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Abstract: The ability to use drones to obtain important vital signs could be very valuable for emer-
gency personnel during mass-casualty incidents. The rapid and robust remote assessment of heart
rates could serve as a life-saving decision aid for first-responders. With the flight sensor data of a
specialized drone, a pipeline was developed to achieve a robust, non-contact assessment of heart rates
through remote photoplethysmography (rPPG). This robust assessment was achieved through adap-
tive face-aware exposure and comprehensive de-noising of a large number of predicted noise sources.
In addition, we performed a proof-of-concept study that involved 18 stationary subjects with clean
skin and 36 recordings of their vital signs, using the developed pipeline in outdoor conditions. In
this study, we could achieve a single-value heart-rate assessment with an overall root-mean-squared
error of 14.3 beats-per-minute, demonstrating the basic feasibility of our approach. However, further
research is needed to verify the applicability of our approach in actual disaster situations, where
remote photoplethysmography readings could be impacted by other factors, such as blood, dirt, and
body positioning.

Keywords: contactless; mass-casualty incident; drones; RGB video; signal; extraction; triage

1. Introduction

The possibilities for using unmanned aerial systems (UAS) or drones in health emer-
gencies have increased [1]. UASs can cover short-to-medium distances in a relatively
short time and access locations that are difficult for rescuers to reach [2,3] while avoiding
environmental hazards [4,5]. During a mass-casualty incident (MCI), the situation on-site,
the number and location of injured people, and the possible evacuation routes have been
evaluated successfully using drone-camera footage [6]. The systems used ranged from con-
ventional cameras, with live feeds to aid in decision-making [7], to thermal cameras, used
to locate missing people [8], and 3D-camera setups for reconstructing a disaster scene [9].

The current procedure during MCIs is for responders to physically evaluate injured
persons to assess their condition.This assessment is part of the triage process, where the
severity of their injuries categorizes the injured. However, depending on the accessibility
of the scene, it can take from a few minutes up to several hours for emergency personnel to
locate and categorize injured people. In order to assess their condition, basic vital signs,
such as heart rate (HR) and respiratory rates (RR), are measured. The gold standard for
assessing HR is palpation, which requires direct contact with the victim.

The contactless assessment of vital parameters via drones could save crucial time, as
obstacles do not impair drones. Furthermore, UAVs have the potential for faster and more
efficient assessments of individual health states in remote and hard-to-reach locations. Our
presented research aimed to investigate the technical possibilities, the capabilities, and the
limitations of drone-based heart-rate assessments in order to provide a basis for future
drone-assisted triage.
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Several research publications have shown that camera-based HR measurements are
feasible [10,11]. The developed algorithms were designed for different scenarios, such
as monitoring pre-term babies in neonatal intensive care units [12], monitoring patients
in intermediate care units [13], detecting infections (COVID-19) [14], and monitoring
drivers [15].

Image photoplethysmography (iPPG), also called remote photoplethysmography
(rPPG) or distance photoplethysmography, is a widely used method for the camera-based
assessment of HRs [16,17]. Similar to contact-PPG, rPPG measures variations in the inten-
sity of the light reflected by the skin [18]. The environmental light and the video camera
substitute the light source and photo-detector, respectively. The rPPG signal is then com-
puted from consecutive video frames, primarily using facial regions-of-interest (ROIs), such
as the forehead and cheeks [19,20]. The main challenge in estimating rPPG signals with
camera systems is the extremely low signal strength of the pulse-related intensity changes,
as compared to those caused by environmental lighting or system motion. In order to
obtain a reliable HR, several different methods were combined via multi-stage algorithmic
pipelines. The current research focused on three main methods:

(i) Selection and temporal tracking of relevant facial regions;
(ii) Modeling of the recorded signals for PPG signal extraction;
(iii) De-noising of rPPG signals.

Regarding the selection of facial regions and temporal tracking (i), Kumar et al. pro-
posed a method using a Haar-cascade-based facial detection [21] and a Kanade–Lucas–
Tomasi (KLT) feature tracker [22,23] to identify and track candidates with suitable rPPG
regions. Those regions were then further weighted to reduce the impact of regions that
could contain noisy signals. For modeling the pulse-related color changes (ii), there are
two standard models, namely CHROM (Chrominance), proposed by De Haan et al. [24],
and POS (Plane Orthogonal to Skin), proposed by Wang et al. [25]. Both models use a
pre-defined skin-color vector with an adaptive whitening to separate the recorded RGB
signals into an rPPG signal component and an orthogonal noise component. To further
improve their approach, Wang et al. added a de-noising step (iii) to their rPPG model,
and called their result discriminative signatures [26]. For de-noising, the authors used
generalized linear modeling (GLM) to remove the first-order components of known noise
signals from the recorded PPG signals. As the only known noise source for these signals,
the motion recorded by the facial landmark tracking was used.

Although current approaches have performed considerably well, they also required
a highly controlled environment with minimal interference to guarantee reliability. They
could only extract reliable vital parameters when a person moved as little as possible.
Furthermore, they were prone to changes in lighting conditions and variations in capturing
angle. The utilization of these methods in outdoor scenarios poses the challenge of miti-
gating the effects of uncontrollable ambient lighting on the obtained data. Additionally,
when utilizing drone-mounted systems, an additional difficulty is introduced in order to
compensate for the system’s increased motion and the increased distance between the
system and the subjects being monitored. These challenges had to be addressed to ensure
the obtained data’s accuracy and reliability.

This paper proposed a novel algorithmic pipeline specifically developed and opti-
mized for estimating HRs from videos captured by a UAS. The primary objective of this
research was to evaluate the potential of UAS-based rPPG as a first step in the assessment
of the physiological status of victims in MCIs by leveraging the capability of UAS to reach
the disaster location in a shorter time than first-responders.As a secondary objective, we
investigated the selection of appropriate de-noising sources to compensate for the sys-
tem movement and to study the effects of environmental lighting on HR assessments
from rPPG signals. Additionally, we provided a full implementation of this approach,
along with a proof-of-concept study that could improve patient outcomes and incident
scene management.
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2. Materials and Methods
2.1. Imaging Pipeline Overview

The following sections present the estimation of vital parameters via drone videos.
The concept consisted of five steps:

(i) Data acquisition and image pre-processing: Adjustments made to the system’s pa-
rameters before and during the measurements;

(ii) ROI selection and tracking: Selection of beneficial facial regions to track throughout
the recording to extract rPPG signals;

(iii) rPPG signal extraction: Combining the measured raw data from which the rPPG
signals would be extracted;

(iv) De-noising and post-processing: Refinement of the extracted rPPG signals to obtain
a predominantly sparse signal for assessing HR;

(v) Heart-rate estimation: Final step of calculating the HR from the extracted rPPG signals.

2.2. Data Acquisition and Image Pre-Processing

Data acquisition and pre-processing were the crucial parts of the pipeline, as any
deficiencies would directly impact all subsequent steps. Our goal was to obtain the most
stable possible recording of an individual’s head. The recording was conducted on the raw
data format because video encoding with common H.264 (advanced video coding) or H.265
(high-efficiency video coding) encoders could impair the subsequent HR assessments [27].

2.2.1. Face-Aware Adaptive Exposure Time Adjustment

The intensity of the rPPG signals was proportional to the skin-reflected light [25]. The
greater this intensity, the higher their ratio, as compared to the ambient and sensor noise
(signal-to-noise ratio, SNR). The amount of light captured could be controlled through the
camera’s exposure time. Integrated exposure time algorithms usually attempt to gener-
ate evenly illuminated recordings. However, we experienced that integrated algorithms
exposed facial regions either too much or too little. Therefore, we developed a software-
driven exposure algorithm that maximized the exposure of facial regions by applying facial
detection before the recording.

The images provided by the camera were denoted as I = [it=0, . . . , iN ], and the
corresponding exposure time was L = [lt=0, . . . , lN ]. Empirical evidence showed that to
improve the SNR of the pulse signal, the 98th percentile of the pixel values within the face
region v had to be between 75% and 90% of the gray-scale range, i.e., between the pixel
values 190 and 230, for an 8-bit image. The goal was to obtain as much exposure as possible
but, at the same time, prevent signal clipping. For obtaining the region containing the
face-related pixels, pre-existing facial recognition approaches based on Haar cascades [21],
HOG + linear SVM [28], fast R-CNN [29], and YOLO [30] were tested. The facial recognition
algorithm had to operate on the hardware integrated into the drone, which had very limited
computing power. Therefore, simple Haar cascades were used since they enabled sufficient
facial recognition at a higher computational speed. Since the relationship between exposure
time en and facial pixel would not be known beforehand, we used the iterative adjustment
algorithm (Algorithm 1) after using the cameras initially provided l0.
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Algorithm 1 Automatic exposure time adjustment with respect to a person’s face

1: let i0 the initial image frame as gray image
2: let bb0 the initial facial bounding box within i0
3: let l0 the initial exposure time
4: for n = 0 to 10 do
5: v = percentile(pixel(bbn), 98)
6: if 190 < vs. < 230 then
7: return ln
8: else
9: ln+1 ← 190+230

2v · ln
10: ln+1 ← image(ln+1)
11: bbn+1 ← haarcascade(ln+1)
12: end if
13: end for
14: return ln

2.2.2. Active Image Stabilization

During operation, drones have to withstand a variety of weather conditions. Depend-
ing on the wind gusts, the position relative to the target could dynamically change. The
deviations could vary by several centimeters, thus creating additional movement, vibration,
and shake during the recordings. Electromechanical gimbals compensated by maintaining a
constant visual axis relative to the target. For this purpose, the gimbals used a motor-driven
cardanic suspension that immediately compensated for the smallest movements with the
assistance of acceleration sensors and an active control system. With a three-axis gimbal,
only perspective distortions occurred during the recordings of the mounted cameras. Since
we were restricted to using a two-axis gimbal that could only compensates the pitch and
roll axes, the captured images were additionally rotated by a certain degree, which required
additional compensation. For this, we used the the view-axis related to the left-facing
vector~h and the down-facing vector~v in geodetic coordinates provided by the gimbal, as
shown in Figure 1.

Figure 1. (Left) Technical drawing of the available gimbals in perspective and side views. Shown
is the suspension of the sensors and the movable axes. (Right) The view frustum generated by the
camera gimbals and the view vectors.

As a first step, the synchronized pairs of the gimbals and image data were created, as
the acquisition of both was usually not synchronous and performed at different frequencies.
For this, we used the provided acquisition timestamps ti

n of the images and tg
m of the

gimbal vectors. For each image–timestamp pair (in, ti
n), the corresponding gimbal-vectors

( ~hm, ~vm, tg
m) were determined by minimizing the temporal distance:

|ti
n − tg

m| → min. (1)

With the corresponding gimbal vectors, the rotation of the optical plane yn of each image
could be calculated using the z-component of ~hm, ~vm by:
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yn = atan2(hz
m, vz

m). (2)

Afterward, each image in was digitally rotated by −yn using bilinear interpolation to
remove the image rotation caused by the gimbal. All images were centered within a zero-
padded quadratic frame of a squared-image width to maintain a rectangular image shape.
Therefore, a new set of quadratic, rotated images Irot = [irot,t=0, . . . , irot,N ] of equal size
were created, as demonstrated in Figure 2.

Figure 2. Time series of recorded camera frames before (1) and after (2) image stabilization.

2.3. ROI Selection and Tracking

The next step of our approach was to process the rotation-free images further by
identifying and tracking the facial ROIs. Figure 3 displays the four major steps used for
this purpose.

First, a facial bounding box within each image of Irot was calculated to extract the
facial area (Figure 3, Step 2). The entirety of the facial areas resulted in a time series of
the facial size and position B = [bbt=0, . . . , bbN ]. Here, the same Haar-cascade-based
classifier used for the adaptive exposure time adjustment was used for the calculation.
However, due to the movements of the UAS, only some images could contain a face
entirely; thus, face detection inevitably failed when this was not the case. As a result,
the time series could be discontinuous, creating several time-frames of consecutive facial
areas Bt=[a,b], Bt=[a′,b′], . . . for the same recording. Therefore, all time-frames of facial
areas that were at least five seconds long were used for further processing. In cases where
no such time-frame existed, the assessment of the HR was declared as failed. Within
the facial area of each time-frame, the facial ROIs required for the rPPG extraction were
determined using a 3D-mesh representation of the face (Figure 3, Step 3). For this purpose,
the face mesh function of Google’s Media Pipe framework was used [31,32]. The provided
function combined a neural network for facial feature extraction with a feature-based 3D
transformation to generate 468 3D landmarks from 2D facial images in order to create a face
mesh. In the end, 30 sub-regions covering the forehead and cheek regions were selected
within this face mesh. They represented the ROIs used for extracting rPPG signals. Finally,
the raw rPPG signal was determined for each ROI by averaging the pixel color values
within the region throughout the video frames of the time series.

Figure 3. Individual steps for facial ROI selection and tracking.
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2.4. De-Noising and Signal Post-Processing

The raw signals extracted from the different ROIs were usually too noisy to be used
as rPPG signals. In general, the noise was related to movements caused by wind and
wind changes and the inherent vibrations of the drone, for which the gimbal could not
fully compensate. It was also related to the perspective distortions and changing lighting
conditions. Therefore, a generalized linear-model-based de-noising was developed to
reduce the noise caused by the UAS and the environmental changes in lighting. This de-
noising consisted of modeling the raw signal of each color channel and each ROI yR, yG, yB
as the composition of a linear mixture of known noise source signals X through the mixing
matrix m. The blood flow correlated to the rPPG signal p and the remaining unknown
noise component e, as expressed by:

y1 = m1x1,1 + m2x2,1 + . . . + p1 + e1
y2 = m1x1,2 + m2x2,2 + . . . + p2 + e2
y3 = m1x1,3 + m2x2,3 + . . . + p3 + e3

...
...

yn = m1x1,n + m2x2,n + . . . + pn + en,

(3)

where y1 . . . yn denotes the temporal components of an ROI’s color component and m1x1, m2x2,
. . . denotes the weighted components known source of noise. Assuming an equally known
source of noise for each color channel, this resulted in:

yR = X ·mR + pR + eR
yG = X ·mG + pG + eG
yB = X ·mB + pB + eB.

(4)

To determine the noise contribution components of m, the former equation could be re-
written as:

Y = X ·M + P + E. (5)

To solve for M, a standard least-squares approach for over-determined systems was chosen.
With this contribution matrix, the raw signal Y could be de-noised by subtracting the noise
contributions:

Ŷ = Y − X ·M = P + E, (6)

where Ŷ represents the de-noised signals. Since the de-noising performance of this approach
depended solely on the selection of appropriate known noise sources, their selection was
crucial and had to satisfy two criteria. On the one hand, the noise sources had to correlate
with the actual noise influence within the raw signal. On the other hand, they could not
correlate with the blood-flow-related changes, as this removed them during the de-noising
process. In addition, too many noise sources could ruin the de-noising process, as the
accumulated noise could also lead to the removal of blood-flow-related signal components.

For our approach, 15 sources of noise were used, as listed in Table 1. To compensate
for noise components correlated with the unwanted movement of the UAS, data provided
by the flight systems sensors were used, namely from the GPS and the accelerometer.
They were provided and pre-processed identically to the gimbal data by matching them
to the corresponding timestamps. Therefore, matching time series were created from 6
noise source signals that included (1) height above ground, (2) longitude, (3) latitude, and
(4) the (u,v,w) values of the velocity vector in world coordinates. In addition, the time
series of the (x,y,z) values of the two gimbal vectors (5)~h and (6)~v were included as noise
source signals, as well.

For compensation of the movement correlated with the tracking of facial regions,
the (x,y) values of the (7) landmarks forming the facial ROI and their (8) center-of-mass
were utilized. The number of landmarks used varied between four and six, depending
on the ROI. Moreover, the (9) number of pixels included in the facial ROI was used as
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well. Finally, the mean color values of the facial regions not containing blood-related color
changes were utilized to account for other noise influences. These were affected by other
noise influences, such as changes in lighting, in the same way as the facial ROIs but did not
contain blood-related color changes. Therefore, they could be used as direct noise sources
that accounted for these influences. For this, the sub-regions covering the (10) nostrils and
the (11) eyes were processed in the same way as the facial ROIs by using the time series
of their mean color values. Thus, four additional noise source signals were created for
de-noising.

The linear modeling of the de-noising problem removed only linearly correlated com-
ponents. To consider higher-order influences, we also used the first-order derivatives of the
(12) landmarks, (13) center-of-mass, and (14, 15) gimbal vectors. As a result, depending
on the number of landmarks creating the sub-regions, 42 to 50 individual signals were
created and used for de-noising.

Table 1. List of known 15 noise sources and their individual components that were used in the
de-noising process.

landmarks (4–6) (x,y) center-of-mass (x,y) number of pixels
d
dt landmarks (4–6) (x,y) d

dt center-of-mass (x,y) height above ground
longitude latitude velocity (u,v,w)

nostrils (left, right) eyes (left, right) ~h (x,y,z)
~v (x,y,z) d

dt
~h (x,y,z) d

dt~v (x,y,z)

With the matrix M consisting of these known noise signals, every color channel of
the 30 sub-ROIs was de-noised independently, creating a new set of de-noised time-frame
signals. The last part of this step consisted of generating an rPPG signal for each region
and time-frame, i.e., continuous video sequences with a length of at least 5 s. For this
purpose, the individual color signals had to be combined to form an rPPG signal. In the
literature, several methods existed. The more sophisticated approaches aimed to obtain
the blood-flow-related components through color channel mixing. This work applied two
approaches: POS [25] and CHROM [24]. Both algorithms attempt to determine the color
vector most closely corresponding to the blood-related color changes by estimating the face
color in order to project the color signals onto it, using the variance of the power spectrum
of the changes. In our approach, both rPPG signals created by POS and CHROM were
calculated and used for robust HR assessments.

2.5. Heart-Rate Estimation

Most of the current rPPG approaches focus on the continuous monitoring of patients,
and consequently, they focus on detecting variations in HR. However, in disaster medicine,
the temporal variation of this parameter can be less relevant than the immediate assessment
of an average value for patient triage. Therefore, our approach focused on obtaining a
single value for HR.

For an HR assessment, it was assumed that an HR fluctuated only slightly over a short
period. Hence, equivalent blood-related changes could be measured at any time and in any
facial ROI with both color-mixing methods. In Figure 4, we detailed how this was utilized.

First, each de-noised ROI signal was sliced into overlapping sub-signal windows of
45 samples (i.e., 5 s) with a stride of 2 samples, and the frequency spectrum Pn of each
was calculated using the Fourier transform (Figure 4, (1)). Second, improper sub-signal
spectra were removed from this set of spectra. Each spectra had to satisfy two conditions
to be considered for HR estimation (Figure 4, (2)). As a first condition, any frequency peak
within the target range of 50 bpm (beats-per-minute), up to 180 bpm, had to have an SNR
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of at least 2.5%. For this, a prominence-based peak search was conducted within the target
frequency range, followed by the SNR calculation for each peak p:

SNR =
∑

p+α
p−α P(p)

∑ P−∑
p+α
p−α P(p)

. (7)

For the peak width α, a value of 3 bpm was chosen. By adding this criterion, we intended to
exclude spectra that were too noisy from the HR assessment. As a second condition, there
had to be no global maximum regarding the target range within the low-frequency range
between 0 bpm and 50 bpm. This condition prevented the higher harmonics produced
by prominent low-frequency noise components from concealing the HR-related frequency
within the target range.

Figure 4. Overview of the HR estimation process—Windowing, time-series creation, and spectra
calculation (1). Rejection of outlier spectra with low-frequency components or insufficient SNR (2).
Final HR assessment by median spectra creation (3).
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Third, all remaining spectra were combined for CHROM and POS, via a median,
resulting in two total spectra each. A resulting HR value was then determined for both
total spectra by determining the frequencies corresponding to the respective maximums in
the range of the target range. The final HR value was then calculated by the mean value of
the two HR values determined via POS and CHROM. The mean value was chosen because
if the HR values of the two methods differed, it could not be determined which was correct.
By averaging, the values correctly recorded by one method could worsen. However, the
substantial deviations from the actual value were reduced, making the robust detection of
a single value more valuable.

2.6. Experimental Evaluation
2.6.1. Flight System and Camera Setup

The drone used for the experimental study was a tilt-wing UAS developed by the
Institute of Flight System Dynamics (FSD), RWTH Aachen University, and the flyXdrive
GmbH (FXD), in Aachen, Germany. It was based on the “Neo” tilt-wing UAS manufactured
by FXD and was provided within the FALKE research project (funded by the Federal
Ministry of Education and Research).

Tilt-wing aircraft are characterized by their ability to perform efficiently and fast
forward-flight for bridging longer distances as well as hover-flight, allowing vertical
takeoff and landing almost anywhere. Depending on the flight mode, an operation time
of up to one hour can be achieved, whereby in pure hovering flight, the system would
be limited to a shorter operation time. During the fixed-wing flight, a top speed of up to
130 km/h could be achieved. During the research project, the drone, displayed in Figure 5,
was further adapted by the consortium to include sensors, and a gimbal was required
towards the front of the aircraft for the remote assessment of vital signs. The 2-axis gimbal
was integrated into the system to compensate for system motion during video recordings.
This could be controlled on the roll-axis, from −90° to +90°, and the pitch-axis, from −15°
to +60°, with an actuation speed of 400 °/s.

The UAS was equipped with an Allied Vision Mako G-234C RGB (Allied Vision
Technologies GmbH, Stadtroda, Germany) camera utilizing a Sony IMX249 CMOS sensor
(Sony Group Corporation, Tokyo, Japan). This was chosen because it had a volume of
28 ccm, weighed 80 g, could capture raw 10-bit Bayer frames at up to 41.2 frames-per-
second (fps), and had a special resolution of up to 1936-by-1216 pixels. In addition, it had a
typical C-mount that could be used to mount any optics that could enable it to function at
various distances.

Figure 5. 3D rendering of the “Neo” tilt-wing UAS by flyXdrive used in the study.

2.6.2. Data Acquisition

For the recordings, the camera was equipped with a Kowa 50 mm 1” 5MP C-mount
lens (Kowa Optimed Deutschland GmbH, Düsseldorf, Germany). Frame capturing was
conducted in an 8-bit Bayer format of 1920-by-1080 pixels at a frame rate of 15 fps. For
managing and storing the recordings, a NanoPC-T4 (open-source) operating a custom
recording software was integrated into the UAS.
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2.6.3. Experimental Setup and Study Protocol

To experimentally evaluate our system for HR assessments, a group of 18 subjects
was recorded with the UAS during flight under different conditions. The experiments
were conducted with the assistance of healthy volunteers. The ethics committee of the
medical faculty of the RWTH Aachen University in Germany approved the conduct of the
study. Informed consent was obtained from all subjects involved in the study. The group of
volunteers consisted of 6 females and 12 males between the ages of 20 and 36, with mainly
white skin color.

As the UAS required a special ascent permit, the study had to be conducted in an
open field that was available for FSD test flights. Since there was no other infrastruc-
ture, especially for charging the UAS’s batteries and connecting electronic hardware, the
study required a significant amount of organizational and personnel effort. Therefore, all
recordings of the study were performed on a single day in winter.

The general setup of the recording is shown in Figure 6. The aim was to record the
volunteers at a viewing distance of 5 m and at a horizontal angle of 45°. Since no live view
was available during the recordings, a fixed position was measured for the volunteers in
advance of the recordings, which the UAS permanently targeted during the flight. For each
recording, the volunteers were asked to sit in the same exact position (Figure 6, (3)). Two
consecutive recordings were captured for each subject. These recordings were referred to
as Phases I and II. Recording time was limited to 30 s to better accommodate the drone’s
limited flight time and the triage aspects, as rapid assessments were a priority. To simulate
different HRs, the 18 volunteers were divided in three groups of 6 each. In the first group,
resting HR conditions were considered. In the second and third groups, the aim was to
simulate “abnormal” physiological conditions. To achieve higher than usual HRs during
Phase I and eventually Phase II, group two was instructed to exercise heavily immediately
before recording in order to simulate tachycardia. Group three was instructed to breathe
as slowly as possible during Phase I to lower the HR gradually. The recordings were
conducted during the daytime.

Figure 6. Experimental setup: UAS (1) equipped with gimbal and camera (2) was hovering within a
5 m viewing distance and target engagement angle of 45° of a volunteer subject at a fixed position (3).
The reference pleth signal was recorded by a patient monitor and stored on a computer (4). The rest
of the respective subject group was preparing for their recordings (5).
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For validation purposes, the vital parameters of the volunteers were assessed with
a patient monitor, Philips MP2 (Koninklijke Philips N.V., Amsterdam, The Netherlands).
Only the pulse oximetry was recorded at a sampling rate of 100 HZ.

3. Results
3.1. Recording Conditions

The recordings were conducted during daylight between 11 a.m. and 4 p.m. During the
recordings, the external weather conditions were harsh. The average wind force on the day
of the recording was 6–7, corresponding to a wind speed of about 14 m/s. In addition, the
weather was highly dynamic between sun, clouds, and light rain, which resulted in constantly
changing lighting conditions. The outside temperature was about 7 °C.

3.2. Target Acquisition and Adaptive Exposure Time Adjustment

The ability of the UAS to maintain the target acquisition area and the subsequent
adjustments of the exposure time was evaluated based on its ability to provide appropriate
time series of more than 15 s (i.e., 225 samples) as input for the presented approach.

The gimbal could not always compensate for the UAS displacement caused by the
gusty winds on the recording day, as the wind pushed the UAS up to 80 cm away from its
designated position. Due to these uncompensated shifts, the most crucial area-of-interest,
the face, was entirely or partially lost during the recording. The complete or partial loss
of the face consequently affected the automatic adjustment of the exposure times, which
used the pixel values of this ROI as input. This loss led to underexposed or overexposed
images, making HR assessments impossible. It also resulted in the inability to generate a
continuous time series of facial regions, which made it impossible to determine the HR as
well. In total, 12 out of the 36 recordings could not be analyzed and were removed from
the assessment. In six of the failed recordings, the time-series length was insufficient for
HR extraction, and in the other six, the faces were overexposed. An overview is shown in
Table 2.

Table 2. Overview of valid frames and achieved mean facial exposure for each subject and recording
phases.

Phase I Phase II

Subject Valid Frames Mean
Exposure Observation Valid Frames Mean

Exposure Observation

S01 423 208 61 215
S02 306 185 - - face out of area
S03 212 253 350 252
S04 - - face out of area - - face out of area
S05 - - over exposure 163 229
S06 - - over exposure - - over exposure
S07 219 212 260 214
S08 327 244 - - face out of area
S09 49 230 390 114
S10 390 147 390 230
S11 213 230 394 230
S12 218 180 280 232
S13 288 163 208 252
S14 - - over exposure - - face out of area
S15 279 253 220 252
S16 170 225 68 253
S17 365 228 - - face out of area
S18 - - over exposure - - over exposure

Of the other 24 recordings, an accumulated time-series duration of well over
20 s was achieved in 9 sets. A total of 3 recordings were under 10 s, and the remain-
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ing were in between 10 s and 20 s. Regarding the face-related exposure settings, in 14 of the
24 successful recordings, a mean facial pixel value v̄ within the target range of above 190
without signal clipping could be achieved. The remaining were split into 5 recordings that
were underexposed (v̄ < 190) and 5 recordings that were overexposed (v̄ > 250).

3.3. Heart Rate Assessment

The overall performance of the proposed approach for all valid datasets is shown in
Figure 7. The HR assessed by the UAS was compared against the HR-rate value provided by
the reference pulsometer via a Bland Altman plot. The reference was calculated as the mean
value of the HR values for the valid time points of the video recording. The combined value
of the CHROM- and POS-assessed HRs produced an almost mean-value-free distribution
of the determined values. Most values fell within the range of ±20 bpm and were in the
95% confidence interval of −28.5–27.5 bpm.

Figure 7. Bland–Altman plot of reference Pleth and rPPG.

To investigate the influence of the system’s motion and exposure-time adjustments on the
quality of the HR assessments, we split the 24 recordings into different subsets. Concerning
system motion, we considered the total length of the time series extracted by the pipeline.
The more frequently the face was lost due to the system motion, the shorter the total length.
This way, the dataset was split into 11 recordings, representing high system motion when
the length was shorter than 15 s (i.e., 225 samples) and 13 recordings of low system motion
when the length was greater than 15 s. Regarding the exposure, the set was split into the
14 recordings where the facial color-channel values were within the desired range and the
10 recordings where they were not. The cross-relations for all color-mixing methods regarding
the root-mean-squared errors (RMSEs) of all four sets, as well as the complete dataset, are
shown in Table 3.

Table 3. RMSE bpm for the different subsets according to the recording conditions.

Recordings Outside Exposure Range Recordings Inside Exposure Range All Exposure Ranges

Number of
Recordings RMSE (bpm) Number of

Recordings RMSE (bpm) Number of
Recordings RMSE (bpm)

High Motion
Recordings 5 19.3 6 12.7 11 16.0

Low Motion
Recordings 5 13.9 7 11.4 12 12.5

High and
Low Motion
Recordings

10 16.8 13 12.0 23 14.3
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The RMSE values showed that the approach benefited most from a more stable record-
ing and good exposure (low motion, inside exposure range), resulting in an RMSE of 11.4,
which was comparable to the other methods. The effects of image stability and exposure
were comparable in our recordings. Optimal illumination (high and low motion, inside
exposure range), as compared to a less optimal environment (high and low motion, outside
exposure range), led to an improvement of the RMSE by 4.8 bpm, whereas a stable record-
ing (low motion, all exposure ranges), as compared to an unstable one (high motion, all
exposure ranges), led to an improvement of 3.5 bpm. Furthermore, the respective worst-
case results (high motion, all exposure ranges) with 16.0 bpm vs. (high and low motion,
outside exposure range) 16.8 bpm, and the best-case results (low motion, all exposure
ranges) with 12.5 bpm vs. (high and low motion, inside exposure range) 12 bpm, were very
similar. Both indicated that the influence of the exposure and the significant system motion
had an equal effect on the quality of the acquired HR assessments.

4. Discussion

Our research represented an initial exploration of the feasibility of acquiring vital
parameters via drones under outdoor conditions. Furthermore, it evaluated the possibility
of automatically assessing individual HRs in the context of MCI scenarios and using a
specialized UAS. The data presented in the study were obtained through a feasibility inves-
tigation involving a small group of stationary and easily observable subjects. Therefore,
the findings should be regarded as preliminary indications of the feasibility and serve
only as a foundation for future research. To validate the findings and draw conclusive
inferences, further studies with a larger sample of subjects representative of the popula-
tion and a more extensive range of measured HRs are necessary, particularly under more
realistic conditions.

Despite the challenging weather conditions during the study, we found that the devel-
oped tilt-wing UAS was capable of producing recordings appropriate for HR assessments.
However, we also found that recording an individual’s face for a sufficient length of time
during powerful wind gusts was not feasible. In an actual application, this would have to
be detected automatically, so the recording time could be extended accordingly.

Losing the facial region also affected the adaptive exposure. In the 14 flawless working
recordings, the face was continuously within the frames during the adjustment. For the
other recordings, the algorithm either did not adjust because no facial ROIs were recognized
or arbitrary regions were incorrectly recognized as facial ROIs. The latter was mainly
responsible for the highly overexposed recordings. If more powerful hardware becomes
available, more robust, deep neural-network-based algorithms for facial detection could
be used [33]. The fusion of several sensors, e.g., by using an additional thermal-imaging
camera, could also ensure that only actual facial ROIs are detected.

Our results showed, additionally, that the general assessment of HRs via drones was
possible. Based on the RMSE with slight system motion and sufficient exposure, the values
achieved in our study were comparable with the results of other rPPG studies, which had
been performed under much more controlled conditions. The 11.4 bpm RMSE we achieved
was similar to the results of Nowara et al., who had achieved an RMSE of 11.0 ± 3.8 bpm
while driving under motion and using a similar approach [34]. However, the high-motion
results showed much room for improvements in the proposed system. A more stable
image, in which the face was consistently captured, and good illumination of the face
could contribute equally to better results, lowering the RMSE of 19.3 bpm to 13.9 bpm and
12.7 bpm, respectively.

In contrast to a real-world scenario where higher HRs are caused by stress or medical
conditions, the HRs after brief physical activity, such as those in our study, only remained
stable for the limited duration of a few seconds before rapidly decreasing and returning to
near-resting levels within one minute. This limited the evaluation of our method, as it relied
on a stable HR over time and, thus, could result in less accurate detection of higher HRs.
However, the data collected in our study, as displayed in Figure 7, did not demonstrate
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significantly higher deviations at higher HRs. One potential explanation for this could be
that the valid recording time periods in these cases were well below 20 s, thereby reducing
the impact of this effect.

The achieved average RMSE of 14.3 bpm showed that our approach could not provide
the precise HR measurements recorded in a clinical setting. However, it was suitable for
general HR estimations during MCIs. In such scenarios, the exact HR is not the focus,
but rather, determining whether the HR falls above or below specific thresholds is critical.
Additionally, a manual pulse assessment, commonly used in emergency services, can also
deviate by several bpm from the actual HR, particularly in overly stressful situations such as
MCIs. When considering the worst-case results of almost 20 bpm RMSE, the pulse detection
was well above the acceptable margin-of-error in triage. To address this limitation, future
research could focus on obtaining more accurate results and developing an error measure
that evaluates the quality of the respective measurements and notates poor measurements
as unreliable.

Using a 3-axis gimbal integrated into the UAS could solve the most significant issues
impeding the reliability of the system. One of the main reasons for the loss of the face
region during recording and related overexposure was that the 2-axis gimbal could not
compensate for the central disturbance axis. In addition, our results suggested that using a
3-axis gimbal could also increase the accuracy of the acquisition, as both the exposure and
the available recording lengths would be improved. The algorithms for automatic exposure-
time setting and robust facial recognition are typically integrated into the hardware of
most modern consumer cameras. However, to our knowledge, no commercially available
product combines a 3-axis gimbal with this camera technology that can also provide the
images in raw format for evaluation. This currently makes the use of specialized drones
with their own recording hardware a requirement.

Current research in rPPG is focused on training machine-learning-based methods
for HR assessments. Previous research has shown that with more available training data,
machine-learning-based methods have inevitably outperformed conventional approaches,
which has also been shown in face-mesh-generation networks. Furthermore, due to our
module-based approach, each step could be replaced by a machine-learning-based method
to improve performance successively in the future. Improvements in recording the rPPG
signal could also allow other blood-flow-related measurements to be assessed, such as
blood pressure [35], which is also relevant for emergency medical services.

However, using visible light cameras, in general, and remote rPPGs, in particular,
included their inherent limitations. It was essential that a person’s face be recorded while
unobscured, meaning that individuals not facing the drone could not be assessed at all. In
addition, the facial ROIs should, if possible, not be covered. Although previous research
has demonstrated that with facial hair and makeup, an rPPG measurement was still
possible [36], it could be assumed that heavy occlusions by blood and dirt, which would be
expected in MCI scenarios, could significantly impair the results of an HR assessment.

Additionally, the accuracy of HR detection using rPPGs was highly dependent on
the amount of light reflected from the skin, which varies depending on the individual’s
skin type. Individuals with higher melanin content in their skin, which absorbs a greater
proportion of environmental light than those with lower melanin content, tend to have less
accurate rPPG measurements [25,37]. This could result in people with darker skin tones
being disadvantaged during technically assisted triage. For these reasons, using a visible
light camera alone may not be sufficient for reliable HR assessment during MCIs. Instead,
it would be necessary to incorporate additional sensors, such as radar, which could record
vital parameters and the visibility of certain facial regions, independently of skin color.
However, it should be noted that radar systems are generally more expensive and more
susceptible to system movements than cameras.

Theoretically, our approach could also be used on consumer-grade drones. They
have the advantage that they are already available for most emergency services and first-
responder units. Furthermore, these drones have the necessary hardware to perform all
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the steps of our pipeline. However, the necessary data from the flight system sensors, the
camera gimbal, and the raw camera data are typically unavailable to the end-users due to
manufacturer restrictions, which limited our research to specialized flight systems.

Our special-purpose flight system had the advantage that its tilt-wing design and
autonomous flight enabled it to be sent out simultaneously with the first-responders since,
as compared to conventional drones, it could travel long distances. Thereby, it arrived on
the scene before the emergency services. Along with the improved recording hardware
and the possibility of assessing additional parameters relevant to triage, this could enable
it to perform an automated triage in advance for emergency services.

In order to apply the presented approach in real-world applications, it is necessary to
conduct further research on several factors that were intentionally disregarded in our study
but are expected to affect the reliability during real MCIs. These include, but are not limited
to, individuals in different poses, moving individuals, partially concealed individuals,
covered faces, and individuals not facing the camera. Additionally, distinguishing between
emergency responders and injured individuals is another critical factor that needs to be
explored in an actual application.

5. Conclusions

This paper presented the first detailed study of the usage of rPPGs for HR assessments
using a UAS in the context of MCI scenarios. We presented a detailed approach, incor-
porating both hardware and software concepts, for the most robust assessments possible.
First, we detailed the hardware settings and necessary sensor information to design an HR
assessment pipeline. Second, we showed that with this information, an assessment was
possible within the scope of an estimation, despite the harsh environmental influences. The
system could not evaluate one-third of the available records because the movement com-
pensation required due to harsh weather; however, with moderate system motion, results
were achieved that could compete with other approaches under controlled conditions. This
marks the first step towards an automated triage system during MCIs. However, further
research is needed to explore the impact of movement, body position, and the concealment
of facial regions and to develop a method for identifying unreliable measurements.
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Abbreviations
The following abbreviations were used in this manuscript:

UAS Unmanned Aerial System
MCI Mass-Casualty Incident
HR Heart Rate
rPPG Remote Photoplethysmography
ROI Region-of-Interest
GLM Generalized Linear Modeling
SNR Signal-to-Noise Ration
RMSE Root-Mean-Squared Error
bpm beats-per-minute
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