and 0.01, respectively [42].

2.4.1. Marine Predators Algorithm (MPA)

MPA is an optimization technique inspired by nature that adheres to principles that
naturally control the best foraging tactics and encounter rates between predators and
prey in marine environments. The hunting and foraging strategies of marine predators,
such as sharks and dolphins, serve as the basis for MPA [43,44]. The four key phases
used for the simulation are predation, reproduction, migration, and exploration. During
the predation phase, the algorithm hunts for and catches food; during the reproduction
phase, it transfers genetic material to the progeny; during the exploration phase, it
searches for new locations in the search space; and during the migration phase, it
relocates the predators to new locations.

Numerous optimization problems, including feature selection, image segmentation,
and data clustering, have been effectively solved using this technique. MPA is very efficient
and helpful in addressing optimization issues in various fields because it can obtain global
optima in complicated search spaces [45].

2.4.2. Atom Search Optimization Algorithm (ASOA)

The principle of ASOA is the mobility and interaction of atoms in a physical
system [46]. It is a population-based method in which a group of atoms searches for
the best answer in a predetermined search space, and it involves the four key steps of
initialization, attraction, repulsion, and migration. During the initialization phase, this
method creates a collection of atoms with different positions and velocities in the search
space; during the attraction stage, the atoms travel toward the best answer; during the
repulsion stage, they move away from one another to explore other regions of the search
space; and during the migration step, they relocate to a new location in the search space.
Numerous optimization issues have been successfully solved using ASOA [47].

2.4.3. Harris Hawks Optimization Algorithm (HHOA)

Bairathi and Gopalani proposed the optimization technique of HHOA, which is based
on the cooperative hunting style of Harris hawks [48]. This algorithm is built on a group of
individuals called “hawks” who stand in for potential solutions. The four key phases of
HHOA are scouting, prey finding, trap setting, and attacks. During the scouting phase, the
program randomly creates an initial population of hawks; during the prey-finding phase,
the hawks explore the search space to determine the best answers; during the trap-setting
phase, they corner the victim; and during the attack phase, they work together to capture it.
Numerous optimization issues have been solved successfully using the HHOA [49].

2.4.4. Butterfly Optimization Algorithm (BOA)

The metaheuristic optimization BOA was developed by Arora and Singh after they
studied the feeding habits of butterflies in the environment [50]. The BOA mimics butterfly
motion and behavior to explore and adapt to changing search space conditions. It has five
stages: initialization, search, selection, mutation, and update. During the initialization
stage, this technique randomly creates an initial butterfly population; during the search
stage, the butterflies explore the search space and identify the best solutions; during the
selection stage, they select the best answers from the population; during the mutation stage,
the algorithm introduces random modifications to the selected solutions to explore new
search space regions; and during the update stage, the algorithm changes the population,
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based on the latest solutions discovered during the mutation stage. The BOA has been used
to solve various complex engineering problems [51].

2.4.5. Whale Optimization Algorithm (WOA)

Mirjalili and Lewis [52] proposed the WOA in 2016, the WOA is based on the hunting
behavior of humpback whales, which hunt in groups and employ bubble nets to catch tiny
fish or krill. The WOA algorithm can solve complex optimization problems by discovering
the prey, enclosing it, and moving it in spiral bubble-net patterns. The process begins
with a random solution. Subsequently, other agents alter their locations by selecting the
best search agent and selecting a target for attack, which may be the best search agent or
a random whale. The WOA has been successfully used for various optimization issues,
including function optimization, scheduling, and data clustering [33].

2.4.6. Grey Wolf Optimization Algorithm (GWOA)

Mirjalili et al. developed the GWOA in 2014 based on the grey wolf social structure
and hunting skills [53]. Grey wolves hunt in packs, each headed by an alpha wolf, the
dominant member of the crew. The group’s second leader, the beta wolf, assists the alpha
wolf and conveys the instructions, and the subordinate or delta wolves support. When
the prey is within a certain range, the pack surrounds and assaults it. Alpha, beta, and
delta wolves are the top three GWOA algorithmic solutions. The remaining wolves are
omega wolves and have no bearing on the decisions made in the subsequent iterations.
The GWOA employs this social structure and prey-hunting strategies as a mathematical
representation to solve optimization issues in domains ranging from computer science to
engineering, mathematics, physics, and finance [54,55].

2.4.7. Bat Algorithm (BA)

Yang first presented the BA in 2010 [56] as an optimization technique. This approach
is modeled after how bats search for prey by flying randomly, making noise, and listening
to echoes [57]. The BA maintains a population of alternative solutions to the optimiza-
tion problem. It iteratively enhances these solutions using random walk and exploitation
procedures. The exploitation operation enables the algorithm to focus on the most promis-
ing answers. By contrast, the random-walk operation mimics the unpredictable search
behavior of bats. The algorithm also uses a frequency-tuning mechanism motivated by
the frequency modulation of bat sounds, which allows it to break out of local optima and
discover superior solutions. In addition, the BA is easy to deploy and does not require
complicated parameter tuning. Echolocation can be coded as a method for improving the
objective function [58].

2.4.8. Firefly Algorithm (FA)

Motivated by the flashing qualities of fireflies, Yang presented the FA in 2010 [59],
based on flashes, which attract potential mates and scare away predators. In FA, flashing
features are established and used as functions to address combinatorial optimization
problems [60]. Fireflies attract fellow flies and move toward brighter fireflies based on
their brightness levels. The greater the separation between fireflies, the less enticing they
appear to be. In the absence of a brighter light, fireflies travel randomly. Consequently, the
intensity of light and appeal levels have key influences on the FA. A specific function can
be used to alter brightness at a specific location. Attraction is determined by other fireflies
because it is based on the distance and absorption coefficient.

3. Proposed WBM-DLNets Framework for Brain Tumor Detection

MRI is the most reliable tool used by radiologists for the detection of brain tumors.
This study aimed to build an intelligent model that can detect brain tumors and classify
them into subcategories (glioma, meningioma, and pituitary gland tumor).
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As mentioned in Section 2.2, herein, the input MRIs were preprocessed to eliminate
noise and irrelevant information. Next, the pre-trained networks were used to calculate
the deep features. The most relevant features were retrieved using MPA-, ASOA-, HHOA-,
BOA-, WOA-, GWOA-, BA-, and FA-wrapper-based feature selection techniques. A block
diagram of the proposed WBM-DLNets brain tumor detection approach and a flow chart
of network selection are shown in Figures 3 and 4, respectively.
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In the network selection phase, the proposed approach selects deep learning networks
with a metaheuristic optimizer having a maximum accuracy of more than 94% for the deep
features of an individual deep learning network. Herein, MATLAB’s “Jx-WFST,” a Jxwrap-
per feature selection library, was used to implement all methods (https://www.mathworks.
com/matlabcentral/fileexchange/84139-wrapper-feature-selection-toolbox, accessed on
7 February 2023). Further, the SVM model was used for brain MRI classification [61,62].

4. Results and Discussion

In this study, the WBM-DLNet feature optimization technique was applied to enhance
the classification accuracy of brain tumor detection. An online brain tumor classification
dataset was used to test the presented WBM-DLNets feature optimization technique [34].
Discrimination between the MRI images of the subcategories of tumors was accomplished
by utilizing the deep features of various pre-trained deep learning networks, as discussed
above. The WBM algorithms discussed above (MPA, ASOA, HHOA, BOA, WOA, GWOA,
BA, and FA) were used to extract valuable information. Further, MATLAB 2022b, operating
on a personal computer with the following specifications, was used for all processing and
analysis: Core i7, 12th Generation, 32 GB of RAM, NVIDIA GeForce RTX 3050, 1 TB SSD,
and 64-bit Windows 11. The extracted feature subset was classified using an SVM and
0.2-holdout validation technique. The parameters of each algorithm are listed in Table 2.

For each brain MRI image, the deep features of the various pretrained networks were
extracted before the SoftMax layer. The initial rate, number of epochs, and momentum were
0.001, 100, and 0.9, respectively. The results of the full deep features of various pretrained
networks are presented as classification accuracy and feature vector size in Figure 5.
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A thorough analysis of the results presented in Figure 4 reveals that the SVM trained
using the deep features of DarkNet-53, DenseNet-201, EfficientNet-b0, ResNet-50, and
Xception deep-learning networks yielded classification accuracies above 90% for brain
MRI images, and the feature vector sizes of these pretrained networks were 1024, 1920,
1280, 2048, and 2048, respectively. EfficientNet-b0 exhibited a classification rate of 92.33%
with a training feature vector size of 1280 for brain tumor detection. The results of the
various metaheuristic algorithms used to determine the optimal deep features of the various
pretrained networks are presented in Table 3. The detailed results of all networks and
optimization algorithms in terms of accuracy, feature vector size, and processing time are
shown in Figure S1 in the Supplementary Materials.

https://www.mathworks.com/matlabcentral/fileexchange/84139-wrapper-feature-selection-toolbox
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Table 2. Parameters for each algorithm.

MPA ASOA HHOA BOA WOA GWOA BA FA

Number of iterations = 50 Number of iterations = 50 Number of iterations = 50 Number of iterations = 50 Number of iterations = 50 Number of iterations = 50 Number of iterations = 50 Number of iterations = 50
Population size = 10 Population size = 10 Population size = 10 Population size = 10 Population size = 10 Population size = 10 Population size = 10 Population size = 10

Fish aggregating
devices effect = 0.2 Depth weight = 50 Levy component = 1.5 Modular modality = 0.01 Constant = 1 Maximum frequency = 2 Absorption coefficient = 1

Constant = 0.5 Multiplier weight = 0.2 Switch probability = 0.8 Minimum frequency = 0 Constant = 1
Levy component = 1.5 Constant = 0.9 Light amplitude =1

Maximum loudness = 2 Control alpha = 0.97
Maximum pulse rate = 1

Table 3. Classification performance of each pre-trained network with metaheuristic algorithms for brain tumor detection.

Network
MPA ASOA HHOA BOA WOA GWOA BA FA

Accuracy Feature Vector Size Accuracy Feature Vector Size Accuracy Feature Vector Size Accuracy Feature Vector Size Accuracy Feature Vector Size Accuracy Feature Vector Size Accuracy Feature Vector Size Accuracy Feature Vector Size

DarkNet-19 0.906 267 0.895 516 0.894 172 0.880 413 0.895 304 0.909 303 0.894 494 0.892 447

DarkNet-53 0.930 732 0.922 504 0.923 575 0.913 481 0.918 712 0.934 362 0.913 491 0.920 521

DenseNet-201 0.930 939 0.916 979 0.922 1270 0.894 912 0.909 970 0.946 651 0.908 964 0.918 950

EfficientNet-b0 0.944 821 0.949 641 0.939 862 0.925 551 0.944 654 0.939 451 0.934 669 0.936 621

GoogLeNet365 0.894 388 0.901 499 0.885 487 0.878 472 0.882 542 0.899 401 0.887 522 0.887 479

GoogLeNet 0.889 667 0.873 531 0.883 501 0.852 521 0.873 690 0.895 338 0.864 518 0.871 493

Inception-ResNet-v2 0.915 533 0.909 753 0.908 739 0.909 802 0.902 782 0.925 488 0.904 754 0.908 763

Inception-v3 0.904 878 0.911 997 0.908 1023 0.895 764 0.895 1174 0.923 768 0.901 990 0.895 966

MobileNet-v2 0.913 812 0.902 647 0.890 770 0.883 623 0.887 738 0.894 512 0.892 659 0.897 633

NASNet-Mobile 0.885 575 0.869 505 0.871 714 0.864 461 0.873 854 0.887 364 0.866 497 0.871 549

ResNet-101 0.925 1279 0.927 1057 0.915 1231 0.923 927 0.915 1536 0.927 826 0.913 985 0.911 1005

ResNet-50 0.934 1228 0.937 1013 0.939 1254 0.916 877 0.932 1068 0.939 692 0.927 1017 0.934 1016

ResNet-18 0.878 274 0.876 242 0.875 315 0.854 214 0.864 428 0.887 210 0.880 242 0.873 233

ShuffleNet 0.916 217 0.904 274 0.911 374 0.887 271 0.895 321 0.918 218 0.894 286 0.901 256

SqueezeNet 0.904 519 0.913 499 0.902 619 0.885 516 0.894 852 0.901 385 0.889 485 0.890 483

Xception 0.920 809 0.929 1035 0.916 1149 0.908 889 0.911 978 0.930 775 0.916 1002 0.915 1009
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As presented in Table 3, all optimization algorithms significantly increased and
decreased the accuracy and feature vector size, respectively. However, only two deep
learning networks (DenseNet-201 and EfficientNet-b0) yielded accuracies greater than
94%. DenseNet-201 with GWOA exhibited almost 3.31% higher accuracy relative to the
full features of DenseNet-201 (1920 features). Additionally, it used three times fewer
features to train the SVM model (651 features). In the case of EfficientNet-b0, three
optimization algorithms, MPA, ASOA, and WOA, classified the brain MRI images with
94.4%, 94.9%, and 94.4% accuracy, respectively. Based on the network selection criteria
discussed in Section 3 and Figure 4, the proposed approach selected only the deep
features of the EfficientNet-b0-ASOA. The deep features of DenseNet-201-GWOA and
EfficientNet-b0-ASOA were concatenated to train the SVM model using the 0.2-holdout
and five-fold cross-validation techniques. The confusion metrics of the WBM-DLNets
are shown in Figure 6. The results were thoroughly analyzed using the true positive rate
(TPR), false negative rate (FNR), positive predictive value (PPV), and false discovery rate
(FDR) of the developed machine learning model, as presented in Table 4. Equation (2)
can be used to compute TPR, FNR, PPV, FDR, and accuracy.

TPR =
True positive

No. of real positive

FNR =
False negative

No. of real positive

PPV =
True positive

True positive+False positive

FDR =
False positive

True positive+False positive

Accuracy (%) =
No. of correctly classified images

Total no. of images × 100


(2)
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Table 4. Results of WBM-DLNets for tumor detection.

Validation Class TPR (%) FNR (%) PPV (%) FDR (%) Accuracy (%)

0.2-holdout

glioma_tumor 96.4 3.6 97.0 3.0

95.6
meningioma_tumor 90.9 9.2 94.9 5.1

no_tumor 96.3 3.8 97.5 2.5
pituitary_tumor 99.4 0.6 94.3 5.7

Five-fold
cross-validation

glioma_tumor 95.2 4.8 97.8 2.2

95.7
meningioma_tumor 94.3 5.7 92.4 7.6

no_tumor 95.2 4.8 95.4 4.6
pituitary_tumor 98.1 1.9 97.4 2.6
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In the case of holdout validation, 159 of the 165 MRI images of glioma tumors were
correctly classified and had a TPR of 96.4% (Figure 6a and Table 4). The no-tumor class
contained 80 MRI images to test the model. A total of 77 brain MRI images with a PPV of
97.5% were classified correctly. The proposed WBM-DLNets achieved a high classification
accuracy of 95.6% with only 1292 feature vector sizes for holdout validation. In the five-
fold cross-validation, the proposed model slightly increased the classification accuracy, as
presented in Figure 6b and Table 4. The model correctly predicted 811 out of 824 pituitary
gland tumor class MRI images with a TPR of 98.1%.

Another brain MRI dataset comprising 233 patients was used to validate the adapt-
ability and accuracy [63]. A total of 3064 brain MRI scans were obtained at two hospitals
in China (Nanfang Hospital and General Hospital), of which 1426 images comprised
glioma tumors, 708 comprised meningioma tumors, and 930 comprised pituitary gland
tumors [64]. The results of the proposed approach for the new dataset are presented in
Figure 7 and Table 5.
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Table 5. Results of WBM-DLNets for tumor detection for another dataset [63].

Validation Class TPR (%) FNR (%) PPV (%) FDR (%) Accuracy (%)

0.2-holdout
glioma_tumor 95.8 4.2 98.9 1.1

96.7meningioma_tumor 95.7 4.3 91.2 8.8
pituitary_tumor 98.9 1.1 97.9 2.1

Five-fold
cross-validation

glioma_tumor 96.9 3.1 97.7 2.3
96.6meningioma_tumor 93.1 6.9 92.6 7.4

pituitary_tumor 98.7 1.3 98.0 2.0

The results presented in Figure 7 and Table 5 demonstrate the adaptability and high
classification performance of the proposed approach. As presented in Table 6, the results
of the proposed WBM-DLNets approach were also compared with those reported in the
latest literature.

Recently, the use of machine learning techniques in medical imaging for diagnostic ap-
plications has increased. Several researchers have investigated various learning techniques
for detecting brain tumors using MRI images [28,29,32,65].
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Table 6. Comparison of the proposed WBM-DLNets with other studies.

Reference Accuracy (%)

Almalki et al. [18] 95.33
Abiwinanda et al. [27] 84.19

Irmak [29] 92.66
Kang et al. [32] 93.72

Rehman et al. [65] 95.86
WBM-DLNets (Proposed) 95.7 and 96.7

Deep learning networks have a very high level of accuracy in classifying brain MRI
images [28,29]. Irmak [29] proposed a brain tumor detection CNN model that yielded
an accuracy of 92.66% for subclassification. Additionally, a pretrained deep learning
network has been utilized to detect brain tumors [65]; however, the model training it is
too time-consuming. Another study [32] concatenated the deep features of various pre-
trained models and achieved 93.72% accuracy. The feature vector was excessively large
and contained various redundant features. Filter-based feature reduction approaches have
also been reported to enhance classification performance [18]. Filtering strategies select
features based on their applicability to the dependent variables. However, they do not
consider how they affect the model performance. By contrast, wrapper approaches test the
effectiveness of a feature subset by training the model with them. Occasionally, a threshold
value must be selected to remove unnecessary data in filter-based methods. Wrapper-based
strategies have been shown to be more accurate in classifying data. Therefore, in this study,
a WBM-DLNet feature optimization approach was proposed to improve the classification
performance of brain tumor detection. The WBM-DLNet feature optimization approach
and previously published studies are compared in Table 6. The findings revealed that the
proposed WBM-DLNet feature optimization technique outperforms competing methods
in terms of classification rate. The proposed brain tumor detection approach may help
physicians identify tumors quickly and effectively.

5. Conclusions

In this study, WBM-DLNet feature optimization algorithms were utilized to enhance
brain tumor detection classification performance. The deep features of the 16 pretrained
deep learning networks were computed. Eight metaheuristic optimization algorithms
(MPA, ASOA, HHOA, BOA, WOA, GWOA, BA, and FA) were applied to determine the
optimal deep features of all networks using the SVM-based cost function. All metaheuristic
optimization algorithms significantly enhanced the classification performance and reduced
the feature vector size of each pretrained model. Subsequently, a deep-learning network
selection approach was applied to determine the best deep features. The best deep features
were concatenated to train the SVM model. The model exhibited the highest classification
rate of 95.7% with DenseNet-201-GWOA and EfficientNet-b0-ASOA deep feature-trained
SVM models. The model was further validated using a new dataset and exhibited a
high classification performance of 96.7%. Therefore, the proposed WBM-DLNet feature
optimization algorithm can be considered useful for automatic brain tumor detection.
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time: (a) MPA; (b) ASOA; (c) HHOA; (d) BOA; (e) WOA; (f) GWOA; (g) BA; (h) FA.
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