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Abstract: As an advanced interaction mode, gestures have been widely used for human–computer
interaction (HCI). This paper proposes a multi-objective optimization method based on the objective
function JCP to solve the inconsistency between the gesture comfort JCS and measurement preci-
sion JPH in the gesture interaction. The proposed comfort model CS takes seventeen muscles and
six degrees of freedom into consideration based on the data from muscles and joints, and is capable
of simulating the energy expenditure of the gesture motion. The CS can provide an intuitive indicator
to predict which act has the higher risk of fatigue or injury for joints and muscles. The measurement
precision model ∆PH is calculated from the measurement error (∆XH , ∆YH , ∆ZH) caused by calibra-
tion, that provides a means to evaluate the efficiency of the gesture interaction. The modeling and
simulation are implemented to analyze the effectiveness of the multi-objective optimization method
proposed in this paper. According to the result of the comparison between the objective function
JCS, based on the comfort model CS, and the objective function JPH , based on the measurement
precision models ∆PH , the consistency and the difference can be found due to the variation of the
radius rB_RHO and the center coordinates PB_RHO(xB_RHO, yB_RHO, zB_RHO). The proposed objective
function JCP compromises the inconsistency between the objective function JCS and JPH . Therefore,
the multi-objective optimization method proposed in this paper is applied to the gesture design to
improve the ergonomics and operation efficiency of the gesture, and the effectiveness is verified
through usability testing.

Keywords: gesture interaction; multi-objective optimization; comfort; measurement precision

1. Introduction

Human–computer interaction (HCI) examines how people interact with computer sys-
tems. It makes use of an interactive way to realize the information flow between computers
and people. Traditional HCI is machine-centric, requiring users to become accustomed
to the workings of the computer through the use of command languages, graphical user
interfaces, and physical interaction equipment. It is urgently necessary to create natural,
comfortable, and effective natural interaction technologies in order to circumvent and
eliminate the limitations of these regulations. Instead of mechanically converting their
operating intentions into specific instructions that the machine can understand, opera-
tors can express their willingness to interact naturally as if they were speaking to people
thanks to natural interaction technology [1]. This is in contrast to the traditional method
of interaction. Gesture interaction, voice interaction, brain–computer interaction, emo-
tional interaction, etc. are some examples of the natural interactions that have emerged
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in the area of human–computer interaction in recent years [2,3]. In addition to having
powerful ideographic capabilities, gestures—a kind of interactive communication that is
frequently utilized in social interactions—also exhibit the qualities of intuition, simplicity,
and vividness. The state-of-the-art techniques for large gestures and speech recognition in
human–computer interaction systems, such as STF and 2DCNN + BiLSTM [4], SAM-SLR [5],
Ensemble-NTIS [6], MViT-SLR [7], and FE + LSTM [8], are evaluated using the widely used
well-known LRW [9] and AUTSL [10] datasets. Ryumin et al. [4] proposed a benchmark
methodology on two well-known datasets: LRW for audio-visual speech recognition and
AUTSL for gesture recognition. The accuracy of gesture recognition is achieved through the
use of a unique set of spatio-temporal features, including those that take into account lip
articulation information. Jiang et al. [5] proposed a novel Skeleton Aware Multimodal SLR
framework (SAM-SLR) to take advantage of multi-modal information towards a higher
sign language recognition rate. Furthermore, regarding emotion recognition in human–
computer interaction, the EEG dataset [11] is trained with differential entropy features
extracted from multichannel EEG data; the deep belief networks (DBNs) are introduced
to construct EEG-based emotion recognition models for three emotions: positive, neutral,
and negative. AffectNet [12] is by far the largest database of facial expressions, enabling
further progress in the automatic understanding of facial behavior in both categorical and
continuous dimensional space. On AffectNet datasets, Mao et al. [13] proposed POSTER++
that achieves the state-of-the-art FER performance while greatly reducing the parameters
and floating point operations of POSTER. She et al. [14] proposed the DMUE method to
address the problem of annotation ambiguity from two perspectives: the latent Distribution
Mining and the pairwise Uncertainty Estimation. All in all, academics are paying more and
more attention to natural interactions technologies.

The study of gesture interaction technology covers a wide range of research topics
such as theories and methods of gesture recognition, gesture comfort, gesture design,
and usability evaluation [15], as well as application research and development in mobile
computing, virtual reality [16], etc. Gestures can be translated into control commands
for interactive activities in many fields, such as teleoperation, robotics, virtual reality,
education, and entertainment [17], which can benefit from its use. However, long-term
human–computer interactions will result in muscle fatigue, low operational efficiency,
and operator frustration [18]. Therefore, in order to improve the level of ergonomics and
usability of the gesture interaction, it is crucial to study and analyze the gesture comfort,
gesture measurement accuracy, and gesture multi-objective optimization for an improved
level of ergonomics and usability of the gesture interaction. According to ergonomics
research, different gestures have different comfort levels for the operator [18]. In addition,
due to the effect of measurement accuracy, different gestures will obtain different gesture
recognition rates [19], thus affecting the efficiency and experience of gesture interaction.
This research has general applicability to gesture interaction; it would be a valuable study
to analyze the relevance of different gestures with assistive technologies.

The gesture comfort is a crucial indicator used to assess the ergonomics of human–
computer interaction applications and refers to the level of comfort that employees experi-
ence when engaging with their job and the environment. The comfort level is challenging
to identify and quantify since it is a subjective experience that varies with the length of time
and mood of the human–computer contact process. Comfortable gesture interaction will
significantly lessen operator fatigue, increase work time, and enhance the effectiveness and
experience of the interactions. In general, there are four criteria used to evaluate human
comfort: (1) joint angle range of motion (ROM)-based comfort models, such as RULA [18],
LUBA [20], REBA [21], OCRA [22], OCRA-CL [22], and others. These models are based on
ROM to evaluate the gesture comfort and only take into account comfort evaluation in a
static posture; (2) a comfort model based on ROM and motion data, such as those proposed
by Andreoni [23], Ramona [24], etc., which can evaluate the comfort of dynamic gestures
but contains less information on the biomechanics of humans; (3) a comfort model based on
simulation software is used, for instance, by Keyvani [25], Qing [26], and others to evaluate
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the human comfort, but standardized software tools have limitations such as not under-
standing the internal principles of the model and being unable to modify in accordance
with the specifications; (4) a comfort model based on sensor-based measurement tools,
such as pressure, temperature, and cardiopulmonary function sensors [27–29] to measure
pressure, temperature, and energy consumption as well as other data indicators to evaluate
how comfortable and acceptable a human body is.

The comfort of the human body can be enhanced and improved, and the operator’s
workload can be decreased in accordance with the established comfort model, which has
practical implications for increasing the ergonomics and HCI efficiency. Sam [30] summa-
rizes the state-of-the-art of research on biomechanical optimization and ergonomic risk
assessment utilizing wearable sensors for industrial and sports use, which offers a wealth
of information for our study. A multi-objective optimization strategy for gestures based on
human intuition, comfort, and gesture recognition rate was proposed by Stern [31,32]. The
three indicators of human intuition, comfort, and gesture recognition rate are coordinated
by using the optimization calculation approach, although this method is only employed
for hand gestures, and experimental analysis and verification have not been carried out.
Herman [33] optimizes the gesture comfort during surgical procedures to enhance the
ergonomics and operational stability of surgical procedures, but the comfort model utilized
does not include biomechanical information. A pilot helmet design strategy that maximizes
comfort [34] through pressure distribution and eye position has been reported. Battini [35]
et al. predicted the energy expenditure of the human body and assessed the degree of
comfort of the human body using gender, height, load, arm position, speed, and duration
of action; however, the energy expenditure computed using this method contains less
biomechanical information. In order to prevent the overload of nursing staff, Zhang [36]
employed the metabolic energy expenditure module to compute the work energy consump-
tion that directly reflects the energy consumption, physical condition, and fatigue recovery
time of nursing staff in each sub-task. A human energy expenditure model based on heat
dissipation [37] and muscular mechanical energy expenditure [38] was proposed, but it
has not been used in a human comfort study. Additionally, there is numerous research on
how to make the human body more comfortable, including those on aircraft cabins [39],
agricultural machines [40], military vehicles [41], pHRI activities [2], construction [42],
and wheelchairs [43]. The comfort models are either deficient in human biomechanical
knowledge or inappropriate for optimizing gestures. A comfort model based on energy
expenditure will be developed in this study with the goal of improving the comfort of
the human’s upper limbs in gesture interaction applications [44]. The model, that can
determine the comfort of a human’s upper limbs in static or dynamic gestures, incorporates
rich biomechanical information. The comfort model can be utilized to predict potential
risks of discomfort in the muscles or injury, as well as gesture design optimization.

Additionally, excessive measurement inaccuracy will negatively impact the rate of
gesture recognition, and it will affect both the usability and operational effectiveness of
the gesture interaction. When measuring the human skeleton using depth stereoscopic
vision, Zago [45] et al. did not take into account the measurement error resulting from the
structural parameters and measurement positions of the stereoscopic depth model. Instead,
they used a motion capture system to compensate for the human skeleton’s measurement
error. In order to increase the measurement accuracy of the ToF depth camera, a noise
filtering method [46] was applied to account for the impact of multipath error and ambient
light error on the depth map. A theoretical error calculation equation based on an error
propagation model [47] is proposed to rapidly establish accurate measurement systems
that are capable of ensuring the accuracy of tube measurement systems based on multi-
stereo vision. Through analysis of the depth measurement error’s effect factors, Wang [48]
et al. found that the depth measurement error of binocular stereo vision is significantly
influenced by the rotation angle errors and image feature extraction errors. However, this
research only gives the guidelines, and does not give the specific parameter optimization
method. Aiming at the problem of the loss of gesture features when the KLT tracker is
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occluded and large-scale rotation, Liu [49] uses a Kalman filter to predict the position of
the gesture to improve the measurement precision of the gesture, but the study did not
consider the depth information of gesture. Furthermore, some researchers look at the issue
of the measurement accuracy from the perspectives of picture distortion correction [50] and
technique comparison [51], but not from the structural features of the stereoscopic depth
vision system. In order to reduce the binocular stereo vision measurement inaccuracy,
the depth measurement error is derived by considering the structural parameters of the
binocular stereo vision and the position of the measured object. We will aim to optimize
the overall performance of the depth stereo measurement system.

The comfort and measurement accuracy concerns in gesture interaction applications
were the main topics of this article. On the one hand, gestures’ comfort issues can result
in a number of issues, including muscular fatigue, poor working efficiency, and a bad
interaction experience. The usability of gesture interaction applications will be impacted by
the measurement precision of motions, which will result in low gesture recognition rates.
However, there is frequently a contradiction between measurement accuracy and comfort.
Other targets’ performance can suffer if comfort is singly pursued. As a result, Our research
will establish the comfort model and measurement precision model of gestures in light of
the coordination problem of gestures in terms of the comfort and measurement precision,
and will use multi-objective optimization methods to calculate the optimal design variables
for improving the level of comfort, operating efficiency, experience, and usability of gesture
interactive applications.

2. Gesture Comfort Modeling

An essential metric for assessing the ergonomics of the human upper limbs is comfort.
It is very important to study the gesture design theory and techniques to lower operator risk
and fatigue, and to enhance human–computer interaction. In order to optimize gestures, a
model of gesture comfort based on muscle mechanical energy expenditure and efficiency
was developed in the article.

2.1. Muscle Mechanical Energy Expenditure of Gesture

Human muscular energy expenditure is a crucial biomechanical parameter in the study
of human biomechanics and has significant scientific implications in the areas of ergonomics,
upper limb rehabilitation, muscle fatigue analysis, and human comfort assessment.

In general, the human body uses two types of energy: muscle mechanical energy
and calorie expenditure. Muscle contractions convert chemical energy into thermal and
mechanical energy. However, because the primary role of muscles is to produce muscle
power and the calorie expenditure is little, the amount of heat generated during muscle
contraction is negligible. Figure 1 from the paper illustrates the human upper limb muscu-
loskeletal model. The recommended comfort model based on the data from muscles and
joints, CS can simulate the energy consumption of the gesture by taking into account six
degrees of freedom and seventeen muscles.

However, for nonliving mechanical systems, there is no energy expenditure when
the mechanical system is at rest. For the human body, whether the human upper limbs
are performing a static or dynamic gesture, the muscles will produce mechanical energy
expenditure. Therefore, according to the human upper limb musculoskeletal model as
shown in Figure 1, the muscle mechanical energy expenditure model of the human upper
limb is established. The muscle energy expenditure of the dynamic gesture is equal to the
integral of the sum of the absolute value of the power of each joint in time, and the muscle
energy expenditure of the static gesture is equal to the integral of the sum of the absolute
value of muscle force in time. Then, the calculation formula of muscle energy expenditure
of the gesture can be expressed as follows:

MEEM =


∫ t2

t1

(
∑6

i=1

(∣∣∣T+
i

.
θi

∣∣∣+ ∣∣∣T−i .
θi

∣∣∣)+ ∑17
i=1

∣∣∣muscle_Fi
.

Li

∣∣∣)dt,
.
θ 6= 0∫ t2

t1
∑17

i=1

∣∣∣muscle_Fi

∣∣∣dt,
.
θ = 0

(1)
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where MEEM is the muscle energy consumption of gesture, T+
i and T−i are the positive

and negative joint torques caused by inertia, gravity, and ligament at the ith joint.
.
θi is joint

angle velocity at the ith joint. muscle_Fi and
.

Li are the muscle force and muscle length of
the human upper limb at the ith joint.
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𝑊ெ ൌ ׬ ∑ 𝜏௜𝜃ሶ௜଺௜ୀଵ௧మ௧భ 𝑑𝑡  (3)

where 𝑀𝐸 is the muscle mechanical efficiency of the human upper limbs, 𝑊ெ is the mus-
cle mechanical work of the human upper limbs, 𝜏௜ is the joint net torque of the human 
upper limb at the 𝑖௧௛ joint. 

The spring damping system represents the human muscle model.

Generally, muscle efficiency is not constant, but changes with the state of muscle
contraction. Its value depends on the load and contraction velocity of the muscle. An
appropriate muscle load and contraction velocity can maximize mechanical efficiency, but
the muscle load and contraction rate are not fixed; they depend on the nerve stimulation
state of the muscle. Therefore, the mechanical efficiency of muscles is also an important
indicator to evaluate the ergonomics of human muscles. Then, the muscle mechanical
efficiency of the gesture can be calculated from the ratio of muscle mechanical work to
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ME =
WM

MEEM
(2)

WM =
∫ t2

t1
∑6

i=1 τi
.
θidt (3)

where ME is the muscle mechanical efficiency of the human upper limbs, WM is the muscle
mechanical work of the human upper limbs, τi is the joint net torque of the human upper
limb at the ith joint.

2.2. Comfort Model of Gesture

The muscle mechanical energy expenditure of the gesture can reflect the load level of
the active and passive muscles of the gesture, and the muscle mechanical efficiency can
reflect the efficiency level of the muscles of the gesture. This paper establishes a gesture com-
fort model based on the muscle mechanical energy expenditure and mechanical efficiency
through linear weighted combination. According to the habit of comfort evaluation in
ergonomics, the comfort score of the gesture is set between 0 and 10. The smaller the score,
the better the comfort. The calculation formula of the gesture comfort model is as follows:

CS = k
(

w1
MEE

MEEmax
+ w2

WM
MEE

)
(4)
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where the CS is the comfort model of the gesture; k is the constant and k = 10; w1 and w2 are
the weight coefficients of the MEE and ME; MEEmax is the maximum energy consumption
when the human upper limbs feel fatigue.

In summary, the comfort model of the gesture can analyze the comfort of static or
dynamic gestures. In addition to MEE, the model also considers the impact of ME on
comfort. MEE contains rich biomechanical information of the upper limbs’ movement
posture, muscle strength, inertial force, ligament restraint force, muscle mechanical energy
consumption and efficiency. It reflects the muscle energy consumption of the human upper
limbs during movement. The greater the energy consumption, the more fatigue. The
smaller the energy consumption, the more comfort. ME is the ratio of work WM to MEE,
which reflects the muscles’ efficiency of the human upper limb. The higher the efficiency,
the higher the utilization rate of the muscle, and the lower the efficiency, the lower the
utilization rate of the muscle.

3. Measurement Precision Modeling
3.1. Depth Stereo Measurement Model

Depth stereo measurement is based on the principle of parallax, and obtains the depth
value by comparing the same feature points in two projection planes. The depth stereo
measurement precision will directly affect the recognition precision and efficiency of the
gesture, and affect the level of ergonomics and interactive experience in gesture interaction
applications. According to the principle of depth stereo measurement, the depth stereo
measurement model is composed of the relative position relationship of the left/right view
of the depth stereo measurement system, the projection angle, the angle relative to the
optical axis, the focal length, and the position of the measurement object. The depth stereo
measurement model of gesture features is shown in Figure 2.
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where 𝑀௅ோ  is the spatial homogeneous transformation matrix between the coordinate 
system 𝑂௅ and 𝑂ோ; 𝑟௜(𝑖 = 1~9) are the elements of the rotation matrix; 𝑡௫, 𝑡௬, 𝑡௭ are the 
elements of the translation vector. 

Then, the relationship between the coordinate system 𝑂௫௬_௅  and 𝑂௫௬_ோ  can be ex-
pressed as follows: 

Figure 2. Depth stereo measurement model of gesture features (note:OL(XL, YL, ZL) and
OR(XR, YR, ZR) are the left and right view coordinate systems of the depth stereo measurement
model, OB(XB, YB, ZB) is human body coordinate system, Oxy_L(xL, yL) and Oxy_R(xR, yR) are the
projection plane coordinate systems for the left and right view; the blue overlapping area is the
measurement field of view; fL and fR are the focal lengths of the left and right view; φl and φR are
the angles between the central axis and baseline; ρl and ρR are the projection angles of the left and
right view; B is the baseline distance).
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In order to build the depth stereo measurement model, one first needs to establish a
perspective relationship between the projection plane coordinate and the view coordinate
of the gesture features. The formula is as follows:

zL_H

xL_RH
yL_RH

1

 =

 fL 0 0
0 fL 0
0 0 1

XL_RH
YL_RH
ZL_H

 (5)

zR_H

xR_RH
yR_RH

1

 =

 fR 0 0
0 fR 0
0 0 1

XR_RH
YR_RH
ZR_RH

 (6)

where the (xL_RH , yL_RH , zL_RH) are the coordinates of the gesture features in coordinate
system Oxy_L; (xR_RH , yR_RH , zR_RH) are the coordinates of the gesture features in coordi-
nate system Oxy_R; (XL_RH , YL_RH , ZL_RH) are the coordinates of the gesture features in
coordinate system OL; (XR_RH , YR_RH , ZR_RH) are the coordinates of the gesture features
in coordinate system OR; fL and fR are the focal length.

The relationship between (XL_RH , YL_RH , ZL_RH) and (XR_RH , YR_RH , ZR_RH) can be
expressed by the spatial homogeneous transformation matrix MLR:

XR_RH
YR_RH
ZR_RH

 =

r1 r2 r3 tx
r4 r5 r6 ty
r7 r8 r9 tz




XL_RH
YL_RH
ZL_RH

1

 = MLR


XL_RH
YL_RH
ZL_RH

1

 (7)

where MLR is the spatial homogeneous transformation matrix between the coordinate
system OL and OR; ri(i = 1 ∼ 9) are the elements of the rotation matrix; tx, ty, tz are the
elements of the translation vector.

Then, the relationship between the coordinate system Oxy_L and Oxy_R can be ex-
pressed as follows:

ZR_RH
zL_RH

xR_RH
yR_RH

1

 =

 fRr1 fRr2 fRr3 fRtx
fRr4 fRr5 fRr6 fRty
r7 r8 r9 tz




ZL_RHxL_RH/ fL
ZL_RHyL_RH/ fL

ZL_RH
1

 (8)

Therefore, the three-dimensional coordinates of the gesture features in the right view
coordinate system can be expressed as follows:

XL_RH = ZL_RHxL_RH/ fL
YL_RH = ZL_RHyL_RH/ fL

ZL_RH =
fL( fRtx−xR1 tz)

xR_RH(r7xL_RH+r8yL_RH+ fLr9)− fR(r1xL_RH+r2yL_RH+ fLr3)

(9)

3.2. Measurement Precision Model

The efficiency of the gesture interaction is impacted by the depth stereo measurement
precision, which also influences the measurement precision of the gesture features. In order
to improve the measurement accuracy of the gesture features, the paper established a depth
stereo measurement error model. In order to simplify the complexity of the depth stereo
measurement model, it is assumed that the left and right view are placed horizontally and
at the same height, and the coordinate origin of the depth stereo measurement model is the
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center position of the left view. Then, the simplified three-dimensional coordinates of the
gesture features in the right view coordinate system can be expressed as follows:

XL_RH = BCOS(ρl+φl)
COS(ρL+φL)+cos(ρR+φR)

YL_RH = yL_RH
ZHsin(ρl)

fLsin(ρL+φL)
= yR_RH

ZHsin(φR)
fRsin(ρR+φR)

ZL_RH = B
COS(ρL+φL)+cos(ρR+φR)

(10)

In order to analyze the influence of the parameters of the depth stereo measurement
model on the precision, the partial derivative of Equation (10) can be obtained:

∂XL_RH
∂xL_RH

= − ZL_RH
2

B fL

cos(ρR+φR)

Sin2(ρL+φL)
cos2(ρL)

∂XL_RH
∂xR_RH

= − ZL_RH
2

B fR

cos(ρL+φL)

Sin2(ρR+φR)
cos2(ρR)

(11)


∂ZL_RH
∂xL_RH

= − ZL_RH
2

B fL

cos2(ρL)

Sin2(ρL+φL)

∂ZL_RH
∂xR_RH

= − ZL_RH
2

B fR

cos2(ρR)

Sin2(ρR+φR)

(12)


∂YL_RH
∂xL_RH

=
YL_RH ZL_RH

B fL

cos2(ρL)

Sin2(ρL+φL)

∂YL_RH
∂xR_RH

=
YL_RH ZL_RH

B fR

cos2(ρR)

Sin2(ρR+φR)

(13)


∂YL_RH
∂yL_RH

=
ZL_RH

fL

Sin(ρL)
Sin(ρL+φL)

∂YL_RH
∂yR_RH

=
ZL_RH

fR

Sin(ρR)
Sin(ρR+φR)

(14)

Generally, the average projection error ∆xy of the depth stereo measurement model
can be obtained by calibration, then the average error of the depth stereo measurement
model in the left/right view coordinate system can be calculated as follows:{

∆XL = ∆xydx, ∆YL = ∆xydx
∆XR = ∆xydy, ∆YR = ∆xydy

(15)

According to Figure 2, the projection angles on the left/right view are ρl and ρR and
can be calculated as follows:ρl = atan

(
ZL_H ,

√
XL_H

2 + YL_H
2
)

ρR = ρl

(16)

Then, the depth stereo measurement error in the X/Y/Z direction can be expressed
as follows:

∆XRH =

√(
∂XL_RH
∂xLR_H

∆XL

)2
+
(

∂XL_RH
∂xR_RH

∆XR

)2

∆YRH =

√(
∂YL_RH
∂xL_RH

∆XL

)2
+
(

∂YL_RH
∂xR_RH

∆XR

)2
+
(

∂YL_RH
∂yL_RH

∆YL

)2
+
(

∂YL_RH
∂yR_RH

∆YR

)2

∆ZRH =

√(
∂ZL_RH
∂xL_RH

∆XL

)2
+
(

∂ZL_RH
∂xR_RH

∆XR

)2

(17)

Therefore, the depth stereo measurement precision model can be expressed as follows:
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∆PH =
√

∆X2
H + ∆Y2

H + ∆Z2
H

=

√√√√√√√
(

∂XL_RH
∂xLRH

∆XL

)2
+
(

∂XL_RH
∂xRRH

∆XR

)2
+
(

∂YL_RH
∂xL_RH

∆XL

)2
+
(

∂YL_RH
∂xR_RH

∆XR

)2
+(

∂YL_RH
∂yL_RH

∆YL

)2
+
(

∂YL_RH
∂yR_RH

∆YR

)2
+ ∆ZH

2
(

∂ZL_RH
∂xL_RH

∆XL

)2
+
(

∂ZL_RH
∂xR_RH

∆XR

)2

(18)

where (∆XH , ∆YH , ∆ZH) are the depth stereo measurement error in the X/Y/Z direction;
∆XL, ∆YL,∆XR, ∆YR are the average projection errors in the projection plane of the left/right
view; ∆PH is the depth stereo measurement precision model.

The binocular stereo vision parameter may be guided by the precision analysis, in
accordance with the depth stereo measurement precision model. This can guide us how to
choose the lens ( fL and fR) of the camera, so as to obtain a higher measurement accuracy.
In addition, the appropriate baseline distance B and the distance between the camera and
the measured object can be given. Even the position with the lowest measurement accuracy
can be given, so that this position can be avoided as much as possible in practical operation.

4. Multi-Objective Optimization Method for Gestures
4.1. Multi-Objective Optimization Model

The usability of gesture interaction applications is influenced by a number of signifi-
cant elements, including the user comfort and measurement accuracy. The ease of use and
measurement accuracy of the gestures will influence how easily the human upper limb
muscles fatigue and how well they operate. However, there is frequently a conflict between
the two performances of the comfort and measurement accuracy. If there is, it can result in
additional performance deterioration. In order to maximize co-optimization, it is required
to coordinate and compromise between the performances of the comfort and measurement
accuracy. In order to reduce muscle fatigue, increase operation efficiency, and enhance
the interactive experience of the gesture in interactive applications, this paper proposed a
multi-objective optimization method of the gesture based on comfort and measurement
precision. It uses this method to calculate the optimal design variables that can make the
gesture achieve the co-optimization.

Schematic diagram of the multi-objective optimization method of the gesture, as
shown in Figure 3. The biomechanics theory of human upper limbs, the depth stereo
measurement theory, the multi-objective optimization theory and algorithm, as well as
other related theories and research, were all taken into consideration when developing the
multi-objective optimization method of gestures suggested in this work. Research on multi-
objective gesture optimization is useful for improving the ergonomics of gesture interaction
applications, including comfort, operational effectiveness, and interactive experience.

According to the proposed gesture comfort model CS and measurement precision
model ∆PH , the two single objective functions of the multi-objective optimization based on
the gesture comfort and measurement error are expressed as follows:

MinJCS = k
(

wMEE
MEE

MEEmax
+ wME

WM
MEE

)
(19)

MinJPH = ∑ ∆PH = ∑
√

∆X2
H + ∆Y2

H + ∆Z2
H (20)

In order to simplify the multi-objective optimization objective function of the gesture
and reduce the calculation amount, the two objective functions are transformed into a
single objective function through the linear weighting method:

MinJ = f mincon
(
w1 JCS + w2 JPH

)
(21)



Bioengineering 2023, 10, 1191 10 of 17

s.t


xB_RH_Min ≤ xB_RH ≤ xB_RH_Max
yB_RH_Min ≤ yB_RH ≤ yB_RH_Max
zB_RH_Min ≤ zB_RH ≤ zB_RH_Max

(22)

where J is the multi-objective optimization objective function based on the comfort of ges-
tures and measurement precision; w1 and w2 are the weight coefficient of the JCS and JPH

;
f mincon is the calculated functions for multi-objective optimization; (xB_RH , yB_RH , zB_RH)
are the coordinates of the gesture features as optimization variables.
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4.2. Multi-Objective Optimization Calculation

The coordinates of the gesture features (xB_RH , yB_RH , zB_RH) were used as optimiza-
tion variables and gesture-based circular trajectories were optimized in accordance with
the established multi-objective optimization model of the gesture based on the comfort
and measurement error, so that the gesture achieved an optimal performance in both
comfortable and measurement error. Figure 4 depicts the flow chart of a multi-objective
optimization computation for a gesture based on the measurement accuracy and comfort.
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The nonlinear programming solver is used to perform multi-objective optimization
calculations for the gesture based on the comfort and measurement errors. Firstly, give
the initial values P0 and variable constraints Pmin ≤ P0 ≤ Pmax; secondly, use the trajectory
planning algorithm to calculate the human upper limb movement trajectory; thirdly, cal-
culate the objective function J of the gesture multi-objective optimization model; fourthly,
determine whether the objective function meets the iteration stop condition J ≤ ∆δ, if it is
satisfied, output the current optimal solution P∗, if not, continue to the next step; fifthly,
modify the initial value of the variable P0 = P0 + α with a given step size α along the
search direction, and return to the third step for iterative calculation; finally, the judgment
condition is met, and the iteration is terminated.

4.3. Case Analysis and Results of Multi-Objective Optimization of Gestures

In order to verify the effectiveness of the proposed method, the gesture of the circular
trajectory is exemplified in the work undertaken by the multi-objective optimization. Ac-
cording to the position of the circle center PB_RHO(xB_RHO, yB_RHO, zB_RHO) and radius rRH ,
a continuous circular trajectory can be calculated using the trajectory planning algorithm,
so that the gesture comfort and measurement precision can be calculated. Therefore, the
multi-objective optimization model of the gesture based on the circular trajectory can be
expressed as follows:

MaxJ = f mincon
(
w1 JCS + w2 JPH

)
(23)

s.t


−0.6 ≤ xB_RHO ≤ 0.6
−0.6 ≤ yB_RHO ≤ 0.6

0 ≤ zBRHO ≤ 0.6
0.1 ≤ rRH ≤ 0.6

(24)

According to the movement habits of most people, this paper makes the following as-
sumptions: gestures of circular trajectory make clockwise movements, and the initial position
PB_RH1(xB_RH1, yB_RH1, zB_RH1) and target position PB_RH2(xB_RH2, yB_RH2, zB_RH2) of the cir-
cular trajectory are coincided and above the center of the circle. Then, the position of the center
of the circle is equal to PB_RHO(xB_RHO, yB_RHO, zB_RHO) = (xB_RH1, yB_RH1 − rRH , zB_RH1).
Therefore, the non-linear optimization function f mincon was used to solve the optimal
solution until the convergence condition is met and the iteration is stopped.

As shown in Table 1, the initial values of the position of the center of the circle were
equal to PB_RHO = (0, 0, 0.2) and the rRH is equal to 0.1; the optimal solutions of the
position of the center of the circle were equal to P∗B_RHO = (0.1469,−0.1823, 0.2809) and
the radius is equal to r∗RH = 0.1355. So, the optimal initial and target position of the circular
trajectory are equal to P∗B_RH1/2(xB_RH1/2, yB_RH1/2, zB_RH1/2) = (0.1469,−0.0468, 0.2809).
The result of the gesture optimization based on the circular trajectory is shown in Figure 5.

Table 1. Initial values and optimal solutions of gesture optimization variable.

Variable
Values

Center Position of Circle PB_RHO Radius

xB_RH0 (m) yB_RH0 (m) zB_RH0 (m) rRH (m)

Initial values P0 0 0 0.2 0.1
Optimal solutions P∗ 0.1469 −0.1823 0.2809 0.1355
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5. Discussion

To illustrate the effectiveness of the multi-objective optimization method for the
gesture based on the comfort and measurement precision, the comparison and anal-
ysis are performed among the objective functions of JCS, JPH

, and JCP based on the
case analysis of the multi-objective optimization of gestures. The center coordinates
(xB_RHo, yB_RHo, zB_RHo) and radius rRH are changed as the variables to analyze the change
law of the objective functions.

Firstly, in order to eliminate the difference and dimension among the JCS, JPH
, and

JCP, the objective functions are transformed into dimensionless values between 0 and 1
through standardization. Then, all data indicators are in the same order of magnitude
to solve the comparability among the objective functions, which is convenient for the
weighting processing and comparative analysis and intuitively understanding the change
law of each objective function corresponding to each variable. Finally, the results of the
comparison and analyses based on the multi-objective optimization of the gesture are
shown in Figures 6–9. In the figures, the green, blue, and magenta curves represent
the change law of the objective function of JCS, JPH

, and JCP corresponding to different
characteristic variables. Through the comparison and analysis, the effectiveness of the
proposed method for optimizing the comprehensive performance of the gesture’s comfort
and measurement precision is illustrated.
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In Figure 6, according to the case analysis in the work undertaken by the multi-
objective optimization based on gestures of circular trajectories, the center coordinates
are set to PB_RHO = (0.1469,−0.1823, 0.2809), and the radius rRH of the circular trajectory
varies from 0 to 0.5 m. The figure shows that the curve of the objective function JCS
increases as the radius rRH increases. The curve of the objective function JPH

is inversely
parabolic as the radius rRH increases. The trend of the objective function JCS and JPH
are partially conflicting and partially identical. The objective function JCP is weighted by
JCS and JPH

, and the optimal radius of the circular trajectory can be obtained through
the multi-objective optimization calculation r∗B_RHO = 0.1355 m. The comparison result
illustrates that for the gesture of circular trajectories, the radius rRH will affect the comfort
and measurement precision of the gesture, especially when the radius is too large. The
objective function JCP can combine the comprehensive performance of the gesture comfort
and measurement precision.
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In Figure 7, the center coordinates of the circular trajectory are set to PB_RHO =
(xB_RHO,−0.1823, 0.2809), the coordinate xB_RHO determines the position of the gesture on
the left and right sides of the body and varies from−0.5 to 0.5 m. The radius rB_RHO is equal
to 0.1355 m. Figure 8 shows the experimental data on the objective function of JCS, JPH

,
and JCP corresponding to the variable xB_RHO, respectively. The objective function JCS
and JPH

show the same trend, but there are still obvious differences. The xB_RHO position
corresponding to the optimal measurement precision is in the middle of the body, and
the optimal comfort is at the position of xB_RHO = 0.2143 m. The objective function JCP
compromises the performance of JCS and JPH

and obtains the optimal center coordinate
x∗B_RHO = 0.1469 m. The comparison result shows that there is no significant difference in
the trend of the objective function JCS and JPH

, but the center coordinate xB_RHO has a
significant impact on the comfort and measurement precision.

In Figure 8, the center coordinates of the circular trajectory are set to PB_RHO =
(0.1355, yB_RHO, 0.2809), and the coordinate yB_RHO determines the height of the position
of gesture and varies from −0.5 to 0.5 m. The radius rB_RHO equal to 0.1355 m. The curve
of objective function JCS increase with the change in yB_RHO, but the curve of objective
function PH is parabolic with the change in yB_RHO. It can be observed that the differences
should be considerable between JCS and JPH

, especially when the yB_RHO is in the range
of −0.5 to 0 m. The objective function JCP reconciles the conflict between the JCS and JPH
and obtains the optimal center coordinate y∗B_RHO = −0.1823 m. The comparison results
show that the center coordinate yB_RHO has a different impact on JCS and JPH

, but the
objective function JCP makes a compromise and achieve a common optimal between the
comfort and measurement precision of gesture.

In Figure 9, the center coordinates of the circular trajectory are set to PB_RHO =
(0.1355,−1823, zB_RHO), and the coordinate zB_RHO, that determines the distance of the
gesture from the body, varies from 0 to 0.5 m. The radius rB_RHO is equal to 0.1355 m. It
can be observed that the objective functions JCS and JPH

show a high consistency, but
there are still slight differences. Further improvement can still be made by the multi-
objective optimization, and the optimal center coordinate z∗B_RHO can be obtained as equal
to 0.1403 m. The comparison result shows that the trend of JCS and JPH

affected by
the center coordinate zB_RHO is relatively consistent, but the impact on the comfort and
measurement precision cannot be ignored.

In summary, these results show that the objective functions JCS and JPH
based on

the circular trajectory gestures are related to the radius rB_RHO and the center coordinates
PB_RHO(xB_RHO, yB_RHO, zB_RHO). Through the proposed multi-objective optimization
method based on the gesture comfort and measurement precision models, the rB_RHO
and PB_RHO(xB_RHO, yB_RHO, zB_RHO) are optimized to an appropriate position. Among
them, compared with parameters xB_RHO and zB_RHO, the difference between the objective
function JCS and JPH

affected by the parameters rB_RHO and yB_RHO is more significant.
The objective function JCP integrates the differences between the JCS and JPH

by weighting,
and improves the comprehensive performance of gestures in terms of the comfort and
measurement precision.

6. Conclusions

The current study aims to address the inconsistency between the measurement ac-
curacy and gesture comfort in gesture interaction. This paper proposes a multi-objective
optimization method based on the gesture comfort and measurement precision. Firstly,
the gesture comfort CS is modeled by the muscle energy expenditure of the human upper
limb. The CS provides an intuitive indicator JCS to predict which act has the higher risk
of fatigue or injury for joints and muscles, so as to reduce operators’ fatigue and extend
their working hours. Secondly, the depth stereo measurement precision ∆PH was modeled
by the measurement error. The ∆PH provides an indicator JPH

to evaluate the operation
efficiency of the gesture interaction. Then, we proposed a multi-objective optimization
model JCP based on the JCS and JPH

, that provides a method to achieve an optimal perfor-
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mance between the gesture comfort and measurement precision. Finally, a case analysis
based on the circular trajectory gesture is implemented to verify the effectiveness of the
multi-objective optimization method proposed in this paper. The comparison result shows
both the consistency and the difference between the objective function JCS and JPH

corre-
sponding to different parameters. The multi-objective optimization method of the gesture
proposed in this paper effectively solves the inconsistency between the gesture comfort
and measurement precision in gesture interaction. In general, the research in this paper
is of great significance to the improvement of ergonomics and interaction efficiency in
gesture interaction.

In the future, for robot teleoperation based on gesture interaction, the authors will
carry out gesture design and use the multi-objective optimization method proposed in this
paper to improve the ergonomics and operation efficiency of the gesture. Furthermore, the
research will focus on the usability problem of gesture interaction, and comprehensively
evaluate the satisfaction, comfort, effectiveness, operation efficiency, consistency, and inter-
active experience in gesture interaction through usability testing to verify the effectiveness
of our work.
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