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Abstract: Background: Diabetic retinopathy (DR) is the leading cause of visual impairment and
blindness. Consequently, numerous deep learning models have been developed for the early detection
of DR. Safety-critical applications employed in medical diagnosis must be robust to distribution shifts.
Previous studies have focused on model performance under distribution shifts using natural image
datasets such as ImageNet, CIFAR-10, and SVHN. However, there is a lack of research specifically
investigating the performance using medical image datasets. To address this gap, we investigated
trends under distribution shifts using fundus image datasets. Methods: We used the EyePACS dataset
for DR diagnosis, introduced noise specific to fundus images, and evaluated the performance of
ResNet, Swin-Transformer, and MLP-Mixer models under a distribution shift. The discriminative
ability was evaluated using the Area Under the Receiver Operating Characteristic curve (ROC-AUC),
while the calibration ability was evaluated using the monotonic sweep calibration error (ECE sweep).
Results: Swin-Transformer exhibited a higher ROC-AUC than ResNet under all types of noise and
displayed a smaller reduction in the ROC-AUC due to noise. ECE sweep did not show a consistent
trend across different model architectures. Conclusions: Swin-Transformer consistently demonstrated
superior discrimination compared to ResNet. This trend persisted even under unique distribution
shifts in the fundus images.
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1. Introduction
1.1. Background

Diabetes is rapidly increasing worldwide, affecting an estimated 537 million people [1].
Approximately 40–45% of people with diabetes are likely to develop diabetic retinopathy
(DR) during their lifetime, a leading cause of visual impairment and blindness [2]. It is
important to regularly screen patients with diabetes because early symptoms of DR can be
subtle and go unnoticed. Early detection of DR can halt its progression; however, manual
diagnosis by ophthalmologists is time-consuming and costly. In addition, there is a shortage
of ophthalmologists as the number of diabetes cases increases every year, especially in
poor regions such as developing countries. To address these issues, automated screening
technologies have received considerable attention, and several deep learning models have
been developed to detect DR [2–5].

The models used in safety-critical applications, such as medical diagnostic devices,
must be both discriminative and well calibrated. A model is well calibrated when its output
reflects the true correctness likelihood. Recent studies have shown that modern deep
learning models are highly discriminative but poorly calibrated [6,7]. Because safety-critical
applications make decisions based on the confidence score of the model, overconfidence
and underconfidence are significantly detrimental to patients.

In addition, it is critical that the models used in safety-critical applications are robust
to distribution shifts where the distributions of the training and test data differ. Distribution
shifts can occur naturally in different real-world settings and are influenced by factors
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such as different hospitals, cameras, or lighting conditions. Previous studies have shown
that although deep learning models are highly accurate when the distributions of the
training and test data are the same, they can significantly underperform under distribution
shifts [8,9]. Therefore, it is extremely important to evaluate models under distribution shifts
assumed to occur in real-world settings.

1.2. Related Works
1.2.1. Discrimination and Calibration Abilities of Deep Learning Models

There have been many reports on the discrimination and calibration capabilities of
deep learning models [7,10–14]. Some studies have suggested that modern high-capacity
neural networks, such as ResNet, become overconfident by overfitting to a negative log-
likelihood (NLL) [7,15]. In contrast, more modern neural networks with non-convolutional
architectures, such as the Vision-Transformer (ViT) and MLP-Mixer, have been reported to
possess superior discriminative and calibration abilities [10]. Reportedly, the model size
and pre-training scale do not fully explain calibration trends and the model architecture is
a critical determinant of calibration [10].

1.2.2. Robustness of Deep Learning Models

In recent years, many studies have investigated the robustness of deep learning models,
particularly convolutional neural networks (CNNs) and Transformer-based models. While
one study suggested that the robustness of CNNs and ViTs is comparable [16], many studies
have reported that ViTs are more robust than CNNs [17–20]. One reason for the robustness
of ViT is that it has a strong shape bias and is similar to the human cognitive system.
Therefore, ViT is expected to have better generalizability than CNNs under distributional
shifts [19–21]. The robustness of MLP-Mixers has been inconclusive, with one study
suggesting that MLP-Mixers are as robust as CNNs and another suggesting that MLP-
Mixers are superior to CNNs [10,22].

1.2.3. Distribution Shift of Fundus Image

In clinical settings, several factors such as lighting conditions, unexpected eye move-
ments, and ocular lesions including cataracts can affect the quality of fundus images,
resulting in uneven illumination, blurring, and low contrast. The degradation of fundus
images can affect the diagnosis of DR.

Common image corruptions, including Gaussian noise, snow, frost, brightness, and
contrast, are often used to induce distribution shifts in natural image datasets [23]. However,
there are concerns regarding the application of these image corruptions to fundus images
because of the unique noise that occurs in fundus images.

1.3. Objective

Several of the datasets used to investigate model performance under distribution
shifts are natural image datasets, such as ImageNet, CIFAR-10, and SVHN, and there is a
lack of research investigating model performance under distribution shifts using medical
datasets. In this study, we used the retinal fundus image dataset EyePACS [24] to diagnose
DR. The purpose of this study was to verify whether the previously reported trends in
model performance under distribution shifts remain consistent under unique distribution
shifts in fundus images.

2. Materials and Methods
2.1. Dataset

In this study, we used the open-source DR database EyePACS, which contains 35,126 fun-
dus images of both eyes from different racial backgrounds. We obtained permission from
the EyePACS office to access and use the dataset for research purposes (Supplementary
Materials).
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2.2. Outcome

Each image was labeled with DR severity levels based on the International Classi-
fication of Diabetic Retinopathy (ICDR) scale. The ICDR scale categorizes DR based on
the presence of new blood vessels and distinguishes between non-proliferative diabetic
retinopathy (NPDR) and proliferative diabetic retinopathy (PDR). Within NPDR, there are
further subcategories: mild, moderate, and severe. Therefore, the ICDR classifies diabetic
retinopathy into five levels of severity: no DR, mild NPDR, moderate NPDR, severe NPDR,
and PDR. In our study, we adopted a two-class classification task to predict referable DR
and defined referable DR as moderate NPDR, severe NPDR, and PDR [25].

2.3. Experimental Pipeline

The experimental pipeline is illustrated in Figure 1. The EyePACS database was
randomly divided into training (80%), validation (10%), and test (10%) datasets. The
training data were used to fine-tune the pre-trained model, the validation data were used to
tune hyperparameters such as the number of epochs, and the test data were used to evaluate
model performance on in-distribution data and under distribution shifts. In-distribution
refers to scenarios in which the fundus image remains unaltered, whereas a distribution
shift refers to scenarios in which noise is introduced into the image. Following previous
studies, we induced a distribution shift by introducing three types of noise that can occur
in real-world settings during fundus imaging examinations [26]. In previous research, the
difference in evaluation metrics before and after the addition of noise has been used as a
metric of model robustness [22,23]. Therefore, we adopted the same definition in our study.
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2.4. Preprocessing

The Benjamin Graham method was used to improve the lighting conditions of the fundus
image [27,28]. Subsequently, the images were normalized and resized to 224 × 224 pixels.
In addition, random horizontal and rotational magnifications were applied.
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2.5. Models

To evaluate model robustness, we adopted three model architectures: ResNet, Swin-
Transformer, and MLP-Mixer and used pre-trained models (Table 1). The pre-trained
models were tuned across all layers. The models were trained for 100 epochs with a batch
size of 128. We used 10−4 as the base learning rate for the Adam optimizer, along with
a default of 20 warm-up iterations and 10−5 as the weight decay. During training, the
learning rate was reduced by a factor of 10 after 30, 60, and 90 epochs.

Table 1. Pre-trained models used in this study.

Model Name Model Size (Parameters)

ResNet-50 23.5 M
ResNet-101 42.5 M
ResNet-152 58.1 M

Swin-Transformer (Tiny) 27.5 M
Swin-Transformer (Small) 48.8 M
Swin-Transformer (Base) 86.7 M

Swin-Transformer (Large) 195 M
MLP-Mixer (Base) 59.1 M

MLP-Mixer (Large) 207 M

1. ResNet [29] is a widely used model with a convolutional structure that incorporates
residual connections. We used three ResNets with different model sizes: ResNet-50,
ResNet-101, and ResNet-152.

2. Swin-Transformer [30] is a model with a non-convolutional structure that implements
a hierarchical structure using shifted windows in the Vision-Transformer [31]. We
used four Swin-Transformers with different model sizes: Tiny, Small, Base, and Large.

3. MLP-Mixer [32] is a model implemented using only a multilayer perceptron without
a convolutional structure or attention mechanism. We used two MLP-Mixers with
different model sizes: Base and Large.

2.6. Evaluation

The Area Under the Receiver Operating Characteristic- Curve (ROC-AUC) was used
to evaluate the discriminative ability of the models. While the Expected Calibration Error
(ECE) is commonly used to evaluate the calibration ability of models [7,33], it has been
reported to be an inadequate estimator of calibration error due to its systematic non-
negligible bias [34]. Therefore, in this study, we used the monotonic sweep calibration error
(ECE sweep) [34], which has been suggested as an estimator with a lower bias than the
ECE. The calibration metrics are described in detail below. The robustness of a model was
evaluated based on the difference between its performance on noise-free data and that on
data with pseudo-noise.

Calibration Metrics

We consider a binary classification with input X ∈ χ, output Y = {0, 1}, and model
f : X→ [0, 1] that predicts the confidence score of the true label Y to be 1. Model f is well

calibrated if its output correctly reflects the true correctness likelihood. Formally, a perfectly
calibrated model satisfies:

P(Y = 1| f (X) = p) = p, ∀p . (1)

True Calibration Error (TCE) is widely used to measure the calibration error by calcu-
lating the expected deviation between both sides of Equation (1).

TCE( f ) = EX[| f (X)−EY[Y| f (X) ]|]. (2)
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f (X) represents the distribution of confidence scores, whereas EY[Y| f (X) ] denotes the
true calibration curve and illustrates the relationship between the empirical accuracy and
confidence scores.

To estimate the TCE of model f , if we are given a finite sample {xi, yi}n
i=1, we typically

group the sample into equally spaced bins {Bm}M
m=1 based on confidence scores and

then calculate the expected difference between the average confidence score fk and the
proportion yk where the true label Y is 1.

ECE =
b
∑

k=1

|Bk |
n

∣∣∣ fk − yk

∣∣∣ . (3)

The calculation of ECE is known to be sensitive to hyperparameters, such as the chosen
binning method and the number of bins [35]. In addition, ECE is an inherently biased
estimator, and it has been empirically observed that there exists an optimal number of
bins that minimizes estimation bias, which tends to increase with the sample size [34].
To address this and determine the optimal number of bins, an ECE sweep is proposed,
assuming a monotonically increasing behavior in the true calibration curve and providing a
less-biased estimator [34]. The ECE sweep chooses the largest number of bins that preserve
monotonicity in the proportion yk.

ECESWEEP =
b∗

∑
k=1

|Bk |
n

∣∣∣ fk − yk

∣∣∣ where

b∗ = max{b|1 ≤ b ≤ n; ∀b′ ≤ b, y1 ≤ · · · ≤ yb′}.
(4)

2.7. Distribution Shift of Fundus Image

Various factors, such as lighting conditions, unexpected eye movements, and ocular
pathologies, such as cataracts, can cause uneven illumination, blurring, and low contrast.
These elements can significantly degrade the quality of the fundus images. Based on the
three realistically occurring factors defined by Shen et al. [26]: (a) Light Transmission
Disturbance, (b) Image Blurring, and (c) Retinal Artifact, noise was added to the test data
to evaluate the robustness of the model under distribution shifts (Figure 2). To facilitate the
interpretation of the effect of noise introduced into retinal images on prediction accuracy,
three different noise sources were evaluated one at a time.

2.7.1. Light Transmission Disturbance

The fundus camera was programmed for automatic exposure; however, unstable stray
light can cause under/over exposure. Differences in the distance between the fundus
and ophthalmoscope can cause uneven illumination due to differences in the sensitivity
of certain regions of the image plane. To model these factors, the light transmission
disturbance is defined for a clean image x and its degraded image x’ as

x’ = clip(α(J·GL(rL, σL) + x) + β; s),

where α, β, and s refer to the factors for contrast, brightness, and saturation, respectively.
Clip (β; s) represents a clipping function. GL represents a Gaussian kernel. J represents
the illumination bias to be over- or under-illuminated in a panel centered at (a, b) with a
radius of rL.

2.7.2. Image Blurring

Blurring can be caused by several factors, such as program settings during the fundus
imaging procedure, human error, or the presence of cataracts. To model these factors, Image
Blurring is defined for a clean image x and its degraded image x’ as

x’ = x·GB(rB, σB) + n,
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where GB is a Gaussian filter with a radius rB and spatial constant σB, and n denotes the
additive random Gaussian noise.
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2.7.3. Retinal Artifact

Imaging in poor conditions can degrade the quality of the fundus image due to dust
and grains attached to the lens of the imaging plane. To model these factors, Retinal Artifact
is defined for a clean image x and its degraded image x’ as

x’ = x +
K

∑
k

GR(rk/4, σk)·ok,

where the Gaussian filter used is GR, with a specified radius of rk for object k deemed
undesirable and its corresponding variance σk. The luminance bias is also represented
by ok.

3. Results
3.1. Model Performance on In-Distribution Data

First, we assessed the discrimination and calibration ability of the models on in-
distribution data (Figure 3). The ROC-AUC was the highest for Swin-Transformer (the
lowest and highest values for different model sizes: 0.912–0.923), followed by ResNet
(0.889–0.904) and MLP-Mixer (0.812–0.831). No significant differences were found be-
tween the model architectures in the ECE sweep (Swin-Transformer: 0.012–0.023, ResNet:
0.012–0.034, MLP-Mixer: 0.023–0.026). For all three model architectures, the model size
tended to increase with the ROC-AUC value, but this trend was not found in the ECE sweep.

3.2. Model Performance under Distribution Shift

We assessed the discrimination and calibration abilities of the models under three
unique distribution shifts in the fundus images (Figure 4). Similar to in-distribution, the
ROC-AUC is highest for Swin-Transformer ((a) 0.871–0.887, (b) 0.881–0.918, (c) 0.891–0.911),
followed by ResNet ((a) 0.834–0.849, (b) 0.821–0.860, (c) 0.839–0.865) and MLP-Mixer
((a) 0.725–0.753, (b) 0.785–0.812, (c) 0.792–0.820). No consistent trend was found for the
ECE sweep as its value for each model differed depending on the distribution shift type
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and model size (Swin-Transformer: (a) 0.030–0.033, (b) 0.023–0.042, and (c) 0.046–0.060;
ResNet: (a) 0.027–0.050, (b) 0.019–0.0430, and (c) 0.043–0.103; MLP-Mixer: (a) 0.060–0.065,
(b) 0.036–0.054, and (c) 0.027–0.043).
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3.3. Difference in Model Performance between Noise-Free and Pseudo-Noise Data

We first assessed the robustness of the models in terms of discriminability (Figure 5).
The ROC-AUC difference for the distribution shift caused by Light Transmission Distur-
bance (Figure 5a), compared to in-distribution, was the smallest for Swin-Transformer
(0.028–0.049), followed by ResNet (0.041–0.059) and MLP-Mixer (0.078–0.086). The ROC-
AUC difference for the distribution shift caused by Image Blurring (Figure 5b) was compar-
atively small for both the Swin-Transformer (0.005–0.037) and MLP-Mixer (0.019–0.027),
followed by ResNet (0.030–0.083). The ROC-AUC difference for the distribution shift
caused by Retinal Artifact (Figure 5c) was the lowest for MLP-Mixer (0.011–0.019), fol-
lowed by Swin-Transformer (0.012–0.027) and ResNet (0.025–0.054). Compared to ResNet,
Swin-Transformer showed a smaller reduction in the ROC-AUC across all noise types. We
also compared the ROC-AUC reductions across the three distribution shifts within each
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model; both the Swin-Transformer and MLP-Mixer tended to deteriorate mainly under
the distribution shift caused by Light Transmission Disturbance. From the perspective
of model size, ResNet tended to increase the reduction in the ROC-AUC with increasing
model size. In contrast, Swin-Transformer and MLP-Mixer tended to decrease the reduction
in the ROC-AUC with increasing model size.
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Figure 5. Robustness for discriminative ability under three unique distribution shifts. The x-axis
showcases each model architecture with different model sizes. The blue, green, and red bars represent
the ResNet, MLP-Mixer, and Swin-Transformer architectures, respectively. The y-axis highlights the
difference in ROC-AUC between distribution shift and in-distribution.

Next, we assessed the robustness of the models in terms of their calibration ability
(Figure 6). The difference in the ECE sweep values between distribution shift and in-
distribution did not show a consistent trend as the ECE sweep value for each model
varied depending on the type of distribution shift and model size (Swin-Transformer: (a)
0.009–0.018, (b) 0.005–0.030, and (c) 0.028–0.045; ResNet: (a) 0.014–0.017, (b) 0.001–0.031,
and (c) 0.026–0.069; MLP-Mixer: (a) 0.034–0.042, (b) 0.014–0.028, and (c) 0.001–0.020). In
contrast, when comparing the reduction in the ECE sweep across the three distribution
shifts within each model, the MLP-Mixer tended to degrade under the distribution shift
caused by Light Transmission Disturbance, whereas both ResNet and Swin-Transformer
tended to degrade under the distribution shift caused by Retinal Artifact.
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4. Discussion

The main findings of this study are as follows: Swin-Transformer displayed a consis-
tently higher discriminative ability than ResNet. This trend persisted even under unique
distribution shifts in the fundus images. No significant differences were found in the
calibration ability between the model architectures and model sizes.

4.1. Model Discrimination and Calibration Ability

Swin-Transformer demonstrated superior discriminative ability under both in-distribution
and distribution shifts, followed by ResNet and MLP-Mixer. These results are consistent
with those of a previous study using a natural image dataset [22]. Significant findings
in retinal images of diabetic retinopathy include capillary aneurysms, beaded expansion,
intraretinal microvascular abnormalities, hard exudates, soft exudates, new vessels, and
vitreous hemorrhage. These findings are primarily localized and appear at different scales
within retinal images. A Swin-Transformer model builds hierarchical feature maps by
gradually merging features from adjacent small patches to create representations for larger
patches. This hierarchical structure can capture features at different scales ranging from
global image features to finer details. This approach may effectively capture the localized
and different-scale features of diabetic retinopathy present in retinal images, potentially
leading to its high discriminative performance.

Previous studies suggest that non-convolutional models, such as ViT and MLP-
Mixer, have a better calibration ability than CNNs in both in-distribution and distribution
shifts [10]. In addition, it has been reported that large deep learning models trained with a
large number of parameters using negative log-likelihood exhibit overconfidence [7,15].
However, in this study, no significant differences were observed in calibration performance
based on model architecture or size. Several previous studies identified factors that af-
fect calibration, including regularization, model size, insufficient data, and imbalanced
data [7,12]. As suggested by previous studies, various factors could complexly influence
calibration performance, making it challenging to discern differences due to the architecture
or model size; therefore, further research is needed.

4.2. Model Robustness

Previous studies have suggested that Transformer-based models are more robust
than CNNs in their discriminative and calibration abilities [10,17–20]. Similarly, our study
indicates that Swin-Transformer is more robust in its discriminative ability than ResNet as
it consistently achieves a smaller reduction in the ROC-AUC across all distribution shifts
considered in this study. Previous studies on the robustness of MLP-Mixer compared to
CNNs have provided contradicting results [10,22]. Our study could not demonstrate the
robustness of MLP-Mixture.

Herein, we considered three types of noise that can occur in fundus images. We
hypothesized that Light Transmission Disturbance would primarily affect the texture of
images, Image Blurring would affect their shape, and Retinal Artifact would potentially
affect both texture and shape. Previous studies have suggested a strong texture bias
in CNNs, whereas Transformer-based models, including ViT, indicate a stronger shape
bias [19–21]. Therefore, we postulated that ResNet might be particularly susceptible to
distribution shifts induced by Light Transmission Disturbance and Swin-Transformer
to those induced by Image Blurring. However, our findings did not corroborate these
anticipated tendencies (Figures 5 and 6). The discrepancy between our assumptions and
results could be due to the fact that Light Transmission Disturbances strongly affect not
only the texture but also the shape. Alternatively, the low intensity of the image blurring
noise could have resulted in a minimal effect on the shape. Further research is needed to
draw definitive conclusions.

The calibration ability of ResNet and Swin-Transformer significantly worsened under
the distribution shifts caused by Retinal Artifact (Figure 6c). Previous research has sug-
gested that adversarial attacks on medical images are easier to conduct than on natural
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images, indicating a vulnerability in deep neural network models developed for medical
images [36]. This is because medical images have complex biological textures, resulting in
regions of high gradients that are sensitive to small adversarial perturbations. Therefore,
in our study retinal artifacts may have behaved similarly to adversarial perturbations,
potentially influencing the calibration performance.

In addition, MLP-Mixer was particularly susceptible to distribution shifts caused by
Light Transmission Disturbance (Figures 5a and 6a), suggesting that it may be affected by
distribution shifts based on principles different from those of ResNet and Swin-Transformer,
which requires further investigation.

4.3. Limitations

This study had several limitations. First, because a single dataset was used, additional
verification using different fundus image datasets is required to validate the results of this
study across all fundus images. Second, models with lower inductive bias, such as the Swin-
Transformer and MLP-Mixer, require large amounts of data to improve accuracy; the dataset
used in this study may not be large enough for these models to demonstrate their intrinsic
capabilities. To mitigate this problem, we fine-tuned the models that were pre-trained on
ImageNet. Finally, the recently developed ConvNeXt, a CNN architecture, was reported to
exhibit robustness comparable to that of Transformer-based models [16]. Further research
is needed to compare the robustness of convolutional and Transformer-based models.

5. Conclusions

In this study, we assessed the performances of the ResNet, Swin-Transformer, and MLP-
Mixer models under unique distribution shifts in fundus images. Swin-Transformer demon-
strated superior and robust discriminative ability than ResNet under both in-distribution
and distribution shifts. In contrast to the previously reported trends in model calibration,
this study did not observe significant differences in calibration ability based on model
architecture and model size. This discrepancy can be attributed to the unique characteris-
tics of the medical dataset. These findings highlight the need for additional multifaceted
validation processes focused on retinal images and additional verification using different
fundus image datasets.
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