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Abstract: Spinal–pelvic parameters are utilized in orthopedics for assessing patients’ curvature and
body alignment in diagnosing, treating, and planning surgeries for spinal and pelvic disorders.
Segmenting and autodetecting the whole spine from lateral radiographs is challenging. Recent
efforts have employed deep learning techniques to automate the segmentation and analysis of
whole-spine lateral radiographs. This study aims to develop an artificial intelligence (AI)-based deep
learning approach for the automated segmentation, alignment, and measurement of spinal–pelvic
parameters through whole-spine lateral radiographs. We conducted the study on 932 annotated
images from various spinal pathologies. Using a deep learning (DL) model, anatomical landmarks of
the cervical, thoracic, lumbar vertebrae, sacrum, and femoral head were automatically distinguished.
The algorithm was designed to measure 13 radiographic alignment and spinal–pelvic parameters
from the whole-spine lateral radiographs. Training data comprised 748 digital radiographic (DR)
X-ray images, while 90 X-ray images were used for validation. Another set of 90 X-ray images served
as the test set. Inter-rater reliability between orthopedic spine specialists, orthopedic residents, and the
DL model was evaluated using the intraclass correlation coefficient (ICC). The segmentation accuracy
for anatomical landmarks was within an acceptable range (median error: 1.7–4.1 mm). The inter-rater
reliability between the proposed DL model and individual experts was fair to good for measurements
of spinal curvature characteristics (all ICC values > 0.62). The developed DL model in this study
demonstrated good levels of inter-rater reliability for predicting anatomical landmark positions and
measuring radiographic alignment and spinal–pelvic parameters. Automated segmentation and
analysis of whole-spine lateral radiographs using deep learning offers a promising tool to enhance
accuracy and efficiency in orthopedic diagnostics and treatments.

Keywords: artificial intelligence; deep learning; automated analysis; whole-spine lateral radiographs;
spinopelvic parameters

1. Introduction

The prevalence of degenerative spinal diseases in Korea is increasing annually by
3–4% due to aging and sedentary lifestyles [1]. Common degenerative spinal diseases such
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as disc herniation and spinal stenosis have been on the rise, with an increasing number of
patients seeking treatments. According to data from the Korean National Health Insurance
Service (KNHIS), there was a significant increase of approximately 1.12 million patients
diagnosed with spinal disorders in South Korea between 2015 and 2019. It is important
to highlight that the most rapidly increasing demographic comprises individuals in their
20s. Although numerous studies have investigated treatment and prevention strategies for
spinal disorders, recent research has shifted its focus towards the role of spinal alignment
in these conditions, emphasizing the significance of malalignment factors, such as spinal
and pelvic parameters [2,3].

The significance of spinal alignment has gained increasing recognition as a quan-
titative assessment of spinal health, given its association with various spinal disorders,
including idiopathic scoliosis, adult spinal deformity, and degenerative sagittal imbalance.
Malalignment, along with compensatory mechanisms to maintain an upright posture, can
impose additional stress on critical spinal, pelvic, and hip joints, potentially leading to joint
pain and arthritis [4,5].

Currently, in clinical practice, various landmarks are used to measure key angles and
distances, and radiographic evaluation of spinal–pelvic alignment is performed prior to surgery
by comparing the measured values with the predetermined alignment goals [6,7]. However,
such manual measurements can vary depending on the examiner and the institution’s ra-
diographic imaging protocols, necessitating a correction process. In this context, a clinically
developed system for accurate spinopelvic parameter assessment is currently lacking.

With the rapid advancement of artificial intelligence (AI) and its increasing integration
into various fields, there is potential to develop AI-driven solutions for more precise and
reliable spinopelvic parameter evaluations [8,9]. By leveraging the capabilities of AI, such
as machine learning and computer vision, it may be possible to enhance the consistency
and accuracy of measurements, reduce variability between examiners and institutions, and
ultimately improve patient outcomes. Furthermore, AI-based systems could offer real-time
analysis and support decision-making processes, enabling clinicians to more effectively
diagnose, treat, and manage spinal disorders [10].

Despite the potential benefits of AI in the context of spinopelvic parameter assessment,
several challenges persist. Currently, there is a scarcity of AI models that have been
trained on large-scale radiographic datasets, which limits their capacity to accurately
evaluate spinal alignment. Additionally, the evidence supporting the inter-rater reliability
of AI-driven systems remains insufficient, further hindering their widespread adoption in
clinical practice.

Based on previous studies and the literature, we hypothesize that the proposed algo-
rithm for automated whole-spine–pelvic detection and segmentation, which utilizes deep
learning techniques and is trained on extensive radiographic datasets, will demonstrate
high accuracy and efficiency in generating radiological alignment and spinopelvic parame-
ters from whole-spine lateral radiographs. The accuracy of the algorithm will be assessed
by evaluating the inter-rater reliability between the deep learning (DL) model and senior
spine specialists of orthopedic surgeons and orthopedic residency, using the within-class
correlation coefficient (ICC). We further hypothesize that the proposed algorithm will offer
a promising tool for improving the accuracy and efficiency of diagnosis and treatment
in orthopedic surgery, with potential applications in various spinal disease etiologies. If
successful, the proposed AI algorithm could revolutionized the field of orthopedic surgery
and spinal disorder diagnosis. It will make assessments more accurate, consistent, and
efficient. This advancement can lead to better patient outcomes, fewer surgical complica-
tions, and a more streamlined process for medical professionals in evaluating and treating
spinal disease.
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2. Materials and Methods
2.1. Study Design

From January 2015 to April 2022, a total of 932 consecutive whole-spine lateral plain
radiographs were retrospectively reviewed and annotated under the approval of the insti-
tutional review board (IRB No. 202205007002).

2.2. Datasets

This study employed instance segmentation to automatically detect and segment
whole-spine–pelvic structures in whole-spine lateral radiographs. The dataset consisted of
a total of 932 subjects, with 748 subjects used for training, 94 for validation, and 90 for testing.
In this study, cases were excluded from the analysis if they involved patients with previous
surgeries, pregnant individuals, inadequate radiographs, minors with underdeveloped
skeletons, or instances of degenerative disk disease where the corners of a vertebra were
challenging to observe.

2.3. AI Model Architecture

In this study, the data were pre-processed by converting them into a COCO-style
dataset without contrast enhancement, zero padding, or resizing to 2048 × 2048 pixels.
Additionally, min-max normalization was applied. Three distinct models with ResNet50-
FPN backbones and varying numbers of hidden layers were trained and evaluated utilizing
the COCO API. Evaluation metrics included Intersection over Union (IoU) and mean
average precision (mAP) scores. Score thresholds were established for both detection and
segmentation to exclude predictions below a specific probability.

The Mask R-CNN model is comprised of three networks: a backbone network for
feature extraction from the input image, a region proposal network (RPN), and a mask
prediction network [11]. ResNet with 50 layers and a Feature Pyramid Network (FPN) was
employed as the backbone network for this model. FPN generates multiple feature maps
with different scales, where the lowest level has the highest spatial resolution corresponding
to the input image [12,13]. Higher levels of feature maps have lower spatial resolution
but contain more semantic features. To construct the highest semantic feature maps, each
feature map is unsampled to the scale of the lower-level map and subsequently merged.

The RPN predicts regions in the input image that are likely to contain objects. It
utilizes anchors with various sizes and aspect ratios to output rectangular region proposals
as sets of coordinates and corresponding objectless scores. The mask prediction network
consists of two branches: a region proposal branch and a mask proposal branch. The
region proposal branch includes fully connected layers for classification and regression,
outputting the object class and region proposal. For the mask proposal branch, a fully
convolutional network (FCN) is typically implemented to process and predict binary object
instance masks within each region. Pixels with a value of 0 indicate background, while
those with a value of 1 indicate the object instance [14].

L(p, u, tu, v) = Lcls(p, u) + λ′Lreg(tu, v)

L({pi), {ti}) =
1

Ncls
∑

i
Lcls(pi, p∗i ) + λ

1
Nreg

∑
i

p∗i Lreg(ti, t∗i )

Two loss functions, R-CNN loss and RPN loss, are employed for training the Mask
R-CNN model [15]. The model’s hyperparameters included an Adam optimizer, a batch
size of 4, and 50 epochs, which demonstrated optimal performance on the test data [16]
(Figure 1).
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dicular to the endplate. The yellow dashed line signifies the line connecting the midpoint of the 
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Figure 1. Artificial intelligence model architecture. The model comprises a backbone network (ResNet
with FPN), an RPN, and a mask prediction network. The backbone network extracts feature from
the input image, while the RPN predicts object regions. The mask prediction network generates
binary masks for each region. The model is trained using R-CNN and RPN loss functions. The figure
provides a concise overview of the model’s components and the training pipeline.

2.4. Spinopelvic Parameter Measurement

Thirteen radiological alignment and spinopelvic parameters, including Cervical 2
Incidence (C2I), Cervical 2 Slope (C2S), Cervical 2 to 7 Lordosis (C27L), Thoracic 1 Incidence
(T1I), Thoracic 1 Slope (T1S), Thoracic Kyphosis (TK), Lumbar 1 Incidence (L1I), Lumbar
Lordosis (LL), Sacral Slope (SS), Pelvic Tilt (PT), Pelvic Incidence (PI), Cervical 2 to 7 Sagittal
Vertical Axis (C2-7 SVA), and Cervical 7 Sagittal Vertical Axis (C7 SVA), were automatically
generated from the whole-spine lateral radiograph using the deep learning model that
distinguished anatomical landmarks of the cervical, thoracic, lumbar, sacral, and femoral
heads (Figure 2).

1. Cervical 2 Incidence (C2I) is the angle between a line connecting the center of the
femoral heads (yellow dashed line) to the midpoint of the sacral superior endplate
and the line perpendicular to the C2 inferior endplate (brown dashed line).

2. Cervical 2 Slope (C2S) denotes the angle between the horizontal line (red dashed line)
and the inferior endplates of C2.

3. Cervical 2 to 7 Lordosis (C27L) refers to the angle between the inferior endplate of C2
and the inferior endplate of C7.

4. Thoracic 1 Incidence (T1I) denotes the angle between a line connecting the center of
the femoral heads (yellow dashed line) to the midpoint of the sacral superior endplate
and the line perpendicular to the T1 superior endplate (brown dashed line).

5. Thoracic 1 Slope (T1S) represents the angle between the horizontal line (red dashed
line) and the superior endplates of T1.

6. Thoracic Kyphosis (TK) refers to the angle between the superior endplate of T1 and
the superior endplate of L1.

7. Lumbar 1 Incidence (L1I) is the angle between a line connecting the center of the
femoral heads (yellow dashed line) to the midpoint of the sacral superior endplate
and the line perpendicular to the L1 superior endplate (brown dashed line).

8. Lumbar Lordosis (LL) represents the angle between the superior endplate of L1 and
the superior endplate of S1.

9. Sacral Slope (SS) is the angle between the sacral superior endplate and the horizontal
line (red dashed line).

10. Pelvic Tilt (PT) refers to the angle between a line connecting the center of the femoral
heads (yellow dashed line) to the midpoint of the sacral superior endplate and the
vertical line (blue dashed line).

11. Pelvic Incidence (PI) is the angle formed by a line connecting the center of the femoral
heads (yellow dashed line) to the midpoint of the sacral superior endplate and the
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line perpendicular to the sacral superior endplate (brown dashed line). The green
lines depict the parallel lines corresponding to each endplate.

12. Cervical 2 to 7 Sagittal Vertical Axis (C2-7 SVA) is a parameter that measures the
horizontal distance between a plumb line dropped from the center of the C2 vertebral
body (blue dashed line) and the posterosuperior corner of the C7 vertebral body,
within the spinal segment that includes the second to seventh cervical vertebrae.

13. Cervical 7 Sagittal Vertical Axis (C7 SVA) measures the horizontal distance between
the posterosuperior corner of S1 and the plumb line dropped from the center of the
C7 vertebral body (blue dashed line).
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Figure 2. Illustration of key parameters in spinal sagittal alignment. The horizontal alignment
is denoted by a red dashed line, while the vertical alignment is indicated by a blue dashed line.
The brown dashed line represents a line that bisects the first sacral body upper endplate and is
perpendicular to the endplate. The yellow dashed line signifies the line connecting the midpoint of
the sacral body upper endplate and the center of the femur head. Lastly, the green lines depict the
parallel lines corresponding to each endplate. 1. Cervical 2 Incidence (C2I); 2. Cervical 2 Slope (C2S);
3. Cervical 2 to 7 Lordosis (C27L); 4. Thoracic Incidence (T1I); 5. Thoracic 1 Slope (T1S); 6. Thoracic
Kyphosis (TK); 7. Lumbar 1 Incidence (L1I); 8. Lumbar Lordosis (LL); 9. Sacral Slope (SS); 10. Pelvic
Tilt (PT); 11. Pelvic Incidence (PI); 12. Cervical 2 to 7 Sagittal Vertical Axis (C2-7 SVA); 13. Cervical 7
Sagittal Vertical Axis (C7 SVA).

2.5. Graphical User Interface (GUI)

In this study, we employed a software application developed using Python 3.9.7 and
the Tkinter library for the graphical user interface. Upon opening an image within the
software, it is processed by our pre-trained model, which identifies and predicts the masks
for the vertebrae, sacrum, and femur structures. To measure the relevant parameters,
we approximated the shape of each generated mask and subsequently determined the
two upper corner points using the OpenCV library, a widely recognized computer vision
toolkit (Figure 3).

2.6. Intraclass Correlation Coefficient (ICC) and Statistical Analyses

To evaluate the agreement between measurers (specialists; residents—3rd year trainee;
and AI), the Intraclass Correlation Coefficient (ICC) was used as an indicator. ICC values
range from 0 to 1, with 0 indicating no agreement and 1 indicating perfect agreement.
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In this study, ICC(2,1), which utilizes a 2-way random effect, absolute agreement, and
single rater/measurement, was employed. There are no absolute standards for ICC, but
it is generally classified as poor (<0.40), fair (0.40–0.60), good (0.60–0.75), and excellent
(0.75–1.00). The agreement between the values measured by residents and AI models was
calculated using the specialist as the reference standard. The ‘pingouin’ package in Python
was employed for calculating ICC. Additionally, the Bland–Altman plot was employed
to assess the agreement between the deep learning model, specialists and residents. The
agreement was further evaluated by comparing the measurements from residents and AI
models with those from specialists. To determine the statistical significance of differences
between groups, either the t-test or analysis of variance (ANOVA) was utilized. This
approach allowed for a comprehensive understanding of the agreement between the
various measurers and facilitated the identification of any potential discrepancies or areas
of improvement.
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Figure 3. Graphical user interface (GUI). (A) The GUI incorporates a detection model that utilizes
a pre-trained model to identify vertebrae, sacrum, and femur structures, generating corresponding
masks. (B) Within the GUI, users can interactively select regions of interest (ROIs) within the detected
structures, facilitating focused analysis. (C) To measure relevant parameters, the GUI approximates
the shape of each generated mask and identifies the two upper corner points using the OpenCV
library, enabling accurate parameter measurement.

3. Results
3.1. AI Detection and Segmentation

The best model was selected based on the highest AP0.75 score for segmentation, and
all models were trained with a batch size of 4 and a learning rate of 0.0005 with 0.91 decay
for 30 epochs. The results showed that the models achieved high accuracy in detecting and
segmenting spinal structures in whole-spine lateral radiographs.

The performance of the detection model was assessed using three variations of the
ResNet50 backbone model: HL256, HL512, and HL1024. The COCO API was used to
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calculate the AP scores for validation and test data sets. The HL256 model achieved AP
scores of 0.626 and 0.604 for validation and test data sets, respectively, with an AP0.75
score of 0.747 and 0.693 for validation and test data sets, respectively. The HL512 model
demonstrated slightly better performance than the HL256 model, with AP scores of 0.629
and 0.618 for validation and test data sets, respectively, and an AP0.75 score of 0.74 and
0.73 for validation and test data sets, respectively. The HL1024 model exhibited similar
performance to the HL256 model, with AP scores of 0.628 and 0.612 for validation and test
data sets, respectively, and an AP0.75 score of 0.727 and 0.714 for validation and test data
sets, respectively. The AP scores for small, medium, and large objects were also reported.
Model weights were selected based on the best AP0.75 score of segmentation.

The evaluation scores of the segmentation model were obtained for three different
variations of the ResNet50 backbone model: HL256, HL512, and HL1024. The AP scores, as
measured by COCO API, were calculated for validation and test data sets. For the HL256
model, the AP scores were 0.614 and 0.586 for validation and test data sets, respectively,
with an AP0.75 score of 0.724 and 0.681 for validation and test data sets, respectively. The
HL512 model showed slightly better performance than the HL256 model, with AP scores
of 0.624 and 0.602 for validation and test data sets, respectively, and an AP0.75 score of
0.718 and 0.706 for validation and test data sets, respectively. The HL1024 model showed
similar performance to the HL256 model, with AP scores of 0.610 and 0.590 for validation
and test data sets, respectively, and an AP0.75 score of 0.721 and 0.670 for validation and
test data sets, respectively. The AP scores for small, medium, and large objects were also
reported. The model weights were selected based on the best AP0.75 score of segmentation
(Figure 4).
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Figure 4. AI detection and segmentation. (A) The performance of the detection model was evaluated
using AP scores for the validation and test datasets. (B) The segmentation model performance was
assessed using AP scores for the validation and test datasets. (C) Visual representations of the input
images, ground truth, and predicted masks for the detected structures.



Bioengineering 2023, 10, 1229 8 of 17

3.2. Angle Measurement

The success rate of angle measurement based on the segmentation result was evaluated
using the validation and test datasets. The hidden layers used were based on the weights
of the best AP0.75 score of segmentation. An IoU threshold of 0.80 was applied, and
three validation cases and seven test cases failed on all models.

3.3. Graphical User Interface (GUI)

We developed a program using the Tkinter library, which is the default GUI library for
Python. The program allows users to open an image, which is then passed to our trained
model for analysis. The model predicts the masks for the vertebrae, sacrum, and femur. To
extract the spinopelvic parameters, we approximated the shape of the mask and used the
OpenCV library to obtain the two upper corners. To compare the results with the Korean
standard, we used a color-coded system in our program. If the results were within the
normal range, they were displayed in blue, and if they were outside the normal range,
they were displayed in red. This allowed users to easily identify any abnormalities in the
measurements. We also ensured that the program displayed the specific measurement
results for each parameter, which enabled users to confirm how the measurements were
taken. Additionally, we incorporated a feature to allow users to save the results for future
reference (Figure 5).
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Figure 5. This figure showcases a program developed using the Tkinter library for spinopelvic
parameter extraction. The program allows users to open an image, which is then analyzed using a
trained model to predict masks for vertebrae, sacrum, and femur. The shape of the masks is approxi-
mated, and OpenCV is used to obtain the two upper corners for precise parameter measurement.
Results are displayed with a color-coded system to indicate normal or abnormal ranges. Specific
measurement values are provided, and users can save the results. The program achieves efficient
parameter extraction, taking an average of 3.8 s.

The process of extracting all the spinopelvic parameters using our program took an
average of 3.8 s, with a standard deviation of 0.8 s.

3.4. Intraclass Correlation Coefficient (ICC)

The intra-class correlation coefficient (ICC) was utilized to quantify the level of agree-
ment between measurements, with a value of 1 representing perfect agreement, while 0
indicates the lack of agreement. The 95% confidence interval (CI) was calculated to establish
a range of values, within which we can be 95% certain that the true ICC value lies.

Utilizing the key points identified by the proposed technique, 13 sagittal parameters
were computed. To assess the consistency between the performance of the developed
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method and the manual measurements conducted by specialists, we analyzed the correla-
tion coefficient and the coefficient of determination between the two sets of measurements,
as displayed in Table 1.

Table 1. Comparison of measurements between Specialist vs. Resident and Specialist vs. Al.

Comparison of
Measurements C2I C27L C2S T1S C2-7

SVA
C7

SVA T1I TK L1I LL PT SS PI Time (s)

Specialist vs.
Resident—Correlation 0.672 0.861 0.836 0.656 0.962 0.832 0.583 0.641 0.871 0.623 0.717 0.291 0.492 0.57

Specialist vs.
Resident—R2 0.451 0.741 0.698 0.431 0.926 0.692 0.34 0.411 0.759 0.388 0.515 0.085 0.242 0.325

Specialist vs.
Resident—Mean Error 7.98 6.204 5.143 6.49 2.282 9.594 8.816 8.49 6.143 10.327 5.918 8.286 9.429 184.531

Specialist vs.
Resident—STD of Error 6.498 3.959 3.362 4.59 2.862 16.507 6.886 5.588 5.067 7.372 4.526 7.682 6.402 143.664

Specialist vs.
AI—Correlation 0.92 0.955 0.913 0.836 0.978 0.922 0.848 0.794 0.96 0.79 0.844 0.685 0.794 0.258

Specialist vs. AI—R2 0.847 0.912 0.833 0.699 0.956 0.85 0.72 0.631 0.921 0.623 0.713 0.469 0.631 0.066

Specialist vs. AI—Mean
Error 4.112 3.625 3.806 3.773 2.112 5.219 5.583 6.484 3.703 8.789 3.577 6.036 5.689 736.245

Specialist vs. AI—STD of
Error 2.88 2.423 3.266 2.812 2.005 11.806 4.335 4.634 2.844 5.739 3.578 4.299 5.249 112.654

It presents the correlation, R-squared value, mean error, and standard deviation of the error for each of the
13 different measurements (C21, C27L, C2S, T15, C2-7 SVA, C7 SVA, T11, TK, L11, LL, PT, SS, and Pl) and the time
taken in seconds. The table highlights the performance of Al compared to medical professionals, offering insights
into the accuracy and potential benefits of using Al for these specific measurements.

Based on the results presented in the table, the comparison between Specialist vs.
Resident and Specialist vs. AI demonstrates the potential effectiveness of utilizing AI for
specific measurements. In terms of R-squared values, the Specialist vs. AI comparison
reached the highest value of 0.956 for the C2-7 measurement and the lowest of 0.066 for
Time (s). For Specialist vs. Resident, the highest R-squared value was 0.926 for the C2-7
measurement, and the lowest was 0.085 for the PT measurement. The AI method seemed to
face difficulties in measuring T1-related parameters, with a correlation coefficient of 0.656
for T1S and 0.794 for T1I. This difficulty was also reflected in the mean absolute error (MAE)
and standard deviation of absolute error (STD of AE), with the lowest MAE value being
2.112◦ for the C2-7 measurement and the largest error stemming from Time (s) at 736.245.
Taking the correlation coefficient as an example, the PT parameter shows a value of 0.844
for Specialist vs. AI and a lower value of 0.717 for Specialist vs. Resident. This indicates
that the AI’s performance is closer to the Specialist in this aspect. Similarly, the R-squared
value for the SS parameter is higher for Specialist vs. AI at 0.631 compared to 0.325 for
Specialist vs. Resident. This demonstrates that the AI model has a better agreement with
the Specialist’s measurements. In terms of MAE, the PI parameter has a value of 5.689 for
Specialist vs. AI, while it is significantly higher at 9.429 for Specialist vs. Resident. This
reveals that the AI has a lower average error compared to the Resident when compared
to the Specialist. Lastly, the STD of AE value for the SI parameter is lower for Specialist
vs. AI at 4.299, as opposed to 7.682 for Specialist vs. Resident. This suggests that AI’s
measurements have less variability and are closer to the Specialist’s measurements.

Our findings revealed that the AI quickly measured the angles, while the human was
slower. The mean value of the measurements obtained by specialists was 904.15, with a
mean error of 204.97 and a standard error of 28.27. On the other hand, the mean value of
the measurements obtained by experts was 732.4, with a mean error of 105.1 and a standard
error of 16.1. In comparison, the AI system achieved a mean value of 3.73, with a mean
error of 0.73 and a standard error of 0.1. It is noteworthy that the AI system exhibited
significantly lower mean error and standard error compared to both specialists (Table 2).
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Table 2. Comparing time for angle measurements.

Mean (Second) Mean Error Standard Error

Resident 904.15 204.97 28.27
Specialist 732.4 105.1 16.1

AI 3.73 0.73 0.1

The findings indicate that the ICC values for most variables are high, signifying
substantial agreement among the different methods. Specifically, C2-7 SVA, C2S, C27L, and
L1I have ICC values above 0.85, indicating excellent agreement between the measurements
obtained via the different methods. However, some variables show relatively low ICC
values, such as SS, which has an ICC value of only 0.27, indicating poor agreement among
the different methods. When comparing the measurements obtained by specialists with
the reference values, the results indicate that the AI-based method demonstrated good
agreement with the specialist measurements for most variables. Specifically, for C2-7
SVA, C2S, C27L, and L1I, the ICC values were above 0.90, indicating excellent agreement
between the AI-based measurements and those obtained by specialists. However, for some
variables, such as SS and TK, the AI-based measurements exhibited lower ICC values when
compared to specialist measurements. For SS, the ICC value was 0.62, indicating moderate
agreement, while for TK, the ICC value was 0.74, indicating fair agreement (Table 3).

Table 3. Intraclass Correlation Coefficient (ICC).

Variable
Specialist vs. Resident

CI95% p
Specialist vs. AI

CI95% p
ICC ICC

C2I 0.67 [0.48, 0.80] <0.01 0.92 [0.86, 0.95] <0.01
C2S 0.83 [0.70, 0.90] <0.01 0.9 [0.83, 0.94] <0.01

C27L 0.85 [0.75, 0.92] <0.01 0.95 [0.92, 0.97] <0.01
T1I 0.58 [0.36, 0.74] <0.01 0.84 [0.73, 0.91] <0.01
T1S 0.61 [0.36, 0.77] <0.01 0.83 [0.72, 0.9] <0.01
TK 0.62 [0.42, 0.77] <0.01 0.74 [0.45, 0.87] <0.01
L1I 0.87 [0.78, 0.92] <0.01 0.95 [0.92, 0.97] <0.01
LL 0.62 [0.42, 0.77] <0.01 0.76 [0.57, 0.86] <0.01
SS 0.27 [−0.0, 0.50] 0.027 0.62 [0.34, 0.79] <0.01
PT 0.69 [0.49, 0.82] <0.01 0.85 [0.74, 0.91] <0.01
PI 0.49 [0.24, 0.68] <0.01 0.78 [0.63, 0.87] <0.01

C2-7 SVA 0.96 [0.92, 0.98] <0.01 0.98 [0.96, 0.99] <0.01
C7 SVA 0.79 [0.65, 0.88] <0.01 0.92 [0.86, 0.95] <0.01
Time(s) 0.31 [−0.07, 0.61] <0.01 0 [−0.01, 0.01] 0.491

The Bland–Altman plot was used to visualize the results of the method for all joint pa-
rameters, showing the mean difference (red solid line) and the horizontal lines representing
the mean difference ± 1.96 standard deviation (SD) (blue dashed line).

For example, for the C2I parameter, the mean difference between specialists and
residents was 0.63, and the mean difference between specialists and AI was relatively lower
at 0.33. On the other hand, for the TK parameter, the mean difference between specialists
and residents was 2.57, and the mean difference between specialists and AI was relatively
higher at 4.21.

For C7 SVA, the mean difference between specialists and residents was 5.6, and the
mean difference between specialists and AI was relatively lower at 2.58.

For the Time parameter, the mean difference between specialists and residents was
173.71, and the mean difference between specialists and AI was very high at 736.24 (Table 4).
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Table 4. Intraclass Correlation Coefficient (ICC): Bland–Altman plot.
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Table 4. Cont.
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Represents the level of agreement between traditional medical practices and artificial intelligence (AI) measure-
ments for various variables. A value of 1 indicates perfect agreement, while 0 indicates lack of agreement.

4. Discussion

Our study aimed to develop an efficient and automated method for extracting spinopelvic
parameters from whole-spine long sagittal X-ray images using artificial intelligence (AI). To
achieve this, we designed and implemented a deep learning model capable of accurately de-
tecting and segmenting spinal structures, such as vertebrae, sacrum, and femur. Moreover,
we created a user-friendly GUI using the Tkinter library in Python, enabling healthcare
professionals to easily input X-ray images and obtain the spinopelvic measurements in a
matter of seconds. Overall, our study provides a promising approach to streamlining and
improving the accuracy of spinopelvic parameter extraction from X-ray images using AI
and a user-friendly interface.
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The AI-based method can rapidly analyze spinal alignment changes over time and
between individuals, providing a more comprehensive understanding of spinal sagittal
alignment. This accumulated knowledge can be utilized to determine the most effective
approach for spinal deformity correction, enabling personalized treatment plans for each
patient. Deep mining algorithms can compare patients’ spinal alignment data to identify
patterns associated with positive and negative prognoses, leading to improved patient
outcomes. In this way, AI technology has the potential to revolutionize the field of spinal
surgery and provide more effective and personalized treatment options. While the role
of AI in spinal diagnostics is undeniably transformative, it is essential to view it as a part
the broader diagnostic tool, one that complements, not replaces, clinical expertise. As the
field of spinal care evolves, the synergy between AI-derived insights and hands-on clinical
experience will make better patient prognosis.

Recent advancements in deep learning technology have led to the development of
segmentation techniques for X-ray, CT, and MRI images. However, in the medical field, ac-
curacy in measurement is crucial. Based on the results presented in the table, the proposed
AI-based method demonstrated good agreement with specialist measurements for most
variables. The ICC values were above 0.90 for C2-7 SVA, C2S, C27L, and L1I, indicating
excellent agreement between the AI-based measurements and those obtained by specialists.
Our study found an mean error of 3.625 for C2-7L measurements, which is comparable to
the mean error of 3.3 for cervical lordosis obtained from an AI model trained on 4546 cer-
vical X-rays [17]. The relatively high error may be attributed to including patients with
deformities, those with poorly visible C7 endplates due to obesity, and patients with short
necks who may have a different shoulder girdle position in the training process. Despite
the inclusion of these prevalent patient groups in clinical practice, it was deemed important
to ensure generalizability of the training model. However, future efforts to refine the model
to reduce the error range will be necessary.

To achieve high accuracy, extensive image training is essential. In contrast to previous
studies, our research utilized over 900 images for training, resulting in an average error of
8.789◦ for Lumbar Lordosis Angle (LLA) measurements. Another study that trained on
629 individuals for LLA measurements showed a similar level of mean error at 8.055◦ [17].
Our model also demonstrated lower error compared to a model trained on 493 individuals
using EOS, which reported a mean absolute error (MAE) of 11.5◦ [18]. These findings
highlight the importance of utilizing a large dataset for training to achieve higher accuracy
in medical imaging applications.

The detection of endplates in the cervicothoracic junctional area is challenging, which
has resulted in significant differences in measurements. For instance, the mean difference
between specialists and residents was 2.57 for the TK parameter, while the mean difference
between specialists and AI was relatively higher at 4.21. Therefore, further research is
needed to improve the accuracy of AI-based measurements for these variables.

In this study, we included C2-7 SVA and C7 SVA based on distance information,
which is different from previous studies that focused only on angles, to present findings on
sagittal balance. The mean errors for C2-6 SVA and C7 SVA were 2.112 mm and 5.219 mm,
respectively. These results are comparable to those obtained in another study that reported
values of 1.1 mm and 1.9 mm for the same variables [19].

In addition to accuracy, the time required to obtain spinopelvic parameter measure-
ments is also important. Our study found that the AI system was significantly faster than
specialists in obtaining these measurements, with the AI system obtaining measurements
in a matter of seconds compared to several minutes per patient for specialists.

The reduced time required for obtaining measurements by AI could have significant
implications for clinical practice, particularly in terms of providing more timely diagnosis
and treatment. AI-based systems have the potential to reduce the workload of specialists
and increase efficiency in the diagnostic process. However, it is important to note that
the use of AI-based systems should not replace specialists, but rather be viewed as a
complementary tool to aid them in their decision-making process.
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In comparison to previous studies, our AI detection and segmentation models achieved
high accuracy in detecting and segmenting spinal structures in whole-spine lateral radio-
graphs. For instance, Fujimori et al. reported an AP score of 0.6 for detecting vertebral
corners in cervical spine radiographs using Faster R-CNN, while our best model achieved
an AP score of 0.75 for detecting spinal structures in whole-spine lateral radiographs [17].

Comparing our results with previous studies, we found that our success rates were
generally comparable or even better. For example, a previous study reported a success
rate of 86.2% for angle measurements using deep learning-based segmentation on lumbar
lordosis from X-rays, while our study achieved an overall success rate of 87.5%. However,
it should be noted that the evaluation criteria and methodologies used in different studies
may differ, making direct comparisons challenging.

In this study, we evaluated the success rate of angle measurement based on the
segmentation results using both validation and test datasets. We applied an IoU threshold
of 0.80 and used the hidden layers based on the weights of the best AP score of segmentation.
Our results showed that three validation cases and seven test cases failed on all models.

In terms of the cases that failed on all models, further investigation is needed to
identify the causes of the failures and improve the performance of the models. One possible
reason could be the presence of anatomical variations or abnormalities that were not well
represented in the training data. Future studies could consider expanding the training data
set to include a wider range of anatomical variations and abnormalities to improve the
models’ performance in these cases.

In this study, we developed a user-friendly program using the Tkinter library to
analyze spinal structures in whole-spine lateral radiographs. Our trained model accurately
predicted masks for the vertebrae, sacrum, and femur, and we used the OpenCV library
to extract the two upper corners for spinopelvic parameter calculations. To assist users
in identifying abnormalities in the measurements, we used a color-coded system that
displayed results in blue for normal range and in red for outside the normal range [20,21].
Furthermore, our program displayed specific measurement results for each parameter and
allowed users to save the results for future reference. Our color-coded system and specific
measurement results display also add to the user-friendliness of our program. The use of
the Tkinter library in our program also provides compatibility across multiple platforms,
making it accessible to a wider range of users.

First, our study is limited by the exclusion of radiographs with implants and vertebral
anomalies such as lumbosacral transitional vertebra, which was necessary for the develop-
ment of a simple and intuitive model. However, including images with implants or more
complex images in future research would be beneficial to improve the model’s accuracy
and generalizability.

Second, the AI model was trained solely on X-rays from one institution, and this may
limit its generalizability to other institutions with different settings and patient populations.
Future research that includes data from multiple institutions could address this limitation.

Third, segmentation errors in the shoulder girdle area may result in inaccuracies in
multiple parameters, particularly those involving the C7 or T1 body regions. Addressing
this issue by refining the training model is necessary for future studies.

Lastly, our study only used lateral radiographs for spinal analysis, and while they are
widely used in clinical practice, other imaging techniques like MRI may provide additional
information that could improve the accuracy of the AI model. Incorporating multiple
imaging modalities in future research may be necessary to validate the AI model’s accuracy.

The desirability of this study and the accompanying program hinges on the profound
impact AI is set to have on spinal diagnostics and treatment. As mentioned in the limitation,
radiographs with implants and vertebral anomalies were excluded from this study, so
further evaluation is needed to obtain more accurate measurement results. Although
AI-based evaluation still has many points to improve and has limitations, it will be a very
efficient tool for time consuming tasks and tasks requiring accuracy.
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5. Conclusions

The AI-based method for spinopelvic parameter extraction from whole spine long
sagittal X-ray images shows promising results in terms of accuracy and speed. The method
utilizes deep learning models to accurately detect and segment spinal structures, as well
as a user-friendly interface to obtain spinopelvic measurements in a matter of seconds.
The approach has the potential to revolutionize the field of spinal surgery by providing
personalized treatment plans for each patient. However, the method’s limitations include
the exclusion of radiographs with implants, training solely on X-rays from one institution,
and potential segmentation errors in the shoulder girdle area. Future research that includes
multiple imaging modalities and data from multiple institutions could improve the model’s
accuracy and generalizability.
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