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Abstract: Endoscopy is a commonly used clinical method for gastrointestinal disorders. However,
the complexity of the gastrointestinal environment can lead to artifacts. Consequently, the artifacts
affect the visual perception of images captured during endoscopic examinations. Existing methods to
assess image quality with no reference display limitations: some are artifact-specific, while others
are poorly interpretable. This study presents an improved cascade region-based convolutional
neural network (CNN) for detecting gastrointestinal artifacts to quantitatively assess the quality of
endoscopic images. This method detects eight artifacts in endoscopic images and provides their
localization, classification, and confidence scores; these scores represent image quality assessment
results. The artifact detection component of this method enhances the feature pyramid structure,
incorporates the channel attention mechanism into the feature extraction process, and combines
shallow and deep features to improve the utilization of spatial information. The detection results
are further used for image quality assessment. Experimental results using white light imaging,
narrow-band imaging, and iodine-stained images demonstrate that the proposed artifact detection
method achieved the highest average precision (62.4% at a 50% IOU threshold). Compared to the
typical networks, the accuracy of this algorithm is improved. Furthermore, three clinicians validated
that the proposed image quality assessment method based on the object detection of endoscopy
artifacts achieves a correlation coefficient of 60.71%.

Keywords: endoscopic image quality assessment; endoscopy artifacts; convolutional neural network

1. Introduction

An endoscope—the most direct examination device for gastrointestinal diseases—is
introduced into the human body through natural cavities. This has significant advantages
in both diagnosis and treatment, and it serves as a primary means for subsequent mini-
mally invasive surgery and noninvasive treatment [1]. The collected endoscopic images
are used to determine the patient’s condition and formulate subsequent treatment plans.
However, endoscopic images contain numerous interfering factors, such as mirror reflec-
tion, motion blur, bubbles, etc., which can affect the visual interpretation of endoscopic
examinations, affect the observation and diagnosis of clinicians regarding the lesion area,
and negatively affect computer-aided diagnosis (CAD) processes [2]. In addition, the
presence of interference is an important reference criterion for the assessment of image
quality in gastrointestinal endoscopy images, contributing to the quality evaluation of
clinical endoscopic examination procedures [3].

Image quality assessment aims to simulate human perception and is typically per-
formed by human observers who evaluate algorithm values against subjective ratings. A
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typical approach involves comparing the distortion metric with an ideal imaging model or
a perfect reference image [4]. Depending on the amount of information provided by the
original reference image, it can be classified as full, reduced, or no-reference (also known
as blind image quality assessment, BIQA) [5]. No-reference image quality assessment
(NR-IQA) is one of the most challenging problems in image quality assessment because
it solely relies on distorted images, and thus has garnered significant research interest in
recent years.

NR-IQA has a significant practical value and is widely used in numerous practical
applications where reference images are unavailable. Mittal et al. proposed a blind image
spatial quality assessment method called the blind/referenceless image spatial quality
evaluator (BRISQUE) [6]. This method uses locally normalized luminance coefficients
to quantify the “naturalness” loss caused by distortion; it exhibits a low computational
complexity, making it suitable for real-time applications. Liu et al. introduced RankIQA [7],
which generates ordered degraded images to train a Siamese network for relative quality
ranking. The trained network is then transferred to a traditional CNN, enabling it to
estimate the absolute image quality from a single image. Junjie et al. proposed a multiscale
image quality transformer called MUSIQ [8], which can handle full-resolution image
inputs with different resolutions, sizes, and aspect ratios; capture image quality at various
granularities; and perform well on multiple large-scale IQA datasets. Talebi et al. presented
a neural network based on deep object recognition called NIMA [9], which can predict
the distribution of human evaluations of images in terms of both perceptual quality (from
a technical standpoint) and attractiveness (from an aesthetic standpoint). The proposed
neural network exhibited scores that closely resembled the human subjective ratings,
making it suitable for natural image quality assessment tasks. With the profound influence
of machine learning, particularly deep learning, in various fields, image quality assessment
in endoscopy is undergoing continuous innovation. Alexander et al. developed a new
fidelity score for quantitative image quality assessment based on the structural similarity
maps adopted in the human visual system (HVS), where the measure indicated the extent to
which the structural information of relevant structures was preserved in the panorama [10].
Aubreville et al. [11] proposed an improved version of the Inception V3 network for
detecting motion artifacts in endoscopic images. Kamen et al. [12] selected high-quality
and information-rich images by calculating the image entropy. Outtas et al. [13] studied the
usability of two general algorithms based on natural image quality assessments (NIQE [14]
and BRISQUE [6]) in medical image environments. Prerna et al. [15] proposed the use of
gray-level co-occurrence matrices for image quality assessment. Zhang et al. [16] performed
a no-reference quality assessment of capsule endoscopy images by calculating the gradient
field using the Sobel operator.

Considering the limitations of current no-reference endoscopic image quality assess-
ment methods, which primarily focus on evaluating individual artifacts and often yield
less interpretable results, we propose a framework for detecting endoscopic image artifacts
and assessing image quality based on an improved cascade R-CNN designed to overcome
these challenges. The architecture of the framework is shown in Figure 1. First, the original
endoscopic image is obtained. After undergoing image preprocessing, the image is fed
into the improved cascade region-based CNN for artifact detection. Subsequently, after
extracting the detection result data, both location and area information are acquired and
transmitted to the endoscopic image NR-IQA method. This process culminates in the
generation of interpretable image quality assessment results.

The artifact detection method retains the multistage structure of the cascade R-CNN,
with ResNeXt101 serving as the backbone network. We improved the original feature pyra-
mid network (FPN) structure and introduced Generalized Intersection over Union (GIoU)
loss as a new evaluation metric loss function, replacing the original IoU metric. Using the
improved model, we successfully located and identified artifacts in the gastrointestinal
tract. Additionally, we propose a method that combines multiple weights to calculate the
image quality score based on artifact detection results.
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Figure 1. Architecture of the proposed framework for detection of image artifacts using improved
cascade region-based CNN for no-reference endoscopic image quality assessment.

The main contributions of this study are as follows:
(1) Nonvideo sequences of gastrointestinal endoscopy images from multiple clinical

hospitals were used. The images have high content and modality diversity, including
images from white light imaging (WLI), narrow-band imaging (NBI), and iodine staining,
making them robust and relevant for general applications in gastrointestinal endoscopy.

(2) An improved feature pyramid network that incorporates channel attention mecha-
nisms into the feature extraction process is proposed. Shallow and deep features were fused
by introducing an additional channel from the shallow to deep layers, thereby enhancing
the utilization of spatial information in the shallow layers. This not only strengthened
the feature extraction of semantic and positional information through path aggregation
but also established global spatial feature attention for the mapping and representation of
artifact features across multiple branches in the image.

(3) The proposed endoscopic image quality assessment method successfully detects
anomalies in small targets and handles multiple interferences. Moreover, it uses the
detection results of high-quality artifact targets to provide numerical scores that are close
to expert ratings, thereby demonstrating strong interpretability.

Overall, these contributions enhance the detection and assessment of endoscopic
image artifacts and provide valuable insights for clinical multicenter endoscopic image
quality assessment.

2. Materials
2.1. Data Acquisition

The endoscopic image data used in this study were obtained from 12 medical insti-
tutions in Jiangsu Province, with Zhongda Hospital Southeast University serving as the
central hospital. In total, 2303 images containing artifacts were collected through data
collection and clinicians’ annotations. The dataset encompassed images of various tissues
and organs, including the esophagus and stomach, as well as multimodal endoscopic
images (including WLI, NBI, and iodine-stained images), as shown in Table 1. The color
space of the images was distributed as RGB, and eight types of interferences were present:
blur, bubbles, specularity, saturation, contrast, instrument, blood, and artifacts, as listed
in Table 2.
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Table 1. Image modalities and digestive tract site statistics.

Mode Train (Esophagus/
Stomach/Unknown)

Validation (Esophagus/
Stomach/Unknown)

Test (Esophagus/
Stomach/Unknown)

WLI 738/730/19 91/90/2 93/89/4
NBI 154/150/13 28/6/4 27/5/5

iodine-stained 17/21/0 4/5/0 4/4/0
Sum 1842 (909/901/32) 230 (123/101/6) 231 (124/98/9)
Total 2303 (1156/1100/47)

Table 2. Artifact types and label statistics.

Types
Number of Images

that Contain
the Artifact

Number of Labels Label Ratio (%)

Blood 86 112 1.15
Blur 418 433 4.44

Bubbles 303 788 8.08
Instrument 66 71 0.73
Specularity 776 4582 46.98

Contrast 819 910 9.33
Saturation 466 582 5.97
Artifacts 696 2276 23.33

Total 9754 100

Specularity is caused by the reflection of the tube owing to the smooth surface of the
electron endoscope; saturation and contrast are derived from light exposure and changes
in videoscope topology; blur results from erratic hand movements and small movements
of the digestive tract lining; and bubbles and blood result from changes in the digestive
tract environment leading to the presence of fluids. This instrument, however, prevents the
occlusion of the inner wall of the digestive tract. These artifacts originate from unpredictable
imaging conditions, and they are present in more than 60% of endoscopic video frames [5].

For the image quality assessment, 100 images were randomly selected from the
2303 images containing artifacts and subjectively scored based on the evaluation crite-
ria shown in Table 3.

Table 3. Endoscopic image quality assessment principles.

Quality Score Scoring Principles

5 Endoscopic image is perfect, artifacts are negligible.
4 Endoscopic image exhibits minimal and small-sized artifacts, which do not interfere with the image.
3 Endoscopic image exhibits large-sized or numerous artifacts, which slightly interfere with the image.
2 Endoscopic image exhibits large-sized and numerous artifacts, which interfere with the image.
1 Endoscopic image exhibits large number of artifacts, which seriously interfere with the image.

2.2. Data Preprocessing

Significant differences exist between the sizes and types of endoscopic images captured
by various models of digestive endoscopic instruments from various manufacturers. These
images also contain nonendoscopic information such as instrument details and acquisition
time. To mitigate the impact of these factors on the image quality assessment, this study
employed dilation and erosion morphological processing methods to generate effective area
masks. These masks were used to extract the relevant image regions, thereby enhancing
the effectiveness of the endoscopic image quality assessment. The image preprocessing
operation is illustrated in Figure 2.

CLOSE(X) = E(D(X)) (1)
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Figure 2. Endoscopic image preprocessing operations.

2.3. Data Analysis

Upon analyzing the surface characteristics of the samples, substantial within-class
variations and interclass correlations were observed among the artifact samples. For exam-
ple, specularity and bubbles exhibit similarities in certain textural representations; however,
specularity, bubbles, and artifacts follow distinct internal morphological patterns. The anno-
tations were subjected to statistical analysis and the results are shown in Figure 3. Among
the eight defined defect categories, the maximum difference in quantity approaches 64.5:1.
Owing to the sample characteristics, the detection task encompassed highly imbalanced
categories, extreme proportions, and small sample sizes.

Figure 3. Analysis of statistical characteristics of sample data. The scale distribution of each defect
category is shown, where the x-axis represents the height of the ground truth (GT) and the y-axis
represents the width of the GT.

2.4. Data Augmentation

The dataset used in this study was obtained from various devices across multiple
hospitals, resulting in significant image resolution variations, such as 512× 512, 768× 576,
1081× 808, 1349× 1079, and 1920× 1080. To facilitate the algorithmic processing, this
section standardizes the image size to 800× 800.
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In addition to the dataset size and labels, certain characteristics of images and labels
render the noise detection model less effective. Insufficiently qualified images with accurate
annotations and imbalanced class distributions are common factors that lead to overfitting
and limited generalization in neural network training. If the sample size for any of these
eight types of defects is inadequate or significantly different, the trained model may exhibit
a significant bias.

To address this issue, data augmentation techniques were employed in this study to
alleviate the sample imbalance. Data augmentation involves the generation of variations
in the original images, thereby increasing the training data volume without introducing
additional images. Four types of geometric transformations are applied during the data
augmentation process: mosaics [17], rescaling, inversion, and rotation. The results of the
mosaic data enhancement are shown in Figure 4.

Figure 4. Performance of mosaics in data augmentation.

3. Methods

The overall approach of this method is divided into two main parts: artifact tar-
get detection using the improved cascade R-CNN model and endoscopic image quality
assessment based on the detection results.

3.1. Cascade R-CNN

The cascade R-CNN [18] is an extension of the Faster R-CNN that aims to incorporate
more semantic information into the detection task [19]. Unlike the traditional Faster R-
CNN, the cascaded R-CNN employs a cascaded modular structure, enabling additional
context and features to be extracted through advanced feature extraction steps. These
features were then utilized in the ROI pooling layer to enhance the network performance
by providing richer representations. In addition, the cascaded structure provides more
supervised signals during training, leading to more accurate models.

The cascade R-CNN consists of a feature extraction network, an FPN, a region proposal
network layer, and cascade detectors. The feature extraction network ResNeXt101 was
used to extract image features. The original map is obtained by convolution operations,
Conv1, Conv2, Conv3, Conv4, and Conv5, and feature fusion at different levels to obtain
feature maps P2, P3, P4, and P5 at different scales. These feature maps were then input
into the region proposal network to obtain the candidate target areas. Subsequently, ROI
alignment operation was performed on the resulting candidate target areas to obtain an
ROI feature map.

ResNeXt101 is a deep CNN built on the ResNet architecture [20]. This introduces
the concept of ”group convolution,” where multiple parallel convolutional branches with
the same structure are employed. Each branch processes different input characteristics,
enabling an increased network width without overfitting. The ResNeXt101 network in-
corporates techniques, such as batch normalization and residual connections, to enhance
its performance. Residual structures have been widely employed in the field of medical
imaging to eliminate dependencies between the network’s weak and high levels [21]. The
residual structure is shown in Figure 5.
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Figure 5. Residual structure.

In this study, an improved cascade R-CNN detection model is proposed, utilizing
ResNeXt101 as the backbone network to locate and identify artifacts in the digestive tract.
The original evaluation index, namely Intersection over Union (IoU), in the cascade R-CNN
was replaced with GIoU loss as a new evaluation index loss function. IoU measures the
degree of overlap between a predicted bounding box and a ground truth bounding box.
GIoU is an improved version of IoU. It not only considers the intersection and union areas
but also takes into account the spatial relationship between the two bounding boxes, which
makes it more suitable for complex object shapes and rotations. This enhancement is aimed
at making it more robust to variations in object rotation and shape. Figure 6 illustrates the
enhanced FPN with added attention mechanisms that enable better learning capabilities.

The advantages of this model are as follows:
(1) It provides an effective feature extraction structure that maximizes the utilization

of shallow feature information and enhances the detection of small targets.
(2) The incorporation of the channel attention mechanism captures the feature depen-

dencies between different channel maps in the feature extraction network. This reduces the
missed detection rate and leads to more reliable results.

(3) GIoU was employed as the new evaluation index loss function, replacing IoU,
the original evaluation index in cascade R-CNN. This ensures scale invariance in the
loss function target detection frame regression and maintains consistency between the
optimization objective and loss function of the detection frame.

Figure 6. Artifact detection model based on the improved cascade R-CNN.

3.2. Improved Feature Pyramid Structure

Each layer of the feature pyramid employs a distinct convolution kernel size to extract
the features. The lower layers capture large-scale features, such as edges, whereas the
final layer captures fine details. These feature maps are then concatenated to create a
comprehensive feature map for classification. The key advantage of a feature pyramid is its
ability to capture features at various scales in an image, resulting in enhanced classifica-
tion performance. This is particularly effective for handling images of different sizes by
encompassing the features of diverse scales.
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Although this approach exhibits a high accuracy in classifying and localizing larger
objects, it faces challenges in accurately detecting smaller objects. This is due to the nature
of the deep CNN, where extensive convolution and pooling operations result in expanded
receptive fields and decreased resolutions in the network feature layers. Consequently,
there is the risk of overlooking small targets.

In contrast, low-level features obtained from shallow neural networks have a higher
resolution and contain more information, making them valuable for detecting small objects.
By fusing features at different scales, the recognition accuracy for small targets can be
improved while maintaining the accuracy for larger targets.

The feature enhancement method was employed in this study to fully use shallow
feature information and increase the resolution of the feature maps for small targets. Deep
features, which contain rich semantic information, were added elementwise to shallow
features through bilinear interpolation. However, an accurate localization of shallow to
deep features has become increasingly challenging. To address this issue, an additional
pathway, called the pathway enhancement channel, was introduced. The number of
convolution layers traversed by the information flow from deep to shallow layers is reduced
by this pathway, enabling the propagation of shallow information to deep layers and
enhancing the localization of deep positional information. The improved structure of the
FPN is shown in Figure 7.

Figure 7. Improved feature pyramid structure.

The original convolutional output layers in the bottom-up pathway are C2, C3, C4,
and C5. First, convolution was applied to the input image, followed by dimensionality
reduction of C3, C4, and C5. After applying the attention mechanism to C5, it underwent a
two-fold upsampling to match the size of C4. Subsequently, the corresponding elements
were added, and the obtained result was input into C4. The same process was used to
obtain C3 and C2. C3, C4, and C5 were upsampled by 2x, 4x, and 8x, respectively, and added
to the shallow feature maps using bilinear interpolation. Corresponding elements were
added to increase the utilization of deep features for shallow features. The formula for
bilinear interpolation f (x, y) is as follows:

f (x, y) =
f (x1, y1)

(x2 − x1)(y2 − y1)
(x2 − x)(y2 − y) +

f (x2, y1)

(x2 − x1)(y2 − y1)
(x− x1)(y2 − y)+

f (x1, y2)

(x2 − x1)(y2 − y1)
(x2 − x)(y− y1) +

f (x2, y2)

(x2 − x1)(y2 − y1)
(x− x1)(y− y1)

, (2)

where (x1, y1), (x1, y2), (x2, y1), (x2, y2) are four known points, and the characteristics of
the P0-layer were obtained after bilinear interpolation as follows:

P0 = C2 + C3 f (x, y) + C4 f (x, y) + C5 f (x, y) (3)

The final generated feature layers were P2, P3, P4, and P5, which fully utilized the deep
and shallow features by fusing these different layers, resulting in improved
prediction performance.

Digestive endoscopy images are complex, and the presence of artifacts makes it
difficult to distinguish between true targets. To enhance the expressive power of the features
of images, a channel attention mechanism was employed in the FPN object detection model.
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For feature-mapping layers of different scales, the channel attention mechanism was used to
capture the feature dependencies between different channel maps. This involves calculating
the weighted feature vectors that represent the explicit correlation between the feature
channels, as shown in Figure 8.

Figure 8. Channel attention mechanism.

3.3. Loss Function

We introduced GIoU [22] as a new evaluation index loss function to replace the
original evaluation index, IoU, in the cascade R-CNN. The GIoU formula ensures that
the loss function for the target detection box regression is scale-invariant and maintains
consistency between the optimization objective and the loss function. In the context of
artifact identification in digestive endoscopy, there is a significant imbalance between
positive and negative samples, which makes the training of the bounding box scores more
challenging. Metrics based on L1 and L2 norms may yield significantly different IoU values
for the two bounding boxes at the same distance. As shown in Figure 9, the example with
the bounding boxes is represented by two corners. In all three cases, the distance between
the representation of the two rectangles is the same for L2 norm; however, the IoU and
GIoU values are very different. Furthermore, when IoU is the same, it only indicates that
the Intersection over Union of the target box and the detection box is identical, but the
actual size of the predicted box may be completely different. This highlights that neither
IoU nor the L2 norm can adequately reflect the detection performance. Therefore, such
loss functions are not ideal for predicting bounding boxes. Unlike IoU, which focuses only
on the overlapping area, GIoU considers both overlapping and nonoverlapping regions,
providing a better reflection of their intersection.

The introduction of the GIoU loss function has significant implications in the proposed
method; it overcomes the limitations associated with traditional loss functions in the context
of artifact detection. This loss function promotes a more precise bounding box regression
and enhances the model’s ability to detect artifacts of varying sizes and shapes. This
improvement augments the depth and accuracy of our research, thereby contributing to a
more reliable analysis of endoscopic images, as shown in Figure 10.

Figure 9. Three cases in L2 norm distance.
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Figure 10. Generalized Intersection over Union diagram.

The GIoU formula is:

GIoU = IoU − |Ac −U|
|Ac|

, (4)

where U is the union of the prediction box and GT box, and Ac is the minimum closure of
the prediction box and real box.

3.4. Image Quality Score

Reading poor-quality medical images can significantly affect the efficiency of the
diagnostic work. Therefore, based on the artifact detection results discussed in the previous
section, we proposed a method to assess the quality of endoscopic images. This method
aims to provide a visual indication of the effectiveness of an image. The image quality
score (QS) is based on the (a) type, (b) region, (c) and location of the detected artifacts,
and (d) the confidence of the detected artifacts. We improved the method based on Ali [3],
where weights are assigned to each category, and the average weight is computed as the
quality score.

Class weights (wC): artifact (0.50), specularity (0.10), saturation (0.10), blur (0.20),
contrast (0.10), bubbles (0.02), instrument (0.02), and blood (0.02).

Area weight (wA): percentage of the total image area occupied by all detected artifact
and normal areas.

Location weight (wL): center (0.5), left (0.25), right (0.25), top (0.25), bottom (0.25), top
left (0.125), top right (0.125), bottom left (0.125), and bottom right (0.125).

The confidence weight (wCo) represents the confidence level of the detection results.

QS =

⌊
1−∑

B
(λAWCWCoWA + λLWCWCoWL)

⌋
0

(5)

To align with the numerical range of subjective ratings by experts and present the
image assessment results in a more intuitive manner, this study mapped the QS values to a
range of 0–5. The mapped results are presented in Figure 11.
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QS = 4.35 QS = 3.05

QS = 2.88 QS = 0.94

Figure 11. Quality assessment based on multiple parameters. The left side shows the artifact target
detection results, and the right side shows the area ratio of different artifacts and the calculated mass
score below.

4. Results and Discussion
4.1. Evaluation of Object Detection Results

The experimental setup in this study was as follows: Ubuntu 18.04 operating system,
GeForce RTX 2060 graphics card, and Intel(R) Core(TM) i9-10940X processor. The improved
cascade R-CNN network model proposed in this study was implemented within the mm
detection framework version 2.25.0. The selected optimizer is a stochastic gradient descent
with an initial momentum of 0.9. The total number of iterations was 5800. The training
time for the first complete epoch of the model was 453 s, which gradually decreased over
time. The total training time for 50 epochs was 18,537 s, 5.15 h.

This study employed commonly accepted evaluation metrics for object detection meth-
ods. Using a specific IoU threshold, true positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN) were defined as the classification outcomes. Furthermore,
“all detections” refers to the total number of predicted bounding boxes, while “all ground
truths” represents the total number of GT annotations.

Precision =
TP

TP + FP
=

TP
all detections

(6)

Recall =
TP

TP + FN
=

TP
all GTs

(7)

Average precision (AP) is a commonly used metric in object detection that evaluates
model performance by calculating the area under the precision–recall (PR) curve. This
reflected the AP at each unique recall level. AP is defined based on PASCAL VOC 2010 [23]:

AP =
n−1

∑
r=i

(ri+1 − ri)pinterp (ri + 1) (8)

Through comparative experiments, we compared the performance of the proposed
method with that of other networks in our dataset. From the AP values shown in
Tables 4 and 5, it can be seen that the proposed method achieved the best performance in
all typical networks.
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Table 4. AP for typical networks.

Network AP APIoU=0.50 APIoU=0.75 APsmall APmedium APlarge

Cascade R-CNN [18] 0.149 0.335 0.102 0.031 0.109 0.186
Faster R-CNN [19] 0.203 0.395 0.178 0.033 0.144 0.266

PANet [24] 0.211 0.416 0.195 0.030 0.146 0.272
Sparse R-CNN [25] 0.136 0.278 0.120 0.018 0.083 0.175

YOLOV3 [26] 0.140 0.321 0.114 0.018 0.094 0.177
RetinaNet [27] 0.136 0.310 0.090 0.059 0.102 0.142
TridentNet [28] 0.324 0.581 0.301 0.140 0.216 0.338
YOLOV4 [17] 0.339 0.597 0.327 0.160 0.225 0.346
YOLOV5 [29] 0.346 0.608 0.330 0.164 0.239 0.358

Proposed 0.370 0.624 0.361 0.171 0.250 0.392

Table 5. AP for labels.

Network Artifact Blood Blur Bubbles Contrast Instrument SaturationSpecularity

Cascade R-CNN 0.135 0.010 0.132 0.088 0.369 0.523 0.224 0.119
Faster R-CNN 0.146 0.021 0.187 0.083 0.367 0.522 0.221 0.129

PANet 0.150 0.028 0.217 0.083 0.349 0.534 0.226 0.130
Sparse R-CNN 0.086 0.002 0.115 0.024 0.284 0.379 0.148 0.051

YOLOV3 0.116 0.015 0.157 0.040 0.250 0.345 0.143 0.057
RetinaNet 0.154 0.001 0.370 0.055 0.220 0.002 0.118 0.168
TridentNet 0.294 0.011 0.537 0.200 0.392 0.524 0.306 0.332
YOLOV4 0.266 0.0618 0.542 0.208 0.363 0.597 0.255 0.330
YOLOV5 0.270 0.0749 0.549 0.221 0.378 0.667 0.278 0.332
Proposed 0.318 0.105 0.608 0.242 0.410 0.598 0.333 0.342

Through the implementation of ablative experiments, our primary objective was to
investigate the performance characteristics of the network components. While keeping
the other experimental conditions constant, we conducted separate experiments on the
improved FPN and GIoU components using the proposed method. Based on the AP
in Table 6, we observed that these components yielded improvements in the original
model, thereby demonstrating the assisting role of the network components in learning
pseudo-shadow features.

Table 6. Ablation experiments.

Experiments Improved FPN GIoU AP

1 - - 0.149
2 3 - 0.301
3 - 3 0.293
4 3 3 0.370

The confusion matrix is an N × N matrix used to evaluate the performance of a
classification model, where N represents the number of target categories. The matrix
compares the actual and predicted class labels and assesses the predictive performance
of the model. By analyzing the entire dataset, one can determine the number of correctly
and incorrectly predicted samples, thus measuring the model’s predictive effectiveness.
The confusion matrix, as presented in Figure 12, illustrates the performance for each
class, with all classes except “blood” exhibiting performance exceeding 50%. This finding
substantiates the existence of significant differences in the learned features among various
classes. However, the “blood” class displays a slightly lower performance owing to the
diverse morphological characteristics of blood within the gastrointestinal tract lacking
distinct typical features.
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Figure 12. Confusion matrix showing true positive detections and confused classes in all eight classes.

The test results using the proposed method are presented in Table 7, using images from
WLI, NBI, and iodine-staining modalities as examples. The table shows that the accurate
detection of most defects was achieved in these three types of images. The detected
bounding boxes effectively encompassed the abnormal regions without redundancy.

Table 7. Example of artifact detection using our network in different endoscopic modalities.

Mode Artifact Blood Blur Contrast Instrument Saturation Specularity Bubbles

WLI

NBI

Iodine-stained

Figure 13 depicts the region-based statistical distributions of the GT (left) and predicted
results (right) in the test dataset, arranged based on the region size. We observed that
the predicted results exhibited a similar trend to those of the GT, indicating stable and
reliable detection. This observation was further supported by specific evaluation metrics.
In addition, the figure shows magnified views of the detection results for small targets,
demonstrating the network’s ability to accurately capture defects with lengths smaller than
30 pixels.

4.2. Evaluation of the Quality Score

This study used a set of 100 randomly selected images with different quality ratings to
evaluate the proposed quality assessment scheme based on the quality rankings provided
by the three experts. Endoscopic images are different from natural images, and clinicians
will randomly select the images of interest to shoot when performing image acquisition.
There is no excellent reference image without distortion; therefore, the image quality
assessment method without reference is used for image comparison. Four no-reference
image quality assessment methods, NIQE [13], BRISQUE [6], MUSIQ [8], and NIMA [9],
were compared with the method proposed in this paper.
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Figure 13. Square root of the area of the GT (left) and predicted box (right).

Because the numerical values of the image evaluation scores represent only the quality
levels of the images and lack practical significance, we employed the Spearman correlation
coefficient to assess the monotonic relationship between the two variables. A larger value
indicated a stronger correlation. Correlations were calculated using the following formula:

ρS =
∑N

i=1(Ri − R̄)(Si − S̄)[
∑N

i=1(Ri − R̄)2 ∑N
i=1(Si − S̄)2

] 1
2

(9)

In Equation (9), N is the total number of observations, Ri and Si are the grades of the
observed value i. R̄ and S̄ are the average grades of the variables x and y, respectively.

A p-value test was used to determine the probability of the observed outcome occur-
ring randomly.

Table 8 shows that the proposed quality score (QS) method has an average Spearman
correlation coefficient of 60.71% with the rankings provided by the three experts. High
correlation coefficients indicate a significant relationship between the proposed method
and the quality scores suggested by the experts.

Table 8. Measured relevance using the correlation measure of the Spearman scale and its correspond-
ing p-value.

IQA(NR)

Spearman Rank Correlation [−1,+1]

Corr.Value p-Value

vs. Expert #1 vs. Expert #2 vs. Expert #3 vs. Expert #1 vs. Expert #2 vs. Expert #3

BRISQUE 0.1431 0.0403 0.0957 0.1532 0.6893 0.3411
NIQE 0.2389 0.3166 0.2674 0.0161 0.0013 0.007

MUSIQ 0.2240 0.2565 0.2804 0.0243 0.0096 0.0045
NIMA 0.0722 0.0025 0.0556 0.4727 0.9801 0.5811

Proposed 0.5894 0.5986 0.6334 5.09 × 10−10 5.49 × 10−10 9.47 × 10−12

Figure 14 presents four example images displaying the scores given by the three
experts, the average score, and QS computed using the proposed method. The QS scores
of the images of different qualities are close to the expert scores. Figure 15 illustrates the
correlation between the scores determined by the three experts and the proposed method.
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Figure 14. Artifact target detection results, scores from various experts, scores from the proposed
method, and the proportion of detected artifact regions.

Figure 15. Heatmap between the mass scores of the three experts and the QS calculated by the
proposed method.
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4.3. Discussion

The evaluation scores of the proposed quality assessment method for endoscopic
images had a strong correlation with the expert ratings. This correlation was based on the
category, confidence, area, and position information extracted from the artifact detection
results. These findings indicate that the quality scores have a practical significance. The
poor performance of existing no-reference image quality assessment methods, such as
NIQE, BRISQUE, MUSIQ, and MANI, in evaluating digestive endoscopic images may
be because these methods are primarily designed for natural images. This highlights the
requirement for more specific approaches to evaluate the quality of digestive endoscopy
images, considering their unique characteristics and environment. Owing to the tight inte-
gration of the proposed image quality assessment method with the object detection results,
a strong interpretability was achieved, compared to the four methods mentioned above.
In clinical applications, clinicians can rely on the quality scores of digestive endoscopic
images as a primary quality control measure, thereby reducing the time required for the
manual inspection of patient images.

The proposed object detection method is more sensitive to contrast, blur, instruments,
and specularity, owing to the availability of sufficient data and features. However, the
detection of blood objects showed a slightly lower performance owing to the limited
training data and diverse morphologies of blood presentations. Future studies should focus
on improving the detection of blood-related issues. Gastrointestinal endoscopy images
encompass various modalities, and the proposed object detection method was validated
on WLI, NBI, and iodine-stained modalities based on the imaging modalities offered by
Olympus and Fujifilm instruments. However, because of the lack of data for linked color
imaging and blue laser imaging modalities, the detection performance of these modalities
requires further verification.

Based on the research presented in this paper, future work should focus on image
restoration for images containing artifacts, building upon the foundation of object detection,
which has a clinical significance. In future work, we will consider conducting comparative
experiments for other versions of the YOLO series models. To enhance the robustness
and generalizability of the conclusions, it is proposed to replicate the study in diverse
geographical regions around the world. Such multilocation replication endeavors are
necessary to validate the applicability and reproducibility of the methods and results across
different contexts and populations. Validating this research in other parts of the world will
significantly enhance the credibility of the research and provide solid support for clinical
practice and applications.

5. Conclusions

This study proposed an optimized method for detecting endoscopy artifacts that
provides intuitive information regarding the location and category of eight types of artifacts
and numerically indicates image quality. The average precision (AP) results of object
detection demonstrate significant improvements, compared to traditional object detection
methods. The results of the correlation analysis indicate that the proposed method achieved
better performance in the evaluation of gastrointestinal endoscopic image quality.

The results also revealed that an improved FPN structure is employed in the cascade
R-CNN model. The improved FPN structure integrated the features from different layers,
by effectively using both deep and shallow features. A channel attention mechanism was
used to capture the feature dependencies between different channel maps in the feature
extraction network. In addition, the GIoU metric was introduced as a new evaluation index
loss function in the cascade R-CNN. The experimental results in Section 4.1 demonstrate that
the AP value of the proposed model surpassed those of existing classical object detection
models. Moreover, the model accurately detected small targets within a range of less
than 30 pixels. Building on the object detection results, this study introduced a novel
NR-IQA method for digestive tract images that uses composite weights. The experimental
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results in Section 4.2 were highly correlated with the expert ratings, indicating the practical
significance of the quality scores.
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