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Abstract: Conditional image generation plays a vital role in medical image analysis as it is effective
in tasks such as super-resolution, denoising, and inpainting, among others. Diffusion models have
been shown to perform at a state-of-the-art level in natural image generation, but they have not been
thoroughly studied in medical image generation with specific conditions. Moreover, current medical
image generation models have their own problems, limiting their usage in various medical image
generation tasks. In this paper, we introduce the use of conditional Denoising Diffusion Probabilistic
Models (cDDPMs) for medical image generation, which achieve state-of-the-art performance on
several medical image generation tasks.

Keywords: image generation; diffusion models; generative models; super-resolution; denoising; inpainting

1. Introduction

Conditional image generation refers to the generation of images using a generative
model based on relevant information, which we denote as a condition. When the condition
is an image, this is also referred to as image-to-image translation. In the medical domain,
this has many important applications such as super-resolution, inpainting, denoising,
etc., which can potentially improve healthcare [1]. Super-resolution can help shorten
imaging time and improve imaging quality. Denoising helps clinicians and downstream
algorithms to make better diagnostic judgments. Medical image inpainting can be beneficial
to anomaly detection.

Existing generative models are able to perform some of these jobs decently; e.g., the
Hierarchical Probabilistic UNet (HPUNet) [2] for ultrasound image inpainting, and the
progressive Generative Adversarial Network (GAN) [3] and SMORE [4] for medical image
super-resolution. These methods work to some extent, but they are tailored to specific
applications or imaging modalities, making it difficult for researchers to adapt them to
different tasks or modalities. MedGAN [5] and UP-GAN [6] target general-purpose medical
image generation; however, they are too challenging to train and/or produce underwhelm-
ing results.

Models based on Variational Autoencoders (VAE) can be effective in some medical
applications [2,7], but the generated images tend to be blurry [8]. Although GAN-based
models can generate high-quality medical images [5,9], they suffer from unstable training
due to vanishing gradient, convergence, and mode collapse [10]. Normalizing Flow (NF),
which has also been used in medical imaging [11,12], can estimate the exact likelihood of
the generated sample, making it suitable for certain applications; however, NF requires
specifically designed network architectures and the generated image quality fails to impress.
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Diffusion models have been dominant in natural image generation due to their ability
to generate high-fidelity realistic images [13–16]. They have also been applied to medical
image generation [17–20], such as in super-resolution medical imaging [21], but there are
only a limited number of studies using conditional diffusion models.

We propose a conditional Denoising Diffusion Probabilistic Model (cDDPM), which
we call the medical conditional diffusion model (Med-cDiff), and apply it to a variety of
medical image generation tasks, including super-resolution, denoising, and inpainting. In a
series of experiments, we show that Med-cDiff achieves state-of-the-art (SOTA) generation
performance on these tasks, which demonstrates the great potential of diffusion models in
conditional medical image generation.

2. Related Work

Before diffusion models became popular in medical image analysis or in mainstream
computer vision, GANs [22] were the most popular image generation methods. Devel-
oped to perform conditional natural image generation, Pix2PixGAN [23] was adapted to
medical imaging and several researchers have shown its usefulness in such tasks [24–27].
Zhu et al. [28] proposed CycleGAN to perform conditional image-to-image translation be-
tween two domains using unpaired images, and the model has also been extensively used
in medical imaging. Du et al. [29] made use of CycleGAN in CT image artifact reduction.
Yang et al. [30] used a structure-constrained CycleGAN to perform unpaired MRI-to-CT
brain image generation. Liu et al. [31] utilized multi-cycle GAN to synthesize CT images
from MRI for head-neck radiotherapy. Harms et al. [32] applied CycleGAN to image correc-
tion for cone-beam computed tomography (CBCT). Karras et al. [33] proposed StyleGAN,
which has an automatically learned, unsupervised separation of high-level attributes and
stochastic variation in the generated images, enabling easier control of the image synthesis
process. Fetty et al. [34] manipulated the latent space for high-resolution medical image
synthesis via StyleGAN. Su et al. [35] performed data augmentation for brain CT motion
artifacts detection using StyleGAN. Hong et al. [9] introduced 3D StyleGAN for volumetric
medical image generation. Other GAN-based methods have also been proposed for medi-
cal imaging. Progressive GAN [3] was used to perform medical image super-resolution.
Upadhyay et al. [6] extended the model by utilizing uncertainty estimation to focus more
on the uncertain regions during image generation. Armanious et al. [5] proposed MedGAN,
specific to medical image domain adaptation, which captured the high and low frequency
components of the desired target modality.

Apart from GANs, other generative models, including VAEs and NFs, are also popular
in image generation. The VAE was introduced by Kingma and Welling [36], and it has been
the basis for a variety of methods for image generation. Vahdat and Kautz [37] developed
Nouveau VAE (NVAE), a hierarchical VAE that is able to generate highly realistic images.
Hung et al. [2] adapted some of the features from NVAE into their hierarchical conditional
VAE for ultrasound image inpainting. Cui et al. [38] adopted NVAE in positron emission
tomography (PET) scan image denoising and uncertainty estimation. As for the NF models,
Grover et al. [39] proposed AlignFlow based on a similar concept with NF models instead of
GANs. Bui et al. [40] extended AlignFlow into medical imaging for Unpaired multi-contrast
MRI conditonal image generation. Wang et al. [41] and Beizaee et al. [42] applied NF to
medical image harmonization.

In recent years, diffusion models have become the most dominant algorithm in image
generation due to their ability to generate realistic images. On natural images, diffusion
models have achieved SOTA results in unconditional image generation by outperforming
their GAN counterparts [13,14]. Diffusion models have achieved outstanding performance
in tasks such as super-resolution [16,43], image editing [44,45], and unpaired conditional
image generation [46], and they have attained SOTA performance in conditional image
generation [15]. In medical imaging, unsupervised anomaly detection is an important
application of unconditional diffusion models [17,47–49]. Image segmentation is a popular
application of conditional diffusion models, where the image to be segmented is used as the
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condition [19,50–53]. Diffusion models have also been widely applied to accelerating MRI
reconstruction [20,54,55]. Özbey et al. [18] used GANs to shorten the denoising process in
diffusion models for medical imaging.

3. Methods
3.1. Background

The goal of conditional image generation is to generate the target image x0 given a
correlated conditional image y. Diffusion models consist of two parts: a forward noising
process q, and a reverse denoising process pθ parameterized by θ. Figure 1 illustrates
conditional diffusion models. At a high level, given y, they sample from a data distribu-
tion during pθ , reversing q, which adds noise iteratively to the original image x0. More
specifically, the sampling process starts with a random noise sample xT , and iteratively
generates less-noisy samples, xT−1, xT−2, . . . , based on the conditional image y for T steps
until reaching the final output sample x0. For a specific sample xt during the process, the
larger t is, the more noisy the sample will be. Given the conditional image y, the reverse
process pθ learns to denoise the sample xt by one step to xt−1.

x0 x1 x2 xT−1 xT

y : q(xt|xt−1)
: pθ(xt−1|xt, y)

Figure 1. A graphical model representation of conditional diffusion models. The blue and green
arrows indicate the forward and reverse processes, respectively.

The forward process q is a Markovian noising process, where Gaussian noise is added
to the image xt−1 at each time step t = 1, 2, ..., T according to a variance schedule βt:

q(xt|xt−1) = N
(

xt;
√

1− βtxt−1, βt I
)

, (1)

where N (·) denotes the normal distribution and I is the identity matrix. Note that

q(x1, . . . , xT |x0) =
T

∏
t=1

q(xt|xt−1), (2)

where T is the number of steps. The forward noising process (1) can be used to sample xt
at any timestep t in closed form. In other words, since

q(xt|x0) = N
(
xt;
√

ᾱtx0, (1− ᾱt)I
)
, (3)

then for the original image x0 and any given timestep t

xt =
√

ᾱtx0 + (1− ᾱt)ε, (4)

where αt = 1− βt and ᾱt = ∏t
i=1 αi, and ε ∼ N (0, 1). When T is large, we can assume that

xT ∼ N (0, I), which is random Gaussian noise containing no information regarding the
original image x0 [13].

In a conditional diffusion model, the objective is to learn the reverse process pθ so
that we can infer xt−1 given xt and the conditional image y. In this way, starting from
the Gaussian noise xT ∼ N (0, 1), and given y, we can iteratively infer the sample at time
step t − 1 from the sample at time step t until we reach the original image x0. For the
reverse process,

pθ(x0, . . . , xT |y) = pθ(xT)
T

∏
t=1

pθ(xt−1|xt, y). (5)
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The reverse process can therefore be parameterized as

pθ(xt−1|xt, y) = N (xt−1; µθ(xt, y, t), Σθ(xt, y, t)), (6)

where we set Σθ(xt, y, t) = σ2
t I. As for µθ(xt, y, t), Ho et al. [13] showed that it must be

parameterized as

µθ(xt, y, t) =
1√
αt

(
xt −

βt√
1− ᾱt

εθ(xt, y, t)
)

, (7)

where εθ(xt, y, t) is a function approximating ε.
For a total of T steps, the training objective is to minimize the variational lower bound

on the negative log-likelihood:

E[− log pθ(x0|y)] ≤ Eq

[
− log

pθ(x0, . . . , xT |y)
q(x1, . . . , xT |x0)

]
= Eq

[
− log pθ(xT)−

T

∑
t=1

log
pθ(xt−1|xt, y)

q(xt|xt−1)

]
(8)

= L(θ).

More efficient training can be achieved by optimizing random terms in the training
objective L(θ) using stochastic gradient descent. Therefore, we can rewrite the training
objective as

L(θ) = Eq

[
T

∑
t=1

Lt(θ)

]
, (9)

where

Lt(θ) =


− log pθ(x0|x1) if t = 0,
DKL(q(xt|xt+1, x0)‖pθ(xt|xt+1, y)) if 0 < t < T,
DKL(q(xT |x0)‖pθ(xT)) if t = T,

(10)

and DKL(.‖.) is the Kullback-Leibler (KL) divergence between two distributions. In (10),
the term q(xt|xt+1, x0) is given by

q(xt|xt+1, x0) = N
(
xt; µ̃t+1(xt+1, x0), β̃t+1 I

)
, (11)

where

µ̃t+1(xt+1, x0) =

√
ᾱtβt+1

1− ᾱt+1
x0 +

√
αt+1(1− ᾱt)

1− ᾱt+1
xt+1, (12)

with
β̃t+1 =

1− ᾱt

1− ᾱt+1
βt+1. (13)

3.2. Training and Sampling

When t = T, LT(θ) is a constant with no learnable parameters since βt is fixed to a
constant. Therefore, Lt(θ) can be ignored during training.
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When 0 < t < T, Lt(θ) can be expressed as

Lt(θ) = Eq

[
‖µ̃t+1(xt+1, x0)− µθ(xt+1, y, t + 1)‖2

2σ2
t+1

]
+ C (14)

= Ex0,ε


∥∥∥∥ 1√

ᾱt+1

(
xt+1(x0, ε)− βt+1√

1−ᾱt+1
ε

)
− µθ(xt+1(x0, ε), y, t + 1)

∥∥∥∥2

2σ2
t+1

+ C (15)

= Ex0,ε

[
β2

t+1

∥∥ε− εθ(
√

ᾱt+1x0 +
√

1− ᾱt+1ε, y, t + 1)
∥∥2

2σ2
t+1αt+1(1− ᾱt+1)

]
+ C, (16)

where C is a constant.
When t = 0, assuming all the image data have been re-scaled to [−1, 1], the expression

of L0(θ) can be written as

L0(θ) = − log pθ(x0|x1) = −
H

∑
i=1

W

∑
j=1

∫ f (xi,j
0 +δ)

f (xi,j
0 −δ)

N
(

x; µi,j, θ(x1, 1), σ2
1

)
dx, (17)

where H and W are the height and width of the image, respectively, and δ is a small number,
and where

f (x) =


1 if x > 1,
x if − 1 < x < 1,
−1 if x < −1.

(18)

From Equations (16) and (17), we see that the training objective is differentiable with
respect to the model parameter θ. During each training step, we sample the image pair
(x0, y) from the dataset x0, y ∼ pdata(x, y), the time step t from a uniform distribution
t ∼ U ({1, 2, ..., T}), and ε from a normal distribution ε ∼ N (0, I). We then perform
gradient descent on

∇θ

∥∥∥ε− εθ(
√

ᾱtx0 +
√

1− ᾱtε, y, t)
∥∥∥2

, (19)

which is an alternative variational lower bound that has been shown to be better for
sampling quality [13].

During sampling, xT is first sampled from a normal distribution xT ∼ N (0, I). Then
we iteratively sample xT−1, xT−2, . . . , x0 from distribution xt−1 ∼ pθ(xt−1|xt, y) by

xt−1 =
1√
αt

(
xt −

βt√
1− ᾱt

εθ(xt, y, t)
)
+ σtz, (20)

where σt is an untrained time dependent constant and z ∼ N (0, I).

4. Experiments
4.1. Datasets

Our method is evaluated on the following datasets:

1. MRI Super Resolution: The dataset consists of 296 patients who underwent pre-
operative prostate MRI prior to robotic-assisted laparoscopic prostatectomy. T2-
weighted imaging was used for the experiment, acquired by the Turbo Spin Echo
(TSE) MRI sequence following the standardized imaging protocol of the European
Society of Urogenital Radiology (ESUR) PI-RADS guidelines [56]. Additionally, the
dataset includes annotation of the transition zone (TZ) and peripheral zone (PZ) of
the prostate. Overall, 238, 29, and 29 patients were used for training, validation, and
testing, respectively. To perform super-resolution, we downsampled the images by a
factor of 2

√
2, 4, 4

√
2, 8, 8

√
2, and 16.
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2. X-ray Denoising: The public chest X-ray dataset [57] contains 5863 X-ray images
with pneumonia and normal patients. Overall, 624 images were used for testing.
Pneumonia patients were further categorized as virus- or bacteria-infected patients.
We randomly added Gaussian noise as well as salt and pepper noise to the images
and used the original images as the ground truth.

3. MRI Inpainting: The dataset consists of 18,813 T1-weighted prostate MRI images that
were acquired by the Spoiled Gradient Echo (SPGR) sequence. We used 6271 of them
for testing. The masks were randomly generated during training, and they were fixed
among different tests for testing.

4.2. Implementation and Evaluation Details

For Med-cDiff, εθ(xt, y, t) was parameterized by a U-Net [58] while using group
normalization [59]. The total number of steps was set to T = 2000. The forward process
variances were set to constants that linearly increase from β1 = 10−4 and βT = 0.02. We
also set σ2

t = βt. All the images used were resized to 128× 128, and the pixel values are
normalized to the range [−1, 1] in a patient-wise manner. The models were all trained for
2× 105 iterations with a learning rate of 1× 10−4.

For quantitative evaluation, we used the following metrics: Learned Perceptual Image
Patch Similarity (LISPS) (v1.0) [60] with AlexNet [61] as the backbone, Fréchet Inception
Distance (FID) [62], accutance (acc) [63], which measures the sharpness of an image, Dice
similarity coefficient (DSC) [64], classification accuracy, and the 2-alternative forced-choice
(2AFC) paradigm [65].

Due to the domain gaps [66,67] between different datasets and different tasks, com-
bining datasets and training a combined network would yield a worse performance than
separately training the networks. Thus, we trained and tested our methods on different
tasks separately.

4.3. MRI Super-Resolution

For MRI super-resolution, we downsampled the MRI images by a factor of 2
√

2, 4, and
4
√

2, and then we upscaled the images to their original size. We compared the performance
of Med-cDiff against bilinear interpolation, pix2pixGAN [23], and SRGAN [68] both visu-
ally and quantitatively, evaluated by LPIPS, FID, and accutance, as well as performance
comparison on the downstream zonal segmentation task.

Figure 2 shows qualitative results. Clearly, images generated by the other methods
are blurry and lack realistic textures, whereas Med-cDiff is able to recover the shape
of the prostate as well as relevant textures. For zonal segmentation, we utilized the
pretrained CAT-nnUNet [69] and calculated the 3D patient-wise DSC for evaluation. The
quantitative results are reported in Table 1, confirming that the images generated by Med-
cDiff are the most realistic with the best sharpness and are useful in downstream zonal
segmentation. Furthermore, to show the effectiveness of Med-cDiff on zonal segmentation,
we further downsampled the original images by a factor of 8, 8

√
2, and 16 and performed

MRI super-resolution. The results on downstream zonal segmentation are plotted in
Figure 3, which reveals that Med-cDiff clearly outperforms bilinear interpolation and
pix2pixGAN. CAT-nnUNet performs similarly on images generated by Med-cDiff and
SRGAN for PZ segmentation, but it performs better on images generated by Med-cDiff
for TZ segmentation. The segmentation performance using bilinear interpolation and
pix2pixGAN drops drastically as the upscaling factor increases, while the segmentation
performance using images generated by SRGAN and Med-cDiff does not decrease much.
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Table 1. Numerical comparison of Med-cDiff against other super-resolution methods.

Factor LPIPS (×10−4)↓ FID↓ acc.↑ PZ DSC (%)↑ TZ DSC (%)↑

2
√

2

bilinear 2787.847 1.19 6.75 82.8 87.7
pix2pixGAN 1.53 1.20 12.72 81.5 87.2
SRGAN 3.30 1.19 5.60 82.7 88.0
Med-cDiff 2.74 1.19 22.84 81.7 88.2

4

bilinear 4339.392 1.20 4.51 78.2 84.2
pix2pixGAN 1.96 1.22 11.31 78.3 86.1
SRGAN 5.03 1.19 5.11 80.2 86.2
Med-cDiff 4.62 1.19 21.44 77.8 86.3

4
√

2

bilinear 5773.238 1.21 3.28 68.9 75.9
pix2pixGAN 2.50 1.22 12.68 69.2 81.1
SRGAN 6.09 1.21 4.39 72.6 82.7
Med-cDiff 5.09 1.20 21.37 74.2 84.3

original bilinear pix2pixGAN SRGAN Med-cDiff

upscaling 
factor= 4

upscaling 
factor= 4 2

Figure 2. Qualitative comparison of Med-cDiff against other super-resolution methods.

2 2 4 4 2 8 8 2 16
upscaling factor

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

DS
C

PZ segmentation

bilinear
pix2pixGAN
SRGAN
Med-cDiff

2 2 4 4 2 8 8 2 16
upscaling factor

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

DS
C

TZ segmentation

bilinear
pix2pixGAN
SRGAN
Med-cDiff

Figure 3. DSC comparison of Med-cDiff against bilinear interpolation, pix2pixGAN, and SRGAN for
zonal segmentation. The purple dotted lines indicate scores from the original high-resolution images.
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4.4. X-ray Denoising

We evaluated the denoising results using the LPIPS and FID metrics, and further
evaluated the results by comparing the downstream classification performance, where
3-class classification (normal/bacterial pneumonia/viral pneumonia) was performed using
VGG11 [70]. We compared Med-cDiff against pix2pixGAN [23] and UP-GAN [6].

The quantitative results are reported in Table 2. Med-cDiff outperforms the other
methods in every metric. Qualitative results are shown in Figure 4, where we see that
pix2pixGAN creates new artifacts and distorts the anatomy while UP-GAN creates unre-
alistic blurry images lacking details. More specifically, in the normal image example in
Figure 4, the yellow arrows point to the newly generated artifacts, and the red arrows point
to the unusually large spinal cord. By contrast, Med-cDiff generates realistic patterns in
those regions. In the viral pneumonia example, pix2pixGAN cannot generate the bright
pattern in the original image at the yellow arrow. As for the bacterial pneumonia example,
pix2pixGAN cannot generate the spinal cord with the correct shape at the yellow arrow. In
both pneumonia examples, pix2pixGAN failed to recover the correct shape of the ribs at
the red arrows.

Table 2. Quantitative comparison of Med-cDiff against other denoising methods.

LPIPS (×10−4)↓ FID↓ Classification Accuracy (%)↑
original image - - 70.7

noisy image 17.52 1.35 63.6
pix2pixGAN 1.77 1.32 65.1
UP-GAN 3.36 1.33 62.8
Med-cDiff 1.19 1.30 65.8

original noisy pix2pixGAN UP-GAN Med-cDiff

normal

viral 
pneumonia

bacterial 
pneumonia

Figure 4. Qualitative comparison of Med-cDiff against other denoising methods. Arrows point to
regions that pix2pixGAN cannot correctly generate.

4.5. MRI Inpainting

We compared our method against other inpainting methods such as pix2pixGAN,
HPUNet [2], and UP-GAN using the LPIPS and FID metrics. Furthermore, we performed a
2AFC paradigm [65] to measure how well trainees can discriminate real images from the
generated ones. We randomly sampled 50 real and generated image pairs from the test set
for each method and asked four trainees to perform 2AFC. We averaged the results from
the four trainees.
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The quantitative results in Table 3 reveal that Med-cDiff can generate the most realistic
images. The 2AFC values convey that it is difficult to determine that images generated by
Med-cDiff are not real, while it is easy to discern the inauthenticity of images generated by
competing methods. The visual results in Figure 5 further confirm that Med-cDiff generates
the most authentic images. More specifically, in the masked regions, pix2pixGAN generates
unrealistic patterns that are clear indicators of images generated by GANs, while HPUNet
can generate somewhat realistic patterns, although the generated patches are still relatively
blurry. HPUNet was designed for ultrasound image inpainting, but the performance is
unimpressive when applied to MRI images. This shows the difficulties in applying some
methods to cross-imaging modalities. As for UP-GAN, the generated patches were blurry,
while Med-cDiff generated realistic patterns and contents.

Table 3. Quantitative comparison of Med-cDiff against other inpainting methods.

LPIPS (×10−6)↓ FID↓ 2AFC Accuracy (%)↓
pix2pixGAN 7.62 1.010 98.0
HPUNet 5.39 0.995 95.0
UP-GAN 3.17 0.897 94.5
Med-cDiff 2.96 0.582 64.0

masked original pix2pixGAN UP-GAN Med-cDiffHPUNet

Figure 5. Qualitative comparison of Med-cDiff against other inpainting methods.

5. Conclusions

We have introduced Med-cDiff, a conditional diffusion model for medical image
generation, and shown that Med-cDiff is effective in several medical image generation
tasks, including MRI super-resolution, X-ray image denoising, and MRI image inpainting.
We have demonstrated that Med-cDiff can generate high-fidelity images, both quantitatively
and qualitatively superior to those generated by other GAN- and VAE-based methods.
The images generated by Med-cDiff were also tested in downstream tasks such as organ
segmentation and disease classification, and we showed that these tasks can benefit from
the images generated by Med-cDiff.

More importantly, Med-cDiff was not designed for any specific application yet it
outperforms models designed for specific applications. For example, SRGAN is specifically
designed to generate high-resolution images from low-resolution images as it upsamples
the low-resolution images within the network, while HPUNet is mainly used for inpainting
ultrasound images to generate realistic ultrasound noise patterns. By contrast, since
conditional diffusion models can generate highly realistic images, Med-cDiff can learn to
generate various medical images with different characteristics and patterns.

In future work, we will apply Med-cDiff to other downstream tasks; e.g., anomaly
detection and faster image reconstruction. Conditional medical image generation is not
limited to these tasks. Other applications, such as inter-modality image translation and
image enhancement, are also worthy of exploration.
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