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Abstract: Background: microwave imaging (MWI) has emerged as a promising modality for breast
cancer screening, offering cost-effective, rapid, safe and comfortable exams. However, the practical
application of MWI for tumor detection and localization is hampered by its inherent low resolution
and low detection capability. Methods: this study aims to generate an accurate tumor probability map
directly from the scattering matrix. This direct conversion makes the probability map independent of
specific image formation techniques and thus potentially complementary to any image formation
technique. An approach based on a convolutional neural network (CNN) is used to convert the
scattering matrix into a tumor probability map. The proposed deep learning model is trained using a
large realistic numerical dataset of two-dimensional (2D) breast slices. The performance of the model
is assessed through visual inspection and quantitative measures to assess the predictive quality at
various levels of detail. Results: the results demonstrate a remarkably high accuracy (0.9995) in
classifying profiles as healthy or diseased, and exhibit the model’s ability to accurately locate the
core of a single tumor (within 0.9 cm for most cases). Conclusion: overall, this research demonstrates
that an approach based on neural networks (NN) for direct conversion from scattering matrices to
tumor probability maps holds promise in advancing state-of-the-art tumor detection algorithms in
the MWI domain.

Keywords: microwave imaging; neural networks; tumor localization; breast cancer; early detection;
biomedical engineering

1. Introduction

Breast cancer, specifically the female variant, is the most prevalent type of cancer
worldwide [1]. Statistics indicate that approximately one in eight new cancer cases falls
under this category [2]. Moreover, breast cancer is the leading cause of mortality in women
worldwide [1]. Fortunately, early detection of breast tumors through population screening
has proven to be an effective strategy in reducing the societal impact and mortality rates
associated with this disease [3].

Currently, medical imaging techniques such as X-ray mammography (gold standard),
ultrasound (US) imaging, magnetic resonance imaging (MRI) and nuclear imaging are
employed for breast cancer detection [4]. However, each of these modalities has its distinct
drawbacks [4,5]. X-ray mammography and nuclear imaging involve the exposure of
patients to harmful ionizing radiation. Furthermore, nuclear imaging and MRI are costly
and time-consuming examinations. In addition, patients may experience discomfort during
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X-ray mammography due to required breast compression; nuclear imaging may cause
discomfort due to the injection of radioactive material into the bloodstream; and MRI
scanners can produce uncomfortable loud noises and require the patient to remain still in
an enclosed space for extended periods of time. Lastly, US imaging is relatively operator-
dependent, and correctly interpreting the images requires skilled clinicians. Given these
challenges, microwave sensing can represent a valuable alternative to traditional medical
exams and is a good candidate for large-scale early breast cancer screening because of its
safety (non-ionizing radiation), cost-effectiveness, and time-efficient nature. Furthermore,
this kind of examination is relatively comfortable and operator-independent [6].

To generate medical images from data collected by the microwave system, an inverse
scattering problem has to be solved [7,8]. This problem entails reconstructing the morpho-
logical and/or electric properties of the scattering objects from the scattered waves, which
are detected by microwave probing sensors. This kind of inverse problem is well-known
in the scientific literature as the “inverse scattering problem” (ISP), and finding a stable
solution is not trivial due to the issues of nonlinearity and ill-posedness [9]. Several inver-
sion algorithms can be adopted to solve the ISP under consideration [10–16], and among
them, neural networks seem to have better image reconstruction performance compared to
traditional approaches [17–22].

Existing research in the field of microwave imaging has demonstrated the potential of
artificial neural networks in reconstructing realistic breast images [20,21,23]. However, the
reconstruction performance of these models in terms of both spatial resolution and retrieved
complex permittivity values often remain insufficient to allow for accurate differentiation
between breast tumors and the surrounding fibro-glandular tissue. Consequently, clinicians
who rely on these images to form a diagnosis may struggle to do so with confidence.

Ideally, the considered imaging modality should support clinicians’ decision-making
by providing a probability map, showing for each pixel/voxel the probability of it contain-
ing a tumor. Other researchers [24–31] have developed various approaches to provide simi-
lar information on the dimensions and location of the breast tumor in MWI. In [26–28,30]
additional ultrasound data is incorporated to help with detection of tissue boundaries.
In [26] for example, a multi-input multitask convolutional neural network (CNN) is pro-
vided that takes both electromagnetic (EM) data from MWI and ultrasound data, near
the output the model splits into two separate processing paths to produce two outputs: a
regression output and segmentation output of several tissue classes, including tumor class.
In the study of [29] an, eigenfunction-based reconstruction of the complex permittivity
is used as prior information for the contrast source inversion algorithm to improve the
reconstructed images and subsequent tumor segmentation. Additionally, in [31] the Gauss-
Newton inversion is used to form images of the complex permittivity and of the ultrasonic
properties (compressibility and attenuation). These images are then processed using a CNN
classifier which returns probability maps for five different tissue types including tumor.
However, all these approaches use the inherently flawed reconstructed breast properties in
some part of their approach for localizing potential tumors.

Conversely from the previously-mentioned articles, this study proposes a novel strat-
egy in which a direct conversion is made from the raw microwave data into a spatial
probability map of the tumors. This procedure allows to skip the image formation step,
which is particularly difficult and, sometimes, unstable, leading to potential information
loss and ambiguity about the tumor localization. To the best of our knowledge, only [32,33]
have published approaches for such a direct conversion from scattered wave data into a
tumor location in the microwave imaging domain. However, the proposed framework
in [32] only estimates the quadrant of the image in which the tumor resides. In [33], their
framework only estimates the spatial coordinates of the tumor center. Furthermore, the
profiles in their dataset are limited to having a single smooth tumor of fixed size. Since the
tumor probability maps in our approach are derived directly from the scattering matrices,
they remain independent of any specific image formation strategy. Consequently, the tumor
probabilities generated by this approach can be synergistically combined with various
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image formation approaches that also take the scattering matrices as input. In such cases,
the tumor probability map can provide accurate information regarding tumor size and
location, while the accompanying retrieved image supplies contextual information relevant
to the tumor position.

This study aims to build on the work of [20,34] by developing a neural network model
that generates a pixel-wise tumor probability map directly from the scattering matrix.
The performance of this model will be evaluated through various quantitative and visual
assessments. The ultimate objective of this research is to advance the current state-of-the-
art methodology for breast cancer screening, thereby mitigating the adverse impact of
the disease.

Section 2 of this paper will summarize the fundamental aspects of microwave sensing
and imaging. Section 3 will provide detailed explanations of the employed methodology,
including the dataset characteristics, the neural network architecture, the training process,
and the performance evaluation. In Section 4, the results will be presented, consisting
of both numerical and visual aspects. The final sections will involve the interpretation
of the results (Section 5), drawing the conclusions (Section 6), and reflecting upon the
methodology as a whole.

2. Microwave Sensing

Microwave sensing relies on the use of electromagnetic waves within the microwave
frequency range, spanning from several hundreds of MHz to multiple GHz [6,35,36].
By processing the waves scattered by breast tissues, internal structural images of the
breast can be constructed. Typically, an arrangement of antennas encircling the breast is
employed for imaging purposes. These antennas surround the imaging domain and can be
mounted along the edge of a spherical indentation in a medical exam table. Such a setup is
particularly comfortable since it does not require breast compression (Figure 1).

Figure 1. Simplified sketch of a microwave breast imaging setup with three antennas. The red
antenna (2) transmits an electromagnetic wave, the other antennas (1,3) receive the scattered waves.
This procedure is repeated per each antenna and the collected data are stored in the form of the
scattering matrix.

During signal acquisition, the system operates in a multi-view-multi-static configura-
tion, referring to the fact that more transmitters and receivers, located in different spatial
locations, compose the system. More in detail, only one antenna at a time works as trans-
mitter, emitting a microwave signal that propagates through the breast tissues and, by
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virtue of the contrast in the electric properties existing between adjacent biological tissues,
the scattered waves can then be detected by the receiving antennas outside the breast.

At the end of the acquisition phase, a collection of scattered signals is obtained result-
ing from each pair of transmitting-receiving antennas. This information can be properly
re-arranged in a matrix form whose size coincides with the number of transmitting and
receiving elements. It is worth noting that the considered system collects complex infor-
mation, which can also be adopted to perform a “coherent” imaging of the area under
investigation. Generally, complementary to the spatial variability information which is
exploited by changing the relative position between transmitter and receiver, further im-
portant information for improving the quality of the investigation and empowering the
diagnosis consists in the adopted frequency range, allowing improved resolution in the
tumor detection/localization performance.

Nevertheless, there are some lower bounds in the resolution capabilities of a well-
designed microwave system, since the choice of the adopted frequency range is the result
of the trade-off between penetration capability and spatial resolution performance [23].
Furthermore, it is paramount to underline that an increase in the number of transmit-
ting/receiving antennas does not imply an improvement in terms of detection/localization
performance necessarily, as supported by the well-known theory on the degrees of free-
dom [37,38], but still such an improvement can reduce the impact of noise on the detec-
tion/imaging tasks.

Further details on the mathematical equations ruling the scattering phenomena, which
is out of the scope of this work, can be found in [39]. Nevertheless, it is worth underlining
that due to the complexity of the problem under consideration, performing the imaging
to carry out the tumor diagnosis represents a hard task which is still very challenging for
several state-of-the-art microwave imaging approaches, even for the most recent ones based
on the use of NNs, due to the main issues related to the non-linearity and ill-posedness of
the inverse scattering problem [9]. In the light of this, the adoption of NNs for a different
task, such as the one of directly estimating tumor location without performing the imaging
of the breast, can represent a promising strategy.

3. Methodology
3.1. Neural Network Design

Probability maps regarding the tumors dimensions and location would be a valuable
tool in breast cancer screening. In this framework, the proposed approach involves a neural
network model that creates such a probability map directly from the scattering matrix. The
developed framework in this study consists of a U-Net architecture followed by a single
dense layer. It is worth noting that even though further architectures might represent better
options, such as the ones in [40–42], we chose the U-net as it represents a good trade-off
among performance, complexity of the architecture and training time.

The proposed architecture operates on the scattering matrix and is three levels deep;
each convolutional block uses three 3 × 3 convolutions. Every convolution is followed by
a ReLu activation and a batch normalization. In these blocks, padded convolutions are
performed which causes the model to maintain the input image dimensions at the output.
Subsequently, the resulting output is flattened and passed to a fully connected dense layer
to enable the transformation of the data into the desired output shape. Figure 2 shows
this architecture.

3.2. Dataset Characteristics

An adequately large and diverse dataset is essential to effectively train neural networks.
However, in the domain of microwave imaging, obtaining such datasets is challenging
due to the limited implementation of this technology on a large scale in clinical settings.
Secondly, clinical data usually lacks the reference image that is needed to train a neural
network. To address these issues, ref. [20] developed a realistic numerical two-dimensional
breast phantom generator, which has been made available for this study.
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Figure 2. The proposed neural network architecture. The model takes as input the complex scat-
tering matrix re-arranged into real and imaginary parts. The model outputs a pixel-wise tumor
probability map.

Following the generation of 2D phantoms, a microwave imaging dataset was created in
accordance with the methodology outlined in [20]. In this process, breast slices measuring
15 × 15 square centimeters were generated. The images were saved with a resolution of
7.2 pixels per centimeter, equating to 108 × 108 pixels per each breast image. The breast
slices were subsequently categorized into one of four classes as defined in [20], based on
the relative percentage of fibro-glandular tissue with respect to the other tissues. Each pixel
of the generated breast profiles was classified into six distinct tissue classes. Subsequently,
the tumor class was extracted to create binary tumor labels, which serve as the ground
truth for training the model. Figure 3 provides a sketch, showcasing the real permittivity of
a generated profile of a tumorous breast as well as the segmented image.

Similar to the procedure in [20], the imaging setup was assumed to have 30 antennas,
thus the corresponding scattering matrix has size 30 × 30. The scattering matrices are
calculated based on a forward solver which exploits the method of moments (MoM) to
solve the forward scattering problem. It is worth noting that the scattering matrix is
complex; consequently, for each breast slice, two 30 × 30 matrices were adopted, one
containing the real values and the other containing the imaginary values. As a final step,
these matrices were padded with a single layer of zeros, extending their size to 32 × 32.
This step was necessary to ensure compatibility with the U-net architecture.

Figure 3. (a) the real permittivity of a generated profile. (b) the segmented version of the same profile.

3.3. Network Training

For the training and evaluation of the model, a total of 160,000 profiles were generated,
evenly distributed among the four predefined classes. The breast profiles were combined in
a 1:1 ratio of healthy and tumorous profiles. Upon request, this data can be made available
for research purposes. Of these profiles, 128,000 were allocated for training, 16,000 for
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validation, and an additional 16,000 for testing purposes, following an 80–10–10% split.
During training, the model attempted to minimize the binary cross-entropy loss (BCELoss).
Optimization was performed using the Adam algorithm, employing an initial learning rate
of 0.00123. The training process was conducted in mini-batches of 500 profiles. Training was
performed on an NVIDIA Quadro RTX 6000 GPU, with each epoch taking approximately
50 s using the specified settings. A minimal validation BCELoss of 0.01595 was achieved
after 19 epochs before the model started over-fitting.

3.4. Performance Assessment

To assess the quality of the estimated tumor probability maps, various metrics were
applied to the independent test set. These metrics were chosen to assess the model’s
performance at different levels.

The first metric aims to measure model performance at the sample level, specifically its
ability to differentiate between healthy and diseased samples by classifying them into their
respective categories. This type of performance is particularly valuable for efficient breast
cancer screening, where samples that are labeled as diseased can be examined further using
other modalities with superior image quality.

The second metric focused on assessing the model’s performance at a regional level,
specifically its capability to locate the general area of a single tumor. This was achieved
by calculating the distance between the real tumor center and the estimated tumor center.
This type of performance provides clinicians with valuable initial information about the
tumor’s approximate location within the breast.

The third metric aims to evaluate the model’s performance at a highly detailed level
by assessing the accuracy of the probability maps pixel-by- pixel. Three image similarity
metrics were employed for this purpose. This level of performance is crucial for precise
treatment planning and monitoring subtle changes of the tumor over time.

For the first metric (global classification), the tumor probabilities estimated by the
network were transformed into binary labels using a threshold of 15%. If any pixel within
a breast profile exceeded this threshold, the profile was classified as containing a tumor.
Based on these binary labels, the model’s classification accuracy, specificity, and sensitivity
were calculated.

For the second metric (regional locating), a subset of the independent test dataset was
selected, consisting of profiles that contained a single connected tumor while maintaining an
equal distribution across the four predefined classes of [20]. The centers were determined
with the formula for the center of mass, swapping mass for tumor probability. This
calculation was followed by discretisation to the nearest integer to obtain the index of
the central pixel. Finally, the Euclidean distance between the real and estimated centers
was computed.

For the third metric (detailed pixel-wise), the soft-Dice score [43], the normalized cross
correlation (NCC) [44], and the normalized root mean square error (NRMSE) [45] were
employed to measure the overlap between the estimated tumor map and the reference. All
three of these image similarity metrics (Equations (1)–(3)) are able to accommodate the
disparity between the outputted image, which is a probability map ranging from 0 to 1,
and the reference, which is a binary map consisting exclusively of 0 s and 1 s.

Soft-Dice(I1, I2) =
2 ∑x,y I1(x, y) · I2(x, y)

∑x,y I2
1 (x, y) + ∑x,y I2

2 (x, y)
(1)

NCC(I1, I2) =
∑x,y(I1(x, y)− µI1)(I2(x, y)− µI2)√

∑x,y(I1(x, y)− µI1)
2 ∑x,y(I2(x, y)− µI2)

2
(2)

NRMSE(I1, I2) =

√
1
N ∑x,y(I1(x, y)− I2(x, y))2

max(I1)− min(I1)
(3)
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In Equations (1)–(3), I1 and I2 represent the two input images, x and y represent
the spatial coordinates of the images, ∑x,y represents a summation over all the pixels,
N denotes the total number of pixels in each image, and µI1 and µI2 denote the mean
intensities of I1 and I2, respectively. Note that in the Equation (3), image 1 is assumed to
have the largest intensity range. In the case of binary masks, the data range equals 1 so the
RMSE is normalized by default.

4. Results
4.1. Visual Analysis

The proposed model in this research generates a tumor probability map. Although
this probability map possesses intrinsic value, its interpretability and informativeness are
enhanced when it is combined with a breast image generated by a state-of-the-art image
formation model. In the presented results, a neural network for image formation was
used following the approach stated in [20], since they have shown good results. Figure 4
shows three generated probability maps, combined with the generated images in grayscale.
Adjacent to these estimations are the segmented reference images.

Figure 4. (a,c,e) estimated probability maps with the corresponding generated breast image as
background. (b,d,f) corresponding segmented reference profiles. (a,b) example of a very dense
breast which is notoriously difficult for tumour detection. (c,d) example of a breast with small and
scattered tumours. (e,f) example of a breast with a single connected tumour. The images are of
size 15 × 15 cm2. The vertical colorbar represents the tumour probability, the horizontal colorbar
represents the real permittivity.

4.2. Classification

The primary objective of the classification metrics is to assess the effectiveness of
the model in its fundamental screening task, which involves discerning between healthy
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subjects and subjects with a tumor. The provided information in Table 1 illustrates the
confusion matrix for classification of breast profiles, categorizing them as either “healthy”
(negative) or “malignant” (positive). The testing dataset consists of a distribution of
approximately 50% (8004) healthy profiles and 50% (7996) malignant profiles. Consequently,
Table 2 shows the corresponding accuracy, sensitivity, specificity, F1 score and precision.
Furthermore, the ROC-AUC (receiver operating characteristic-area under the curve) was
evaluated and it is equal to 0.9992.

Table 1. Confusion matrix for breast profile classification (positive = malignant, negative = healthy).

Predicted

Positive Negative

Actual Positive 7993 3

Negative 5 7999

Table 2. Metrics for breast profile classification performance.

Metric Formula Value

Accuracy TP+TN
TP+TN+FP+FN 0.9995

Sensitivity (Recall) TP
TP+FN 0.9996

Specificity TN
TN+FP 0.9994

Precision TP
TP+FP 0.9994

F1 Score 2TP
2TP+FP+FN 0.9995

4.3. Distance between Tumor Centers

The objective of this metric is to measure the model’s ability to pinpoint the center of
a single tumor. Figure 5 presents a histogram that depicts the distribution of Euclidean
distances between the estimated center and the actual center of the tumor. From Figure 5, it
can be observed that the model distance is approximately 0.4 cm (3 pixels). The average dis-
tance measures around 1.2 cm (8.64 pixels) with a standard deviation of 0.9 cm (6.49 pixels).
Additionally, more than 50% of samples have an error of less than 0.9 cm (6.71 pixels).

Figure 5. Distribution of Euclidean distances between the estimated center and the actual center of
the tumor. The histogram contains 620 occurrences. The distance is given in pixels for every bin and
in centimeters for every third bin. One pixel = 0.139 cm.

4.4. Pixel-Wise Image Similarity

This final metrics measure the similarity between the probability map and the reference
map from pixel-to-pixel. For this analysis, the soft-Dice, the normalized cross correlation,
and the normalized root mean square error were calculated. The previous results in Table 2
show the remarkably high classification accuracy that was achieved, with only eight errors
observed among the 16,000 testing profiles. Given this exceptional accuracy, it was decided
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to exclusively apply the predefined image similarity metrics to the malignant profiles.
This approach ensures that the metrics remain unaffected by the 50% contribution from
the nearly perfect probability maps associated with the non-tumorous breast profiles.
Additionally, the calculation of the Normalized Root Mean Squared Error (NRMSE) was
confined to the pixels identified as tumors in the reference image or estimated as such. This
restriction aims to prevent the metric from being heavily influenced by the many accurately
classified background pixels resulting from the class imbalance between background and
tumor class. The specific metric values are presented in Table 3.

Table 3. Pixel-based image similarity metrics.

Metric Mean Standard Deviation

Soft-Dice 0.144 0.078

NCC 0.337 0.148

NRMSE 0.809 0.057

5. Discussion

This research paper proposed a novel deep learning approach aimed at reconstructing
a spatial tumor probability map in the domain of microwave imaging. The proposed
approach pioneers the use of the scattering matrix to obtain a probability map of the spatial
tumor localization, circumventing the use of inherently flawed reconstructed images which
many other approaches rely on for tumor detection and localization. Improvements in this
field are crucial to advance population screening techniques for breast tumors and mitigate
the disease impact at both individual and societal level.

The developed model utilizes a U-Net architecture and a fully connected layer. To
train and evaluate the model, a large and diverse synthetic dataset was employed. This
dataset was generated using the data generator developed by [20]. The resulting model
was subjected to various performance measures aimed to evaluate the performance of the
model at different resolutions.

The obtained results, as depicted in Tables 1 and 2, demonstrate the remarkable
accuracy of this approach in distinguishing between healthy and malignant profiles, even
when dealing with tumors as small as a few millimeters in size. Furthermore, the dataset
encompasses cases of dense breasts, known for their challenges in tumor identification. The
proposed approach outperforms a similar NN approach for sample classification described
in [34], which uses the same data generator. This approach reached a classification accuracy
of 0.995 compared to 0.9995 presented in this paper. This high classification accuracy holds
great value for large-scale population screening, given the fast, comfortable, safe, and
cost-effective nature of microwaves as diagnostic tool. Individuals identified as diseased
through this approach can subsequently undergo scanning with other modalities that offer
superior image quality, aiding in further treatment planning.

The results in Figure 5 illustrate the ability of our approach to accurately locate the
center of a single tumor, with an error margin of less than 0.9 cm achieved in over 50% of
cases. When combined with the reconstructed image of the breast, this information can
provide clinicians with an initial understanding of the tumor’s relative location within
the breast.

Lastly, the image similarity metrics employed to assess the overlap between the real
and estimated tumors, as shown in Table 3, yield relatively low scores. This is partially
due to the modest confidence of the model, seldom exceeding 0.4. Consequently, even a
geometrically precise prediction with this level of confidence will result in overlap scores
below 0.4. However, considering this partial explanation it may still be concluded that
the model is not able to accurately determine the exact dimensions and size of tumor, as
evidenced by the visual results. Though this outcome was anticipated due to the subtle
variation in electrical permittivity between tumor tissue and its surrounding tissue, as
well as the presence of a gradient rather than a distinct boundary between these tissues.
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Moreover, the intrinsic complexity of the problem under consideration contributes to the
limited quality of the generated tumor probability maps, as evidenced by the reconstruction
quality of state-of-the-art image formation techniques.

6. Conclusions

In conclusion, the proposed strategy demonstrates superior classification performance
in comparison to the current state-of-the-art methods, such as [34]. Furthermore, the
proposed model demonstrates an ability to accurately identify the center of an individual
tumor with a margin of error within 0.9 cm for the majority of cases. These advancements
contribute positively to improving the state-of-the-art method for breast cancer screening,
which helps reduce the impact of the disease.

It is worth noticing that the proposed approach was designed for a pre-screening phase,
i.e., for early breast cancer diagnosis, being characterized by an excellent pre-screening
power and providing very good initial information. Thus, the main idea is that this cutting-
edge technology can work in synergy with more traditional and better-performing imaging
technologies in a multi-step fashion, in which the preliminary screening and localization
can be performed by means of microwaves, just improving the safety for the patient and
reducing the costs for the health care system, while referring to conventional medical
imaging technologies for further investigations and clinical decisions.

Future research will focus on expanding the existing approach to encompass three-
dimensional reconstructions and the testing on more realistic scenarios. Additionally, the
probability maps can be up-scaled or down-scaled to see how this change in resolution
affects the model’s performance.
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BCELoss binary cross-entropy loss
NCC normalised cross-correlation
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