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Abstract: Magnetic resonance imaging (MRI) is a standard procedure in medical imaging, on a
par with echography and tomodensitometry. In contrast to radiological procedures, no harmful
radiation is produced. The constant development of magnetic resonance imaging (MRI) techniques
has enabled the production of higher resolution images. The switching of magnetic field gradients
for MRI imaging generates induced voltages that strongly interfere with the electrophysiological
signals (EPs) collected simultaneously. When the bandwidth of the collection amplifiers is higher
than 150 Hz, these induced voltages are difficult to eliminate. Understanding the behavior of these
artefacts contributes to the development of new digital processing tools for better quality EPs. In this
paper, we present a study of induced voltages collected in vitro using a device (350 Hz bandwidth).
The experiments were conducted on a 1.5T MRI machine with two MRI sequences (fast spin echo
(FSE) and cine gradient echo (CINE)) and three slice orientations. The recorded induced voltages
were then segmented into extract patterns called “artefact puffs”. Two analysis series, “global” and
“local”, were then performed. The study found that the temporal and frequency characteristics were
specific to the sequences and orientations of the slice and that, despite the pseudo-periodic character
of the artefacts, the variabilities within the same recording were significant. These evolutions were
confirmed by two stationarity tests: the Kwiatkowski–Phillips–Schmidt–Shin (KPSS) and the time-
frequency approach. The induced potentials, all stationary at the global scale, are no longer stationary
at the local scale, which is an important issue in the design of optimal filters adapted to reduce MRI
artifacts contaminating a large bandwidth, which varies between 0 and 500 Hz.

Keywords: induced potentials; MRI; time and frequency analysis; stationarity test; KPSS test;
surrogates; biomedical engineering; image and signal processing; medical image analysis and
medical decision-making

1. Introduction

Magnetic resonance imaging, like all other imaging techniques, is designed to support
research into diseases. A particular feature of MRI is the high contrast of the smooth tissues pro-
duced. This means that even the smallest differences in the body’s soft tissues (brain, abdominal
organs, spinal cord) are clearly visible. Tumors and inflammatory changes, muscles, tendons, in-
tervertebral discs and joints can, therefore, be particularly well-represented. Magnetic resonance
imaging (MRI) techniques, like other medical approaches, such as dental implantology [1], the
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vascularization of engineered tissues [2] and synthetic bone graft substitution (BGS) [3], are
constantly evolving with the aim of improving the image quality and broadening the spectrum
of applications. These developments have led to considerable improvements in the spatial
and temporal resolution of diagnostic MRI images, and to the development of functional and
interventional MRIs. Unfortunately, these advances generate sources of artefacts that “pollute”
the electrophysiological signals (EPs) acquired simultaneously [4–6]. Indeed, better spatial and
temporal resolution requires increasingly strong gradients with shorter and shorter rise
times, sometimes associated with higher magnetic fields (3-7T). EPs are essential for patient
monitoring and image synchronization in all types of MRI examinations [7,8]. They are
also used as a source of additional information in functional MRI. EPs “pollution” is mainly
due to the interaction between the electromagnetic devices needed to construct the MRI
images and the EPs acquisition devices used for patient monitoring [9,10]. The signal s(t)
collected by the electrodes can be modeled as a linear combination of the desired signal EPs,
and three main sources of noise [4]: s(t) = sEPs(t) + nRF(t) + nMHD(t) + nGA(t) sEPs(t) is
the electrophysiological signal, nRF(t) represents the tensions induced by the RF pulses,
nM HD(t) represents the tensions induced by the RF pulses and nGA(t) are the voltages
induced by the gradient switches. The nRF(t) and nM HD(t) components can be properly
reduced by filtering. The voltages induced by gradient switching are difficult to remove
because they have large amplitudes and frequencies that fall within the bandwidth of the
electrophysiological signals. For several decades the electrocardiogram (ECG) [11] has been
used during MRI examinations for patient monitoring and image acquisition synchroniza-
tion. However, this technique is performed using electronic devices with a low bandwidth
(1 Hz–60 Hz) which does not allow provision of a good diagnostic quality ECG. Indeed,
a diagnostic ECG requires a wide bandwidth (0.05–150 Hz). Recent studies show the
interest in and difficulties associated with this type of collection [12–15]. The surface elec-
tromyography signal is another interesting example in the functional MRI of neurological
pathologies. Combining the information from the image of a muscle section and the EMG
signal collected simultaneously on the surface of the same muscle could provide diagnostic
assistance. At present, obtaining a clean EMG signal in the presence of gradients is a major
difficulty; its amplitude is low (few µv) and its bandwidth is (0.05–500 Hz). Research in this
field confirms the interest in and difficulties of this type of investigation [16–18]. In the cited
works, EMG was used only as a control for muscle activity. The authors did not perform
a quantitative analysis to correlate the EMG and fMRI signals, due to gradient-induced
potentials affecting the EMG signals. The variations in the time-frequency characteristics
of the EMG in the presence of gradient artefacts are even more complex. To eliminate the
induced potentials that strongly contaminate the broadband electrophysiological signals, it
would be interesting to understand the behavior of these artefacts systematically generated
by gradient switching. The results of this type of investigation could contribute to the
development of new analogue and digital processing tools leading to better quality EPs.
The study we propose here falls within this framework and focuses on the characterization
of the temporal and frequency variations of the nGA(t) component. The novelty of this
work lies in its focus on addressing a specific problem related to the contamination of
electrophysiological signals (EPs) during magnetic resonance imaging (MRI) procedures.
In this paper, we present a study of induced voltages collected in vitro. In the laboratory,
we developed a device that allows collection of only the potentials induced by gradient
switching according to different imaging protocols. After analysis of the temporal and
frequency properties, we formulated a study of the stationarity of these induced voltages.
The fundamental notion that informs the modeling of a temporal process is that of station-
arity. Two approaches for testing stationarity were applied to the rewired artefacts: the
KPSS stationarity test and the time-frequency stationarity test. The first part of the paper
briefly presents the theoretical basis of the two stationarity test methods used. The second
part of the paper describes the process of collecting the induced potentials, the method
of analysing their variabilities in the time and frequency domains, which is widely used
in several fields, like the monitoring and early warning of mine rockbursts [19], and the
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algorithm for the stationarity study. The results and a discussion of the observations are
presented in the last section.

2. State of the Art of Stationaity Test

The stationarity of electrophysiological signals such as EMGs, EEGs and ECGs have often
been studied in order to better develop tools for extracting relevant information [20–22]. The
stationarity of these same signals recorded in MRI does not seem to have been studied, probably
due to the complexity of the different noise sources involved. It seemed appropriate to first
study the noise generated by gradient switching using an in vitro approach.

2.1. The Kwiatkowski–Phillips–Schmidt–Shin Stationarity Test

By definition, a signal is considered strictly stationary if, and only if, its statistical
moments are independent of time. In practice, it is virtually impossible to verify stationarity
in the strict (or strong) sense, mainly because a real physical signal can never be stationary
in the strict sense. For this reason, it makes sense to define stationarity in the weak, i.e.,
second-order, sense. In practice, an acquired signal can be assimilated to a time series whose
“trajectory” we observe and analyze in order to qualify it as stationary if it is likely to result
from a stationary process. According to the definition of stationarity in the weak sense, non-
stationarity can arise from a time dependence of the first-order moment (the expectation)
and/or a time dependence of the variance or the auto-covariance. Kwiatkowski et al.
proposed hypothesis tests to verify under the null hypothesis that a series is stationary in
level ηµ or around a trend ητ [23]. To this end, a time series is modeled as follows:

yt = δt + ξt + εt, (1)

where εt is a stationary error, δt is a deterministic trend and ξt is a random walk given by
the following equation:

ξt = ξt−1 + µt (2)

where µt iid (0,σ2
µ): under the null hypothesis, the signal is trend-stationary, i.e., σ2

µ = 0. In
the special case where δ = 0, the KPSS test can be used to check that the signal is weak-
sense stationary.

2.2. Stationarity Test with a Time-Frequency Approach

The time-frequency approach for testing the stationarity of a time series recommended
by Jun et al. [24,25] is very briefly presented below. The starting point of this approach
is that second-order stationary processes are a special case of the class of harmonizable
processes where time-varying spectra can be defined. When the process under analysis is
stationary, its time-varying spectra can be reduced to the classical power spectral density
(PSD). This is true for a good choice, such as for the Wigner–Ville Spectrum (WVS). The
basic idea underlying the approach used here is, therefore, that, considered over a given
period of time, a process is said to be stationary with respect to this scale of observation if its
time-varying spectrum does not support any evolution—in other words, if the spectra at all
different times are statistically similar to the global spectrum obtained by marginalization.
This idea is not new, but the approach advocated is based on the meaning of the difference
“local vs. global”.

2.2.1. The Time-Frequency Approach

The first element required for the test is a time-frequency representation susceptible to
guarantee robust subsequent processing. The choice here will be made on a multi-window
spectrogram, which has the advantage of being a good estimator of the theoretical Wigner–
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Ville spectrum [26]. Given a signal x(t), the spectrogram is estimated according to [27]:

Sx,K(t, f ) =
1
k

K

∑
k=1

S(hk)
x (t, f ) (3)

where ∑K
k=1 S(hk)

x represents the K spectrograms computed on the signal x(t), taking as short-
term windows the successive terms hk(t) of an (orthonormal) basis of Hermite functions:

S(hk)
x (t, f ) = |

∫
x(s)hk(s− t)e−i2π f sds|2 (4)

In practice, the average (4) refers to a reduced number of windows, usually between
5 and 10. Another essential element of any window analysis is, of course, the size of the
windows, irrespective of their shape. In the present context, the possibility to vary this size
provides an intrinsic degree of freedom to the method in order to adjust the horizon of the
local analysis with respect to the global time scale set by the total observation time.

2.2.2. Surrogates

The idea of the test is to identify the concept of stationarity with the equivalence of
global and local spectral properties. In order to have a quantifiable basis for comparison
between the global and local characteristics, the proposed approach is to associate the
observed signal with a “stationary” reference in order to be able to reject the stationarity
hypothesis, if necessary. To this end, the authors use the interpretation that, for the same
spectrum mean, a non-stationary signal differs from a stationary counterpart by a temporal
structure whose signature is found in the spectral phase. Thus, given a single observed
signal x(t), it is possible to associate a battery of substitutes [28,29] sj(t); j = 1, . . . , J, each
having the same power spectrum as the original signal but a stationary time content. It
would be enough to replace the original phase of the spectrum by a random phase.

2.2.3. Distances

The idea is to compare the local spectra with the global spectrum. For this purpose,
we defined the quantities marginalized in time as follows:

〈Sy,k(tn, f )〉n =
1
N

N

∑
n=1

Sy,k(tn, f ) (5)

Since the signal y(t) = x(t) for J substitutes y(t) = sj(t); 1, . . . , J), the different time-
frequency spectrum was only evaluated at N times tn, which are a fraction of the equivalent
width of the short-term windows. The “distances” J + 1 between the local and the global
spectra are derived from this equation:

{C(y)
n = D(Sy,K(tn, .), 〈Sy,K(tn, .)〉n), n = 1, . . . , N} (6)

where D (.,.) stands for some dissimilarity measure (or “distance”) in frequency.
In order to choose a measure of dissimilarity between spectra, the authors adopt a

pragmatic attitude which consists in considering the simplest “distances” that have already
proved their efficiency in similar contexts. A good choice of measurement is based on
two spectra G (f) and H (f),

k(G, H) = kKL(G̃, H̃).(1 + kLSD(G, H)) (7)

Combining the Kullback–Leibler divergence

kKL(G̃, H̃) =
∫

Ω
( ˜G( f )− ˜H( f ))log(

G̃( f )
H̃( f )

)d f (8)
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Applied to the normalized spectrum ˜G( f ) and ˜H( f ) from G(f) and H(f) and the
log-spectral deviation

kLSD(G, H) =
∫

Ω
|log

G( f )
H( f )

|d f (9)

2.2.4. Stationarity Test

Let us consider sj(t), j = 1, . . . , J as the J substitution signals obtained as just de-
scribed. When they are analyzed as explained above for the original signal x(t), we fi-
nally end up with a new collection of distances depending on both the time indices and
the randomizations.

{cs( j)
n = k(Ssj ,K(tn, .), 〈Ssj ,K(tn, .)〉n), n = 1, . . . , J} (10)

To measure the fluctuations in time of the divergences c(.)nn between local and global
spectra, one can use the distance l2− defined by equation (16):

L(g, h) =
1
N

N

∑
n=1

(gn − hn)
2 (11)

For each pair of sequences {(gnhn); n = 1, . . . , N}. Regarding the intrinsic variability
in the proxy data, the dispersion of the divergences under the null hypothesis of stationarity
can be measured by the distribution of the J empirical variances

{θ0(j) = L(c(sj), 〈c(sj)〉n=1,...N), j = 1, ...J} (12)

The distribution is used to determine the threshold γ over which the null hypothesis
is rejected. The effective test is, therefore, based on the statistics

θ1 = L(c(x), 〈c(sj)〉n=1,...,N), j = 1, . . . , J (13)

And takes the form of the unilateral test:

θ1 > γ : “non− stationarity′′; (14)

θ1 < γ : “stationarity′′

2.2.5. Index of Non-Stationarity

Test (20) is used to determine the non-stationarity of a signal in terms of its achievement.
In the non-stationary case (where the null hypothesis is rejected), it is then possible to
define a non-stationary index (INS) according to the following relation:

INS =

√√√√ θ1
1
J ∑J

j=1 θ0(j)
(15)

3. Signal Acquisition and Treatment
3.1. Recording of Induced Potentials

An experimental bench was built in our laboratory to collect the in vitro potentials in-
duced by gradient switching (Figure 1). A detailed description of this bench was published
in a previous paper [30]. From an electrophysiological signal generator (A), five signals
can be injected simultaneously into the tunnel via the transmitter (B), the optical fiber
and the receiver (C). These signals contaminated at the level of the conductive tissue (D),
which is placed at the center of the magnet, are detected by the second transmitter (E) and
transmitted to the outside of the tunnel via a second optical fiber and the second receiver
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(F). The data is stored and processed by station G. The non-MRI-compatible elements (A),
(B), (E) and (G) are placed outside the MRI chamber.
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Figure 1. Experimental bench with two “transmitter-receiver” modules: (B,C) for signal transmission,
and (E,F) for detection. From (A), five signals can be injected simultaneously into the tunnel via the
transmitter (B), the optical fiber and the receiver (C). These contaminated signals at the conductive
fabric (D) are detected by the second transmitter (E) and transmitted to the outside of the tunnel via a
second optical fiber and the second receiver (F). When the generator (A) is off and the MRI sequences
are activated, the system collects the potentials induced by the gradient switches. The contaminated
signals or induced potentials are stored and processed by the station (G).

The bandwidth of the set extends from 0.05 Hz to 350 Hz. The bench has 20 channels
divided into four frequency bands (40 Hz, 80 Hz, 160 Hz and 350 Hz). It is, thus, possible
to analyze the changes in the signal parameters according to the sequences, but also
within the different frequency bands. This bench offers different types of experiments.
It consists of two MRI-compatible “transmitter-receiver” modules. The first allows EPS
signals with known characteristics to be introduced into the MRI tunnel. The signals are
injected into a sample of conductive tissue placed in the tunnel. The second module allows
the signals to be collected after they have been contaminated by artefacts generated by
the imaging sequences owing to the electrodes placed on the conductive tissue. When
no signal is injected into the tunnel, the potentials induced after activation of the MRI
sequences can be collected. This type of experiment was used in the present work. The
study focused on the induced potentials collected at the output of the 350 Hz (broadband)
filter, which, therefore, contains a maximum of noise generated by the gradients. The
experiments were conducted on a 1.5T MRI system (GE Signa HDxt 1.5T, GE Healthcare)
equipped with a 33 mT/m gradient system. To simulate a human body, a conductive
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tissue model was placed in the MRI tunnel. It was made from salt, gelatine powder and
water. By varying the concentrations of salt in the gel, different conductivities of the
medium were obtained. For this study, the conductivity was 348 Ω·cm. The induced
potentials were acquired with three carbon electrodes (3MTM RedDotTM radiolucent
electrode). The induced potentials were sampled at 5 kHz and recorded for a duration of
10 s. The MRI sequences used were FSE and CINE in three slice orientations. Fast spin echo
(FSE) (Fov = 30 × 30 cm, TR/TE = 500/12 ms, Matrix = 448 × 512) and cine gradient echo
(CINE GE) (Fov = 34 × 25 cm, TR/TE = 9.4/5.1 ms, Matrix = 256 × 128) were used as the
MRI sequences.

3.2. Pre-Treatment

Figure 2a shows an example of low-frequency noise recorded without MRI sequence
activation. Figure 2b illustrates an example of an induced potential where the amplitude
modulation by the noise seen in Figure 2a is observed. There are also bursts of artefacts
that appear periodically. These two features were exploited in the studies presented below.
The studies focused on a 5-s recording duration for global analysis, and on the artefact
puffs for local analysis.

A recording without sequence activation was also performed in order to observe the
disturbances caused by the static field B0 and the rest of the measurement environment.
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Figure 2. (a) Non-sequenced noise and its frequential representation, and (b) induced potentials FSE.

3.2.1. Normalization

In order to process the potentials collected in different sequences and slice orientations,
the normalization of the data is essential in order to transform the amplitude values of the
induced potentials from their original values into comparative scales. In this study the
Z-score normalization used was set by the following formula:

Y(s) =
X(s)− µ

σ
(16)

Y(s) represents the normalized induced potential, X(s) is the original induced potential
µ and σ represents the mean and standard deviation.
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3.2.2. Puff Extraction

In order to precisely delineate the artefact bursts, we performed a manual segmenta-
tion, which is more accurate for delineating the puffs (Figure 3).

Figure 3. Signal segmentation principle.

The operation was applied to 5 s of induced potential recorded as indicated above
for each of the two sequences and according to the three orientations. This gave a total of
three “noise signals” per sequence, i.e., six recordings to be segmented. In all, 80 puffs were
extracted from each of the six segments, i.e., a total of 480 puffs to be analyzed.

3.2.3. Time and Frequency Analysis of Induced Potentials

The aim here was to verify the expected properties and to highlight the inter-sequence
and intra-sequence variabilities. The estimated time and frequency domain characteristics
are given below:

- RMS values of the global signal and RMS values of the different bursts.
- Estimation of the average curve of the chirps, and calculation of its RMS value.
- Measurement of the similarity between the puffs by calculating the mean square error

between each puff and the mean curve according to the following equation:

ern =
1
ȳ

√√√√ N

∑
1
(ŷi − yi)2 (17)

This value is normalized to the range ỹ = ymax − ymin.

- The calculation of the power spectral density (PSD) is performed by the Welche–WOSA
method, and estimation of the characteristic parameters, the average frequency, the
maximum amplitude frequency and the standard deviation of the overall spectrum
and on the set of puffs are obtained by segmentation.

3.3. Stationarity Study
3.3.1. Kpss Method

The theoretical approach outlined in Section 2.1 was applied to the different 5 s
recordings, which was enough to have sufficient puffs to analyse:

(a) the KPSS of the six 5 s recordings (FSE/axial/ coronal/sagittal-CINE/axial/coronal/sagittal).
(b) the KPSS of the 480 extracted puffs and evaluation of the variabilities by estimating the

mean values and standard deviation of the obtained series of values. The values were
also grouped and graphed to highlight the degree of stationarity or non-stationarity
of the different studied segments of the induced potentials.
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3.3.2. Surrogate-Based Method

The algorithm proposed by Bor et al. [24], which is based on the briefly presented
approach in Section 2.2, was adapted and applied to our records. The program is imple-
mented in the Matlab language and contains different functions. Below is a presentation of
the main steps of the algorithm:

(1) Time-frequency representation: The choice was made for the multi-window
Wigner–Ville spectrogram, having successive short-term windows of a Hermite
function base. This allows the possibility to adapt the window sizes of our recordings
to the MRI sequences.

(2) Surrogate generation: A set of surrogates each having the same power spectral density
as the original signal was created. This was achieved by keeping the Fourier transform
modulus unchanged but replacing its phase with another randomly taken on [−π, π].

(3) The stationarity test is based on the distances between the local and global spectra.
The distance calculation was carried out by combining the Kullback–Leiber divergence
(KL) and log spectral deviation (LSD) methods.

The studied induced potentials show an amplitude modulation by a pseudo sinusoidal
low-frequency noise (Figure 2a). Since our induced potentials are similar to the examples
of signals used by the authors of the surrogate approach to validate their approach, we
were inspired by their approach for the choice of the parameters for the stationarity study.
These parameters are as follows:

• Number of substitutes: 5000;
• Number of windows: 5;
• Window size range: [0.03:0.04:0.005:0.07:0.075] adjusted for slice orientation.

The possibility of varying this size provides a degree of freedom intrinsic to the method
to allow the local analysis to be adjusted in relation to the global time scale set by the total
observation time.

4. Results and Discussion

The temporal and frequency analysis and stationarity studies were applied to a series
of induced potential recordings to highlight the variability of the characteristics of the
gradient-induced potentials. The different graphs allow a qualitative observation of these
variabilities. Tables 1–4 summarize the main parameters calculated for a quantitative
analysis of the observed variabilities. The six recordings, according to two sequences and
three slice orientations processed throughout this work, are shown in Figure 4. It can be
observed that the pseudo-periodicity of each of the six recordings was confirmed by a
spectrum of amplitude lines more or less rich according to the imaging sequence. The
frequencies of the amplitude maxima are different according to the slice orientations.

4.1. Puff Analysis

The puffs of the potentials obtained by segmentation on the previously described six
recordings are shown in Figure 5. The first row shows a 3D representation of the extracted
puffs (20 as an example) for each of the FSE and CINE sequences, respectively. The second
row shows the respective average puffs. The third row shows the variability in the RMS
values of the 80 puffs around the RMS value of the mean puff. The fourth row shows the
variability in the average quadratic deviation of each puff from the average puff curve.

The average puffs were estimated for the coronal orientation of the FSE and CINE
sequences. The analysis of these puffs shows the variability of the features within a
sequence. The RMS values calculated for each puff were compared to the RMS value of the
average puff curve. We also compared the root mean square deviation between each puff
and the mean puff evaluated from the set of puffs.
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Figure 4. Recorded induced potentials: representation in time and frequency domains. Columns 1
and 2, potentials induced by the FSE sequence (coronal/axial/sagital). Columns 3 and 4, potentials
induced by the CINE sequence (coronal/axial/sagittal).

The qualitative analysis of the different graphs in Figure 5 shows that the waveforms
of the average puffs from one orientation to another are very different, which is an expected
result. The puffs appear in a regular way, but their shape is not identical, as shown in the
MSE curves. Table 1 summarizes the values of the calculated RMS and MSE parameters.

The RMS values calculated over the entire duration of the recordings indicate that
the orientation of the slices does not determine the level of noise power; it is higher for
the axial FSE than the CINE. The dispersion of the RMS values of the puffs is greater for
the coronal FSE orientation (0.0644) but the mean value 1.2684 is close to the RMS value
calculated on the global recording (1.2566). The variability degree in the morphology of
the puffs within the same sequence is more or less significant depending on the sequence
and the cutting orientation. The RMS and MSE curves show significant variability for the
coronal orientation of the FSE sequence despite the periodic character of the puffs.

For all six recordings, we noted that the estimated average frequency parameters
varied significantly from one puff to another for the same slice orientation. This indicates
that an in-depth study of the stationarity of the induced potentials is an avenue to explore.
The average values of the frequency parameters were calculated in order to compare them
with the global values; differences of around 5% were noted.

Table 1. Illustration of RMS and MSE values of FSE and CINE sequences.

FSE CINE

Axial Coronal Sagital Axial Coronal Sagital

RMS
Global 1.9022 1.2566 1.7004 1.4715 2.2606 2.1468
[min–max] [0.8770–1.0017] [1.0947–1.3463] [1.2018–1.3360] [1.3902–1.4610] [2.1046–2.1855] [2.0844–2.1394]
Mean–stdev 0.9393–0.0279 1.2684–0.0644 1.2770–0.0293 1.4154–0.0152 2.1463–0.0181 2.1028–0.0125

MSE [min–max] [0.0001–0.0133] [0.0004–0.0140] [0.0003–0.0109] [0.0003–0.0151] [0.0003–0.0096] [0.0004–0.0099]
Mean–stdev 0.0029–0.0036 0.0054–0.0027 0.0036–0.0031 0.0053–0.0037 0.0043–0.0025 0.0043–0.0027

Table 2. Representation of the mean and maximum frequencies and standard deviation for the FSE
and CINE puffs.

FSE CINE

Frequency Coronal Axial Sagital Coronal Axial Sagital

Fmean [246.163–254.390] [87.66–97.451] [121.364–161.663] [217.309–231.005] [254.220–295.720] [230.406–237.216]
Fmax [280.681–287.959] [9.765–9.765] [9.548–10.184] [234.375–234.375] [234.375–234.375] [234.375–234.375]
stdev [0.0013–0.0013] [0.004–0.005] [0.0033–0.0049] [0.0043–0.0051] [0.0013–0.0015] [0.0079–0.0084]
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Figure 5. Puffs extracted from the induced potential recordings after activation of the coronal
orientation for the FSE and CINE sequences. (a,b) are the 3D representation of FSE and Cine
sequences respectively, (c,d) are the average puffs of FSE and Cine, (e,f) the variability in the RMS
values around the RMS value of the mean puff and (g,h) is the variability in the average od quadratic
deviation of each puff.
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Table 3. Results of the stationarity tests for the two sequences FSE and CINE with the KPSS method
and the time-frequency method.

FSE CINE

Stationarity Test Coronal Axial Sagital Coronal Axial Sagital

KPSS test Statistical value 0.0678 0.0921 0.0403 0.0098 0.0019 0.0020
Surrogates Theta 0.0089 0.0048 0.0033 0.0072 0.0032 0.0055

Threshold 0.2698 0.0994 0.4134 0.0311 0.0573 0.0320
INS 0.0776 0.0941 0.1208 0.0779 0.0377 0.0652
INS threshold 1.3457 1.3314 1.3341 1.6109 1.5754 1.5632

Table 4. Test results for the FSE puffs.

KPSS Test Surrogate Test

FSE Statistical Value Theta Threshold INS INS Threshold

Coronal Mean–stdev 0.1280–0.1472 0.0051–0.0009 0.0058–0.005 1.2607–0.0984 1.5920–0.0413
Axial Mean–stdev 0.4376–0.1838 0.0041–0.0004 0.0067–0.0011 1.3963–0.4480 0.8594–0.3205
Sagittal Mean–stdev 0.3142–0.1475 0.0117–0.0011 0.0067–0.0011 1.9565–0.5376 1.2336–0.2032

4.2. Global and Local Power Spectral Density

The calculated power spectral densities of the induced potentials are shown in Figure 6.
They are calculated over the total duration of the recordings (global PSD) and for each
series of puffs (local PSD). The first interesting observation on the global PSDs we can make
is the very significant variability in the frequency parameters within the same sequence.
For example, for the FSE sequence, the average frequency, fmean, is 234.97 Hz, 145.82, and
114.26 for the three orientations, coronal, axial, and sagittal, respectively.
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-40
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-20
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0 500 1000 1500 2000 2500
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Figure 6. Spectral analysis of the coronal orientation for FSE and CINE sequences. Column 1: global
spectrum for each FSE and CINE, respectively. Column 2: spectrum of local segments.

Table 2 shows that the puff-by-puff calculated parameters (local analysis) occupy a
quite large interval for each frequency range (min–max). The frequency of the maximum
amplitude varies significantly from one puff to the next, whatever the sequence and
orientation. This parameter is influenced by the low frequency modulation mentioned in
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the beginning of the paper. This parameter, whose variations do not depend solely on the
morphology of the induced potential, must be analyzed with caution.

4.3. Stationarity

The stationarity study was motivated by the frequency parameters variability observed
on the local power spectral densities. The results of this investigation are displayed in
this subsection. Two stationarity test processes were proposed: a KPSS test and a time-
frequency test. The study was carried out both globally (the total duration of the recording
was considered) and locally (each puff extracted from the same recording was analyzed).
The local study allows observing the evolution of the stationarity criteria. It was interesting
to compare two stationarity-testing methods, one of which uses frequency properties.

For the global study, both methods lead to the results displayed in Table 3, showing
the stationarity of the induced potentials whatever the sequence and the cutting orientation.
For the KPSS test, the statistical value is effectively below the threshold of 0.1460. The
recordings made according to two sequences and three slice orientations, allow highlighting
the intra- and inter-sequence variability. The local analysis shows significant levels of
variability in the features that cannot be identified in the global analysis. This point was
confirmed by both the KPSS and the time-frequency stationarity tests.

For the time-frequency test, a large number of substitutes was taken (JJ = 5000). The
stationarity was verified for the six records, and the values of theta and INS were, in fact,
lower than the threshold values estimated by the algorithm.

For the local analysis (puff-by-puff evolutionary observations), the stationarity tests
results are shown in Table 4. Some puffs are not stationary. It is to be noted that all puffs
tested stationary by the time-frequency method were confirmed by the KPSS statistical
test. The reverse is not true; in fact, 97.5% of puffs tested stationary by the KPSS method
were not confirmed by the time-frequency method. For a given record, the variation range
of the stationarity thresholds are generated automatically, while the mean values and the
values of the estimated dispersion are shown in Table 4. Depending on the orientation of
the cut, the variability in the test parameters can be significant. For example, for the axial
orientation, we have a range of [min–max] = [ 0.1851–0.8744], with a dispersion of 0.18 for
the KPSS test; this was confirmed by the threshold values obtained by the time-frequency
method. For this slice orientation, no puffs were tested stationary. In contrast, for the
coronal orientation, both methods indicate stationarity for 78 of the 80 puffs analyzed.

It should be noted that only the recordings obtained with the FSE sequence are shown
because, for the CINE sequence, the time-frequency method did not provide usable results,
the duration of the potentials being very short for this type of approach.

For the time-frequency test, the window size is an important parameter in the evalua-
tion of stationarity. The choice of the windows applied was guided by the nature of our
“noise signals”, which are amplitude modulated, similar to those tested by the authors of
this approach [24]. Knowing that for the global study, all our “noise signals” are stationary
by the time-frequency approach, we analyzed the influence of the window size for each
of the three slice orientations. The evolution of the INS is a function of the number of
windows and their sizes. The results are shown in Figure 7.

It was noted that, for the range of variation [0.003–0.05], the obtained curves remain
below the INS threshold and show that the induced potentials remain stationary. This
approach, which takes into account the frequency characteristics of the signals, is interesting,
but the choice of the number of windows and their size is a delicate issue. The number
of substitutes is also a parameter that could influence the stationarity results. We tested
with 50 and 5000 surrogates and verified the null hypothesis of stationarity. To evaluate
the null hypothesis of stationarity, we have taken up the idea advocated in [25], i.e.,
the representation of the asymptotic histograms of the distributions of θ relative to the
surrogates and its fitting by the gamma distribution.

An illustration is given in Figure 8 for two induced potential puffs—one is stationary
but the other is not. For the example shown in Figure 8 (5000 and 50 surrogates), the
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magenta plot is in the middle of the distribution, which proves that the null hypothesis of
stationarity is met. The last example shown in Figure 8 is a case of non-stationarity; the
statistical value in magenta is far from the distribution.
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Figure 7. Graphical illustration of INS values in relation to the threshold for the FSE sequence orientations.
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Figure 8. Histogram of Θ(j), surrogate-based distribution and its gamma fitting.

5. Conclusions

These signals are useful to monitor the subject and are also used in the MRI examina-
tion process itself, for example, as a source for triggering observation sequences, and in its
interpretation by correlation with information obtained in functional MRI. Unfortunately,
the technical constraints specific to MRI give rise to sources of artefacts which ’pollute’ the
electrophysiological signals collected simultaneously. A knowledge of the variability in the
characteristics of the artefacts that cause signal disturbances is essential in the choice of
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strategies to adopt for the development of signal cleaning algorithms. The novelty of this
work lies in its systematic investigation of the contamination of EPs by gradient-induced
artefacts during MRI scans. It involves the development of a specialized device, detailed
analysis of the temporal and frequency properties, and the application of stationarity tests.
In this work, an analysis of the induced potentials generated by the gradient switches col-
lected during MRI examination was investigated. The temporal, frequency and statistical
characteristics of these artefacts were determined globally and locally. The global analysis
was performed on the total recording time and the local analysis on segments extracted
from the same recording. The segments designated as puffs of the induced potentials
were isolated in accordance with the temporal pseudo-periodicity that characterize these
artefacts. It should be noted that the study presented in this paper is just a first step, as
the induced studied potentials, collected in vitro, do not have all the characteristics of
induced potentials collected in vivo. Forthcoming studies will first focus on the collection
of induced potentials in vivo, then on digital filters’ modeling. An experimental protocol to
isolate segments of the induced potentials generated during the collection of the electro-
physiological signals will be developed. The characterizations of the induced potentials is
specific to such sequences as MRI sequences. Other MRI sequences, particularly those that
generate more artefacts, like true FISP or EP sequences, will be tested in a future study.
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