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Abstract: Recombinant adeno-associated virus (rAAV) is the most effective viral vector technology
for directly translating the genomic revolution into medicinal therapies. However, the manufacturing
of rAAV viral vectors remains challenging in the upstream processing with low rAAV yield in large-
scale production and high cost, limiting the generalization of rAAV-based treatments. This situation
can be improved by real-time monitoring of critical process parameters (CPP) that affect critical
quality attributes (CQA). To achieve this aim, soft sensing combined with predictive modeling is
an important strategy that can be used for optimizing the upstream process of rAAV production
by monitoring critical process variables in real time. However, the development of soft sensors for
rAAV production as a fast and low-cost monitoring approach is not an easy task. This review article
describes four challenges and critically discusses the possible solutions that can enable the application
of soft sensors for rAAV production monitoring. The challenges from a data scientist’s perspective
are (i) a predictor variable (soft-sensor inputs) set without AAV viral titer, (ii) multi-step forecasting,
(iii) multiple process phases, and (iv) soft-sensor development composed of the mechanistic model.

Keywords: recombinant adeno-associated virus; rAAV production; bioprocess optimization; soft
sensing

1. Introduction

Recombinant adeno-associated viruses (rAAV) are a class of viral vectors engineered
to express specific genes or therapeutic proteins in cells [1–3]. They are used in gene
therapy as vectors to deliver genetic material to specific cells with high efficiency and low
toxicity [1,4,5]. rAAVs are attractive vectors for gene therapy due to their ability to integrate
their genetic load into a specific location in the host genome, remain a silent passenger in
the host genome, and not cause disease [5–8]. Currently, rAAVs are being evaluated in
preclinical and clinical trials for a wide range of genetic diseases [3,6,9,10], including inher-
ited retinal diseases [11,12], muscular dystrophies [13–16], and hemophilia [17,18]. rAAVs
have also shown promise in gene therapies for cancer [19], cardiovascular diseases [20,21],
and neurological disorders [22,23]. The most common method for rAAV production is
through transfection of host cells, such as HEK293 cells, with plasmids encoding for rAAV
Rep and Cap proteins, and the therapeutic gene of interest [18,24,25]. However, for rAAVs
to be used effectively in gene therapy, large amounts of high-quality virus particles are
required [14,26,27]. Therefore, the production of high-quality virus particles is critical for
the advancement of rAAV-based therapies.

The current state of rAAV research is focused on developing new methods to produce
high-quality virus particles in large amounts [2,28–35]. Researchers have been develop-
ing new methods such as serum-free suspension systems [10,36], stable cell lines [37,38],
helper-dependent AAV systems [39], high-throughput systems [40], and other methods
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such as using baculovirus-insect cells systems [41]. Furthermore, Srivastava et al. [42]
describe the numerous manufacturing processes and difficulties faced during the manufac-
ture and storage of rAAV and provide a road map for enhancing manufacturing workflow
efficiency and extending product shelf-life. Dobrowsky et al. [43] present an overview of
the manufacturing-related obstacles resulting from using this vector for clinical purposes,
mainly focusing on the difficulties associated with the upstream process. However, these
studies do not comment on soft sensing as a mitigation strategy to improve the scalability,
reproducibility, and cost-effectiveness of rAAV production, which is crucial for commer-
cializing rAAV-based therapies. For example, currently, a typical production run of an
rAAV-vector treatment utilizing high-yield cell lines and large-capacity bioreactors may
only produce ten doses of a systemic gene therapy from a single batch at the cost of about
USD 100,000 per dosage (considering around 1 × 1017 vg per batch) [44]. Consequently,
any technological advancement that decreases the cost per dose would be immediately
advantageous [44]. Soft sensors have been used as a fast and low-cost approach to control
and monitor the bioprocesses by enabling real-time screening and control of critical process
variables of the upstream process to ensure product quality and process consistency [45–50].
Furthermore, this approach is a recommendation of the Food and Drug Administration’s
process analytical technology initiative (PAT). They suggest the continuous in-process
monitoring of critical process variables to assure product quality at every stage of the
manufacturing process [51].

The literature presentation of the usage of soft sensors for rAAV production is limited.
Recently, two review articles described approaches of relevance in soft sensors in rAAV
production. Tsopanoglou et al. [52] discuss the advantages and challenges of hybrid
modeling for upstream pharmaceutical bioprocesses, and Joiner et al. [53] proposed an
outline (high-level framework) for the future development of a hybrid mechanistic and
data-driven model for rAAV production modeling. However, the main challenges of
soft-sensing in rAAV production, such as the design and applications were, best to our
knowledge, not considered.

Therefore, to encourage and provide a background necessary for the advancement of
the field, this review article discusses the advantages and challenges of applying soft sensors
as a fast and low-cost methodology for rAAV production monitoring based on current
knowledge of rAAV biology and manufacturing. Furthermore, we present the possible
solutions to side-step these challenges and a glossary (Table S1 in the Supplementary
Material) provides common vocabulary bridging between data scientists and biologists.
The challenges from a data scientist’s perspective are: (i) a predictor variable (soft sensor
inputs) set without rAAV viral titer, (ii) multi-step forecasting, (iii) multiple process phases,
and (iv) soft sensor development composed of the mechanistic model.

In this review, we discuss the advantages of soft-sensing in the upstream process of
rAAV production in Section 2. We further discuss the soft sensor design in Section 3. The
following Section 4 is concerned with the four challenges and possible solutions in soft
sensor development for rAAV production from a data scientist’s perspective. Section 5
concludes with a final discussion and a summary of the topic.

2. Soft Sensor in Upstream of rAAV Production

Viral vector manufacturing is a complex process that involves an upstream and down-
stream component and takes into account the maintenance of the viral vector’s long-
term stability and efficacy. The upstream process is comprised of four steps: plasmid
development [54,55], cell expansion [56], plasmid transfection [8,57], and viral vector pro-
duction [25,42]. The challenges of the upstream process of rAAV production are the need to
increase the viral titer and decrease the variability in product quality [42]. These challenges
in rAAV manufacturing resemble those that monoclonal antibody manufacturers faced [42].
From a biological viewpoint, two approaches can be used: (i) developing stable rAAV
producer suspension cell lines that do not require triple transfection or (ii) utilizing other
innovative technologies that are plasmid-free [42]. There is active development in both
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areas, but these are long-term solutions requiring more investigation and investment. On
the other hand, mathematical modeling is a possible immediate solution from the bioman-
ufacturing monitoring and control viewpoint since it minimizes the production time and
cost while also learning about the critical process steps [52,58,59]. Mathematical models are
increasingly being used in the biomanufacturing industry to design and optimize different
processes and unit operations [59,60]. Mathematical modeling that can optimize the up-
stream process is based on the concept of soft sensors. Soft sensors use physical or machine
learning models that predict or estimate quantities of interest based on raw data [61,62].
They consist of mathematical models that use data from a measurement device (input) to
predict a quantity of interest (output), which is used to generate new information about the
bioprocess [50,63].

Biopharma 4.0 is the next step in the digitalization of biopharmaceutical manufactur-
ing that aims to optimize biopharmaceutical production efficiency by minimizing human
intervention and the uncertainty that arises from it [52]. Soft sensors are a crucial enabler
of Biopharma 4.0 since it enables real-time monitoring of variables that are difficult to
measure directly or that can only be measured at a low sampling frequency [52,64]. This
is a vital step towards the digital transformation of bioprocesses [52]. The application of
soft sensors in upstream rAAV production can contribute to the reduction of time and
production costs, the generation of relevant data, improved control of bioprocesses, in-
creased product quality, and the reduction of raw material waste [50]. The large potential of
mathematical models used in soft sensors lies in the possibility of establishing quantitative
links between critical process parameters (process variables that have an impact on a criti-
cal quality attribute) and Key Performance Indicator (KPI) providing data for bioprocess
optimization [50,52,65,66]. Furthermore, soft sensors are used as a base of advanced control
strategies for bioprocess optimization, such as digital twins [59,67,68], model predictive
control [69,70], and model-based control [45].

Soft sensors have been used to control and monitor the production of mAb in Chi-
nese hamster ovary (CHO) cell cultures, and enable the real-time screening and control of
critical process variables of the upstream process to ensure product quality and process
consistency [71,72,72–74]. Besides applying soft sensors in mAb production, they were also
developed for a number of other bioprocess applications. For example, Zhang et al. [75] used a
soft sensor based on artificial neural networks to monitor the fermentation process by measuring
glycerol, 1,2 propanediol, and biomass. Chromatography monitoring was performed with a soft
sensor based on partial least squares regression with the help of mid-UV absorption spectra [76]
as well as Fourier transform mid-infrared spectroscopy [77]. Several papers used soft sensors
to estimate the biomass and substrate concentrations [78–82]. Krishna et al. [83] calculated the
lactose and ethanol concentrations with deep learning-based soft sensor models.

Since soft sensors have helped improve quality and production rates for mAbs [71,72,72–74],
one can expect that a similar methodology would be beneficial for rAAV production. rAAV
production utilizes a mammalian cell culture-based process similar to mAb production and
faces a similar upstream challenge as was faced by mAb production [42,52,84]. Therefore,
soft sensors have a high potential to provide insight into the underlying micro and macro-
scale phenomena of upstream bioprocesses of rAAV manufacturing and improve the yield
and quality of production [52].

3. Designing Soft Sensors

Soft sensor design should combine analytical and computational methods with ade-
quate mathematical models for efficient modeling and accurate predictions of bioprocesses.
Three kinds of modeling approaches are commonly used: the Data-Driven Model (DDM),
the Mechanistic Model (MM), and the Hybrid Model (HM), which aims to combine the
advantages of DDMs and MMs [50].
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3.1. Data Driven Models

DDMs are built purely on empirical observations of a process [50]. They establish
links between input and output variables (system state variables) without having explicit
knowledge of the physical laws in the system [50,85]. DDMs are mainly based on machine
learning techniques that may be used to create models that can either supplement or
completely replace physics-based models. DDMs learn the link between the inputs and
outputs of a system from a training data set, and after the DDM has been trained, its
ability to generalize to new data may be assessed using an independent data set [50,85].
Some of the most common data-driven modeling techniques used in related applications
are: fuzzy rule-based systems [85], Partial Least Squares (PLS) [76,77], Artificial Neural
Networks [75], Support Vector Machine (SVM) [85], and Deep Learning (DL) [86]. In the
last two decades, DL models composed of multiple hidden layers have been shown to be
capable of learning data representations with various levels of abstraction [86]. As a result,
these methods have dramatically improved many domains, such as drug discovery and
genomics [87]. Research that uses DL methods in soft sensors has been gaining popularity
in recent years [86]. The advantages of DL approaches over conventional algorithms
mainly result from (i) learning relevant process behaviors without knowledge or experience
about process mechanisms and (ii) taking full advantage of the massive amount of data
available in public data sets for performance improvements [49,86,88]. Typical models,
i.e., architecture, in the DL field for soft sensors include Autoendocoder (AE), Convolutional
Neural Networks (CNN), and Recurrent Neural Networks (RNN), such as Long Short Term
Memory (LSTM) networks [86].

DDM Advantages. DDMs, compared to kinetic models, have more parameters and
structures for data regression, allowing the integration of various process behaviors ob-
tained under different operating circumstances in a single model. This is done using a
training set that can represent all possible behaviors seen in the system [89]. In addition,
DDMs can identify patterns and trends in complex and heterogeneous data, thus facilitating
informed decisions and actions without insight into the fundamental mechanism of the
process [52,90]. Another important advantage of DDMs is that the development time is
shorter than that of MM design [52].

DDM Disadvantages. Unfortunately, DDMs have several significant disadvantages.
For example, complex DDMs, such as deep learning models, perform predictions without
consideration of the underlying mechanisms, resulting in parameters with no physical,
chemical, or biological meaning. The variables are based on correlations and not necessarily
on causation [52]. Furthermore, poor data quality and low data quantity are a major
concern for DDMs. The variables can only be predicted with high accuracy in the space
adequately represented by the training set. This means that generalization ability relies
on training with large amounts of data [52,90]. Although designing DDMs is usually less
time-consuming than designing an MM [52,91], DDMs may require pre-processing steps,
which can be time-consuming [52]. DDMs need accessible, representative, and reliable
training data sets. DDMs can have limited bioprocess control and optimization capabilities
and frequent model drift (the degradation of the prediction power of the model due to the
changes in the statistical properties of the input features, target variable, or relationships
among variables). Re-calibration is often time-consuming [50] and data demanding.

DDM in upstream rAAV production. DDMs are often applied in academia and
industry, particularly in the chemical process sectors [50]. An initial study using DDMs for
the upstream processing of rAAVs was recently published. Iglesias et al. [92] developed an
approach for handling a massive proportion of missing labels in multivariate, multi-step
time series forecasting. The approach is a two-step process where interpolation (using
Gaussian Processes Regression (GPR) and domain knowledge from experts) and prediction
modeling are separated to integrate the prior domain knowledge. The authors evaluated
their approach by developing a conceptual soft sensor to forecast the biomass of HEK293
cells in rAAV production. The soft sensor was designed using Long Short-Term Memory
encoder-decoder architecture to forecast the biomass in the next 1 h based on measuring the
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last hour of three input features representing the model’s input. The input features include:
(i) Cumulative O2 (mL), (ii) Dissolved Oxygen (%), and (iii) Cumulative Dissolved Oxygen.
The model was trained and tested with a real data set obtained during rAAV production
performed in 3L bioreactors [92].

3.2. Mechanistic Models

Physical, chemical, and biological insights and understanding of the transformation
processes in producing organisms are used in MMs development. The recommended
mechanistic technique for capturing the underlying events during cell culture is kinetic
modeling [50,52,93]. Mechanistic, white-box or parametric models are considered a priori,
based on the knowledge of the process. The number of model parameters is fixed, and they
might have a physical or empirical interpretation depending on the level of knowledge.

Usually, MMs are represented as systems of ordinary or partial differential equa-
tions, and the numerical values are assigned to the MMs parameters via parameters
estimation [94–98] (see Section S1 in the Supplementary Materials). Two approaches that
can be used are Neural Ordinary Differential Equation (NODE) [99–106] and Bayesian
Inference [107,108] (see Section S1 in the Supplementary Materials). Furthermore, MMs
can be categorized as structured and unstructured models [52,93].

Unstructured models treat all cells as black boxes, assuming they are all in the same
physiological condition. Extracellular factors are the only ones that impact cell growth and
behavior. Unstructured models rely on nutrient and metabolite concentrations in cultures
while ignoring intracellular activities. In mammalian cell cultures, unstructured kinetic
models have also been utilized to estimate recombinant protein output and can be used
in the upstream rAAV production [93,109]. The Monod model, which assumes that the
concentration of a substrate is the growth limiting factor, is a commonly used unstructured
model [93]. For example, Kornecki et al. [84] used a Monod-type process model for the sim-
ulation of dynamic cellular states (i.e., lag, exponential, stationary, decline phase), as well
as the uptake of substrates (i.e., glucose, glutamine), production of metabolites (i.e., lactate,
ammonium), and the product (i.e., monoclonal antibody). Because of the dynamic behavior
of the culture, yield coefficients can be quantitatively defined by systematically identifying
cellular phases (i.e., lag, exponential, stationary, decrease). In addition, cell-dependent
half-maximum rates influence the growth rate, and the model parameters were based on
maximal growth rates at various substrate concentrations. They were not susceptible to
change during culture.

A structured model expresses intracellular activities in structural and physiological
terms, providing the most accurate picture of a cell [93,109]. Biomass is divided into sec-
tions with diverse functions in structured models. As a result, cells are not considered
homogeneous, increasing the complexity of the models and the number of model parame-
ters. It is essential to point out that, although changes in cell attributes may be described,
it is very commonly assumed that all cells are the same and change at the same rate. In
addition, most kinetic models in the literature are unstructured, and a structured model is
not appropriate for most cell lines [93,109].

Structured and unstructured models are further divided into segregated and non-
segregated models. Segregated models take into account cell populations when not all
cells are homogeneous, non-segregated models consider that all cells are in an identical
state [52,93]. Segregation refers to cell population heterogeneity. Similarly to structure, if the
model is non-segregated, it does not have this information, and if it is segregated, it has the
information [52]. Segregated models are more complex than non-segregated models. Their
complexity makes parameter identification and the utilization of optimization algorithms
challenging and time-consuming [93].

MM Advantages. The advantage of MMs is that they aim to represent process knowl-
edge and generally show a higher extrapolation power than DDMs, leading to more
applications. Once they are developed, MMs are reliable and reproducible, offering accu-
rate and relevant information about the process. MMs are based on mechanistic knowledge



Bioengineering 2023, 10, 229 6 of 17

in biology, chemistry, and physics and yield enhanced process understanding. MMs are an
excellent candidate for optimization and can be used for model-based design of optimally
informative experiments.

MM Disadvantages. The development of MMs may take longer than that of DDMs.
The MMs require expertise in the application domain. If an MM is too simple, it may have
limited extrapolation power [91]. On the other hand, if there are too many parameters, then
the model is hard to train and may lack robustness and universality [52]. Although MMs
seem to provide the most accurate and in-depth information, the main disadvantage is that
extensive experimental effort is required for model validation. Due to the requirement for
in-depth knowledge of the process, it may not be easy to automate and formalize model
assembly. Finally, MMs may be difficult to deploy within the industry because of the
high level of expertise required for operation and calibration [50]. When there is a limited
understanding of underlying intracellular mechanisms and regulation between process
inputs and outputs in mammalian cell cultures, the calibration of an MM is a difficult
task [94,95].

MM in upstream rAAV production. We are at the beginning of the mathematical
modelling for rAAV production. Nguyen et al. [110] presented the first structured MM
for rAAV production. The authors proposed a mechanistic model for synthesizing rAAV
viral vectors by triple plasmid transfection based on the underlying biological processes
gathered from wild-type rAAV to better understand the dynamics of recombinant viral
generation. The model includes essential phases such as exogenous DNA delivery, the
reaction cascade that produces viral proteins and DNA, resulting in filled capsids, and the
Rep protein’s complex activities as a regulator of packing plasmid gene expression and a
viral DNA packaging catalyst. This model has demonstrated that it can provide valuable
insights into experimental data, point out process bottlenecks, and direct future studies.
On the other hand, recently, Iglesias et al. [111] presented the first Extended Kalman Filter
(EKF) that uses an unstructured mechanistic model as a process model to monitor rAAV
production. The proposed approach uses only online viable cell density (Xv) measurements
to estimate the other process state variables, including the concentrations of glucose (GLC),
glutamine (GLN), lactate (LAC), ammonium (AMM), and rAAV viral titers measured at a
low sampling frequency.

3.3. Hybrid Models

Hybrid or grey-box models combine nonparametric and parametric models that are
based on different types of knowledge [112–114]. Furthermore, the vast majority of hybrid
modeling studies explored the combination of MM and DDM [115]. The information avail-
able through mechanistic modeling is the a priori knowledge in the form of material and
energy balances, thermodynamics, and kinetic laws. In addition, mechanistic relationships,
such as physical, chemical, or biochemical kinetics, are covered by mechanistic models [93].
Data-driven knowledge, in the form of heuristics, is the second type of knowledge. For
example, heuristic process knowledge (e.g., thresholds for inhibition, limitation or optimal
temperature, pH, DO ranges) is frequently expressed in fuzzy sets, and historical data are
transformed into models by neural networks [93].

Hybrid modeling compromises the benefits and drawbacks of MMs and DDMs.
Tsopanoglou et al. [52] state that HMs may lead to safer, more effective, personal, and
low-cost products. While MMs can provide predicted outcomes, their construction is
time-consuming and needs comprehensive process understanding. DDMs, on the other
hand, are easy to construct and use, but they only have acceptable descriptive features
within the range of the data they are based on. Compared to solely data-driven modeling
techniques, the major benefit of hybrid models is that they can achieve higher accuracy,
more efficient model creation, and better extrapolation features [93]. The first challenge
in developing HM is figuring out the right way to combine MM and DDM for a specific
application, and this can be done in parallel or sequential (cascade) ways [112,116]. In
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addition, one disadvantage of HM is that the implementation and their parameterization
algorithms are highly prone to errors and are time-consuming [112,116].

HM in upstream rAAV production. Hybrid models have been successfully applied
in bioprocess control, monitoring, and optimization in bioreactors. Therefore, they could be
utilized to design soft sensors [50,93] but, so far, no HM has been developed and reported
to rAAV production monitoring in the upstream process.

4. Challenge of Soft Sensors in Upstream rAAV Production and Possible Solutions

Since soft sensors are sometimes the only way to determine critical process parameters
(CPP) or critical quality attributes (CQA) online, they have grown in importance within
quality by design (QbD) and process analytical technology initiatives. However, data
scientists face several significant challenges in developing soft sensors for rAAV produc-
tion: (i) Predictor variable (soft sensor inputs) set without rAAV viral titer, (ii) Multi-step
forecasting, (iii) Multiple process phases, and (iv) soft sensor development composed
of MMs.

4.1. Predictor Variables (Soft Sensor Inputs) Set without rAAV Viral Titer

The current techniques for monitoring rAAV manufacturing in bioreactors are expen-
sive, laborious, and time-consuming. The measure of the CPPs, such as cell density and
metabolites, and the quantification of the CQAs, such as rAAV genome titer by quantitative
polymer chain reaction (qPCR)/Droplet Digital polymerase chain reaction (ddPCR) or viral
capsid titer by Enzyme-linked immunosorbent assay (ELISA), takes one day to complete
and requires sampling [117]. Recently, in situ monitoring technologies, such as Raman
spectroscopy [118,119] and fluorescence spectroscopy [120–122], have been developed to
estimate the cell density and measure metabolite concentrations in mammalian cell cul-
tures in real-time but there were no reports thus-far on using them to estimate rAAV titer.
Additionally, the setup of a spectroscopic system is expensive in terms of both financial
outlay and calibration work [123]. Therefore, in most cases, rAAV viral titer measurements
are unavailable during production. So, the challenge is to design a soft sensor that does
not rely on rAAV viral titer measurements as its input. A soft sensor can have cell density
or/and metabolite concentration (i.e., GLC, GLN, LAC, and AMM) as input and the rAAV
viral titer only as output. For example, it is impossible to use past rAAV viral titer measure-
ments to predict the present/future state because they are unavailable during the rAAV
manufacturing process. In most cases, the quantification of viral titer in rAAV production
is done only at the end of production. After the production is completed, the samples
collected are used to quantify the viral titer, and the ddPCR takes 1 day to complete the
process. Therefore, during the rAAV manufacturing, we have only cell density, GLC, GLN,
LAC, and AMM that are measured offline every ∼30 min, or cell density that can be easily
measured online.

Possible Solution. A soft sensor developed with a DDM, such as an LSTM, can learn
how to predict the rAAV viral titer (CQA) based only on CPP, such as cell density, GLC,
GLN, LAC, and AMM. More details about the development of an LSTM can be found
in [92,124].

4.2. Multi-Step Forecasting

Time-series forecasting models predict future values of one or more dependent vari-
ables based on the past values of one or more independent variables [124,125]. Time series
models can be univariate (with only one time-dependent or independent variable) or mul-
tivariate (with several time-dependent and independent variables). Although there are
significant differences between univariate and multivariate models, most deep-learning
models can handle both. For example, the model can have multivariate time series as
inputs and univariate time series as the output [126,127]. Time series models can be defined
with regard to the forecasting horizon in the n-step-ahead term. For example, if the model
forecasts a point that is a one-time step ahead in the future, it is denoted as a one-step-ahead
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forecast. Similarly, multi-step forecast predicts n times-steps ahead [126,127]. In the ma-
jority of soft sensors applied in bioprocess applications, the one-step multivariate forecast
is the most common approach used to estimate biomass and viral titer [49,86,128–137]. It
is standard practice when forecasting the biomass to use lagged observations t − 1 time
instant as input variables to forecast the variables at the current time step t. An effective
strategy for improving the process monitoring capability is to predict rAAV viral titer
during the upstream process to assess future bioprocess conditions. It would be helpful
to forecast the time of transfection and harvest (the time to stop the bioreactor after the
production achieves the plateau). However, this would require a multivariate multi-step
forecasting soft sensor, and the challenge here is to design a soft sensor to multi-step forecast
the viral titer 24 or 48 h ahead. Unfortunately, this is difficult because of the accumulation
of errors, reduced accuracy, and increased uncertainty.

Possible Solution. A soft sensor developed with a DDM, such as an LSTM, can be
trained/tested to multi-step forecast a CQA based on previous time series data of CPPs [92].
LSTM is capable of capturing the patterns of long term, and this can provide greater accu-
racy. Furthermore, an ensemble approach could be used in LSTM development to perform
forecasts with uncertainty [138]. Figure 1 shows a possible approach for data-driven soft
sensor development for multi-step forecasting of rAAV viral titer. This approach aims
to deploy unstructured MMs to generate training data sets for a DDM in order to learn
to forecast (multi-step) CPP and CQA in rAAV production, including viable cell density
(Xv) and rAAV viral titer, the two main critical process variables, see Figure 1. They are
essential because the timing of transfection and harvest procedures, as well as monitoring
the overall status of the culture, depends on the cell concentration. Furthermore, forecasting
the rAAVviral titer is particularly interesting to the pharmaceutical manufacturing industry
because it is a CQA. The first stage of this approach starts with the design of experiments
(DoE) [116,139] to systematically investigate the relationship between CPPs (input factors
such as Xv, GLC, GLN, LAC, and AMM) and rAAV viral titer (CQA) to have a better under-
standing of the impacts of different levels of each CPPs (different cell culture conditions)
on the rAAV viral titer. In this stage, the measurements can be online for Xv, GLC, GLU,
LAC, and AMM using spectroscopy-based techniques [64,118–122,140–146], and offline
for rAAV viral titer using qPCR/ddPCR or ELISA, and they are stored in a data storage.
These measurements from the DoE represent different cell culture conditions for rAAV
production and are obtained with missing data and at different scales, since, for example,
offline data are not collected at the same frequency as online data. Therefore, they should
be integrated to generate an information-rich dataset (to enable effective DDM training),
possibly performed with an unstructured MM. The measurements of data storage can
be used for the parameter estimation of an unstructured MM regards the different rAAV
production conditions, and it can generate a training dataset (information-rich) to enable
DDMs such as LSTM models to learn to forecast the Xv and rAAV viral titer on different
cell culture conditions of rAAV production. After the training, this DDM can be used in the
production stage to perform a multi-step forecast of the timing of transfection and harvest
procedures based on the CPP, and CQA estimation obtained from online measurements,
see Figure 1. More details about the development of an LSTM can be found in [92,124].

This approach is based on [52,92,147]. It would not improve process comprehension
regarding rAAV production, but it could help apply soft sensors in bioreactors for process
optimization by efficiently forecasting a CQA, such as rAAV viral titer.
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Figure 1. Soft sensor development approaches based on DDM for rAAV production monitoring. A
possible approach is use unstructured MM to generate an information-rich training dataset and DDM
for multi-step forecasting of rAAV viral titer.

4.3. Multi-Phase Process

The upstream process of rAAV production is a multi-phase process composed of cell
expansion and viral vector production. In the cell expansion phase, the cells are multiplied
until they reach the required cell density to start the plasmid transfection, and in the viral
vector production, the virus is produced for many days in the transiently transfected
cells. Therefore, in developing a soft sensor methodology, it is essential to consider multi-
phase characteristics of the upstream process in rAAV production since the relationships
between state process variables (which can be physical, chemical, and biological) can vary
substantially in the individual phases. Online monitoring should furthermore generate
information regarding transitory process states [50]. Then, monitoring these phases can
generate essential information that allows the tracking and fine-tuning of crucial process
parameters in the upstream process, resulting in more efficient control, optimal harvest
timing, and enhanced end-product quality.

Possible Solution. There are two potential directions. The first strategy would be
to divide the process data sets into individual phase segments and develop separate
sub-models for these segments [63]. In this approach, the overall model comprises one
multi-variable sub-model for the cell expansion and the other for the viral vector production
phase. A similar approach was developed by Selişteanu et al. [148] to model Monoclonal
Antibody Production, where they created sub-models corresponding to the dynamics
of viable cell concentration and dead cell concentration that are used in the time period
of the exponential growth phase. A clear definition of the phases is a challenge in a
multiple-model framework since biological effects can overlap [93]. However, algorithms
for phase detection can be based on the shape of process trajectories or the correlation
structure of process variables. For the detection and division of process phases, trajectory-
based and correlation-based methods have been proposed in the literature [63]. The
second approach involves modeling the entire upstream process rather than just one phase,
considering interactions between phases or/and their relative relevance to the final product
quality [149]. This method, known as multi-block, divides vast data collections by the
process state variables into functional blocks, typically one block per phase. Then, the
blocks are combined to most accurately forecast product state variables. An example of
multi-block modeling is multi-block partial least squares [149].

4.4. Soft Sensor Development Composed of MMs

The soft sensor design based on HM, composed of MM and DMM, could be a challeng-
ing task in the case of rAAV production in bioreactors. The main concern is with MM, since
the current state-of-the-art knowledge related to viral vector manufacturing modeling is still
limited. There are relatively few works that focus on critical factors in rAAV manufacturing
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processes [53,110,111]. The first MM for rAAV production was published only recently by
Nguyen et al. [110], and it is a structured MM. The model describes the kinetic behavior of
transient transfection at the sub-cellular level and does not enable the macro-modeling of
rAAV production at a bioreactor level (macro-scale) [116]. Furthermore, the 21 variables
(species) available in this structured mechanistic model are not commonly measured in the
bioreactor as bioprocess parameters, such as cell density, glucose (GLC), lactate (LAC), and
oxygen [64]. This reduces the applicability of this structured MM to process optimization
and the control of rAAV production at the bioreactor level. To our knowledge, there is
currently no HM soft sensor developed and reported for rAAV production monitoring
besides a proposal for HM development published recently by Joiner et al. [53]. The authors
proposed a framework at a very abstract level that can be used as the initial direction for
developing a hybrid mechanistic and data-driven model for rAAV production. However,
this proposal suggests incorporating all mechanistic aspects of HEK293 metabolism and
rAAV into a single HM, and this could be a very challenging development due to process
complexity when involving structured and unstructured mechanistic models (multiscale
modeling) [116] and a lack of information about the kinetic parameters in the literature.

Possible solution. One solution to facilitate the hybrid soft sensor development is
to adapt unstructured MM from the literature since, most often, operational and control
processes for optimal bioreactor performance can be derived from unstructured MM [150].
For example, unstructured MMs have been widely employed in monoclonal antibody
production using Chinese hamster ovary (CHO) cells, and this approach could be used
in rAAV production monitoring to speed up the optimization of the upstream process as
well [2]. In this sense, the unstructured MM proposed by Kornecki et al. [84], which is
also based on mammalian cell cultures in rAAV production, is a good starting point from
which to design a hybrid soft sensor for rAAV production monitoring without considering
the complexity of a triple plasmid transfection process. Therefore, this approach can help
apply soft sensors in bioreactors for rAAV production monitoring, even though it cannot
improve the understanding of the rAAV production mechanism.

Figure 2 shows a possible approach for developing a soft sensor based on HM, consid-
ering an unstructured MM as the sub-model. In this development approach, an HM for
real-time monitoring of rAAV viral titer could be developed by combining an extended
Kalman filter and an artificial neural network (ANN), see Figure 2. The EKF requires
process and measurement models to estimate a process’s state variables and, generally,
an unstructured MM is used as a process model. For example, the EKF proposed by
Iglesias et al. [111] could reduce the number of devices for monitoring the state variables
and enable the online monitoring of the rAAV viral titer. However, the parameter estima-
tion for the process model (an unstructured MM) performed by the joint approach in EKF
should be improved because it does not guarantee convergence. Alternatively, another
method can estimate parameters outside the EKF calculation, such as an ANN. Therefore,
the first stage of this approach would be training and testing an ANN to estimate the
parameters of unstructured MM used as a process model of EKF, and this can be done
similarly to the first stage of the strategy for soft sensor development based on DDM
described in Section 4.2, see Figure 1. The difference is that here, the DDM (ANN) only
estimates the parameters θ of the EKF process model. See Figure 2. After the training, this
ANN model can be used in the production stage to work with the EKF to perform real-time
estimations of rAAV viral titer using the online measurements of CPP such as Xv, GLC,
LAC, and AMM; see Figure 2.

This approach is based on [111]. It would not improve process comprehension re-
garding rAAV production, but it might help apply soft sensors in bioreactors for process
optimization by efficiently real-time monitoring a CQA, such as rAAV viral titer. It is
important to point out that hybrid models involving Kalmen filter methods were proposed
in [151,152] for the real-time monitoring and control of mammalian cell culture and pre-
sented significant results. More details about EKF can be found in [111].
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Figure 2. Soft sensor development approach based on HM for rAAV production monitoring. A
possible approach is combining unstructured MM, DDM and EKF for real-time monitoring of rAAV
viral titer.

5. Conclusions

Recombinant adeno-associated virus (rAAV) has rapidly emerged as one of the most
attractive viral transfer tools, and several new advances have been made in different
aspects of rAAV production. However, it is still a nascent gene therapy field that demands
robust, scalable, and economically viable manufacturing processes. Therefore, optimizing
upstream processing of rAAV production is extremely important to maximize viral titer and
find stability for higher product quality, and soft sensors can be a valuable tool for this task.
Furthermore, the cost-effectiveness of rAAV production is crucial for the commercialization
of rAAV-based therapies, and soft sensing can play a key role in improving this cost-
effectiveness by providing fast and low-cost monitoring of rAAV production. The others
advantages of using soft sensors include productivity improvement, and product quality
stabilization, which are the typical needs and goals of a manufacturing company. Despite
the limited literature on the use of soft sensors in rAAV production, this review article
discussed the advantages and challenges of applying soft sensors in this area and provided
possible solutions to overcome these challenges. The challenges and requirements for the
soft sensor development in upstream AAV production are: (i) Identifying the appropriate
predictor variables (soft sensor inputs) without the use of rAAV viral titer; (ii) Design of
a soft sensor for multi-step forecasting, including the time of transfection and harvest;
(iii) Handling of the multi-phase characteristic of the upstream process; and (iv) Design
of soft sensor composed of MMs. In the Biopharma 4.0 era, smart bio-manufacturing
supported by soft sensors will produce widely accessible biopharmaceuticals that are safer,
more effective, personalized, and cost-efficient. Additionally, sophisticated techniques, such
as digital twins for the bioreactor process, may find a foundation in soft sensor technology.

Supplementary Materials: The following are available at https://www.mdpi.com/article/10.3390/
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