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Abstract: (1) Background: Persistent hyperglycemia in diabetes mellitus (DM) increases the risk of
death and causes cardiovascular disease (CVD), resulting in significant social and economic costs.
This study used a machine learning (ML) technique to build prediction models with the factors of
lifestyle, medication compliance, and self-control in eating habits and then implemented a predictive
system based on the best model to forecast whether blood glucose can be well-controlled within
1 year in diabetic patients attending a DM nutritional clinic. (2) Methods: Data were collected from
outpatients aged 20 years or older with type 2 DM who received nutrition education in Chi Mei
Medical Center. Multiple ML algorithms were used to build the predictive models. (3) Results: The
predictive models achieved accuracies ranging from 0.611 to 0.690. The XGBoost model with the
highest area under the curve (AUC) of 0.738 was regarded as the best and used for the predictive
system implementation. SHAP analysis was performed to interpret the feature importance in the best
model. The predictive system, evaluated by dietitians, received positive feedback as a beneficial tool
for diabetes nutrition consultations. (4) Conclusions: The ML prediction model provides a promising
approach for diabetes nutrition consultations to maintain good long-term blood glucose control,
reduce diabetes-related complications, and enhance the quality of medical care.

Keywords: diabetes mellitus (DM); machine learning; artificial intelligence; feature importance;
predictive system; glycosylated hemoglobin (HbA1c); well-controlled HbA1c; diabetes-related
disease; nutrition education

1. Introduction

Type 2 diabetes mellitus (T2DM) is a significant public health concern, placing a
substantial burden on human life and health. It not only affects an individual’s quality
of life but also increases the risk of mortality and complications such as cardiovascular
disease, cerebrovascular disease, diabetic nephropathy, retinopathy-induced blindness,
and peripheral vascular neuropathy leading to amputation. These complications impose
substantial social and economic costs [1]. Managing T2DM requires ongoing interventions,
including nutritional therapy, exercise routines, medication management, self-care practices,
psychological support, and smoking cessation [2]. Nutrition education plays a crucial role
in the long-term management of diabetes, involving discussions, assessments, lifestyle
adjustments, and ongoing monitoring for complications [3]. With guidance from a medical
team, lifestyle changes and self-care knowledge taught by educators can contribute to
improved prognosis, health conditions, and quality of life for patients [4].
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HbA1c (glycated hemoglobin) reflects an individual’s blood sugar fluctuations over
the past three months before measurement and serves as an essential predictor of dia-
betes complications. It helps assess whether patients and their treatment are achieving
or maintaining glycemic control goals [5]. HbA1c control within the first year of diabetes
diagnosis strongly correlates with the occurrence of major and minor vascular diseases and
mortality ten years later [6]. Accurately predicting whether a patient’s HbA1c level can
be less than 7% (well-controlled) within one year after the primary diagnosis can greatly
assist in tailoring a long-term nutritional care plan for the patient. This approach aligns
with the principles of personalized medicine and precision medicine advocated in recent
years [7]. However, currently, no available tool offers personalized and accurate long-term
predictions for diabetes. Recent advancements in machine learning (ML) algorithms and
computing speed present an opportunity to address this gap using artificial intelligence
(AI)/ML technology.

In Taiwan, the National Health Insurance Administration (NHIA) implemented a
regulation in 1995 that facilitated the rapid sharing of medical information across hospitals.
In 2001, the government introduced the pay-for-performance program [8], which enables
the systematic monitoring and treatment of diabetic patients over an extended period. Chi
Mei Medical Center, as one of Taiwan’s largest hospitals, has accumulated extensive data
on diabetes treatment over the past 13 years, including comprehensive records of dietitian
interventions and outcomes.

In this study, we leveraged this big medical data to develop an AI system that predicts
whether HbA1c levels can be well-controlled below 7% within a year after the initial
diabetes diagnosis because an HbA1c level with a value of 7% is regarded as a well-
controlled HbA1c level in practice [5,9]. We identified feature variables based on the
medical literature and expert clinical experience. AI models often have complex nonlinear
or network structures, presenting challenges in terms of interpretability. That is, explainable
AI (XAI) is needed during AI development [10]. To address this, we utilized SHAP
(SHapley Additive exPlanations) analysis [11], a method of XAI, to visually demonstrate
the importance of each feature variable in the built prediction model.

Our AI prediction system empowers clinical health educators to understand and
predict changes in HbA1c levels for diabetic patients based on their current physiological
statuses. It serves as a valuable reference for clinical care and nutrition education inter-
ventions, enhancing patients’ disease awareness, reinforcing the importance of lifestyle
changes, and motivating positive behavioral modifications. Furthermore, by considering
the AI prediction results, medical teams can intervene early; supplement their advice
regarding medications, disease-specific diets, and exercise requirements; promote shared
decision making; and improve the quality of medical care.

In the past, most AI/ML studies have centered on evaluating model quality, with only
a limited number of predictive systems developed for medical condition prognosis [12–14].
Furthermore, predictive systems in the realm of nutrition and healthcare AI remain
sparse [15]. Consequently, this study significantly adds to the advancement in this domain.

2. Materials and Methods
2.1. Research Design

In this research, we sought to develop AI models that predict whether an individual
outpatient with T2DM can maintain HbA1c levels below 7% within a year of their initial
diabetes diagnosis. We identified feature variables based on the medical literature and
expert clinical experience. This retrospective study received approval from the institutional
review board of Chi Mei Medical Center (no. 10901-014). To ensure the protection of patient
privacy, all patient data were de-identified. As this study is retrospective, the need for
informed consent from the patients was waived. The flowchart outlining the study process
is presented in Figure 1.
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Figure 1. Research flowchart.

2.2. Setting

The data for this study were obtained from the Nutrition Education System Database
of Chi Mei Medical Center in Taiwan. This study included T2DM outpatients, including
those with gestational diabetes and those aged 20 years and older who participated in the
pay-for-performance (P4P) program and received health education in the diabetes nutrition
clinic from 2007 to the end of 2019. We ensured that there was no selective inclusion
of participants, thus maintaining fairness and avoiding selection bias. Patients with a
current HbA1c level of below 6.5% were excluded from this study. A total of 8411 patients
were enrolled.

2.3. Definition of the Model’s Outcome Variable

Maintaining HbA1c levels below 7% is clinically regarded as well-controlled blood
glucose in DM patients [5,9]. Thus, we decided to set the cutoff threshold at 7% as the
target to predict, with the binary outcome variable coded ‘1’ for maintaining HbA1c levels
below 7% or less after one year, and coded ‘0’, otherwise. Patients whose current HbA1c
levels were below 6.5, indicating not being diagnosed as DM, were excluded.

2.4. Feature Variables and Selection

A total of 18 feature variables, or impact factors, were proposed based on the relevant
medical literature [16–20] and expert clinical experience. These variables included demo-
graphic information (age, gender, BMI, and length of illness), physical activity (exercise
or no exercise), dietary intake (daily calories, average meals per day, protein, lipids, and
carbohydrates), and blood biochemistry values (fasting blood glucose (glucose AC), HbA1c,
total cholesterol, triglycerides (TGs), LDL cholesterol, HDL cholesterol, C-reactive protein
(CRP), and estimated glomerular filtration rate (eGFR)). The feature “length of illness”
denoted the duration for which a patient had been afflicted with diabetes prior to their first
visit to our diabetes outpatient clinic.
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2.5. Data Preprocessing and Machine Learning Modeling

The required data were extracted from the outpatient diabetic nutrition counseling
system, and data with ambiguous values were checked and corrected. We observed
that the pattern of missing data was consistent and appeared to be random, with each
feature having a missing ratio of less than 4%. Thus, we opted to exclude the missing
data without resorting to any imputation techniques. The dataset was divided into a
training set (70% of the data) and a validation set (30% of the data) for model training
and evaluation, respectively. Accuracy, sensitivity, specificity, and the area under the
curve (AUC) were used as evaluation metrics. Prior to the model training, the training
set underwent preprocessing to address data imbalances in the positive outcome using
the synthetic minority over-sampling technique (SMOTE) [21]. Five supervised machine
learning algorithms, including logistic regression (LR), random forest (RF), multilayer
perceptron (MLP), light gradient boosting machine (Light GBM), and extreme gradient
boosting (XGBoost), were used to build the models.

2.6. Prediction System Implementation and Trial Use

The best model was determined based on the AUC values, and the information
technology engineers implemented the model into a prediction system for trial use by
dietitians. The model was built using the Python programming language with the scikit-
learn machine learning library, while the web-based user interface was created using
MS Visual Studio®software (v 17.7). Both components were then integrated into an AI
prediction system aimed at supporting nutrition education.

3. Results
3.1. Basic Case Information and Lifestyle Analysis

After excluding missing values, a total of 8411 patients from the diabetes nutrition
clinic (DNC) at Chi Mei Medical Center were included in the machine learning model.

An analysis of basic information and daily living habits revealed 3171 patients with
HbA1C levels below 7% within one year (37.7%) of their first visit, and 5240 otherwise
(37.7%). There were significantly higher trends in age and average meals per day in the <7%
group, indicating that older patients had a greater chance of maintaining their HbA1c levels
after one year. Meanwhile, in comparison, patients with HbA1c levels greater than 7% after
one year exhibited longer lengths of illness and significantly lower trends in exercise, cho.
total, TG, glucose AC, and current HbA1c levels. The features of gender, BMI, protein,
lipids, carbohydrates, daily calories, cho. LDL, cho. HDL, eGFR, and CRP/hs-CRP did
not show significant differences between the two groups. The details are summarized in
Table 1.

Table 1. Demographics and feature significance.

Variable Overall
(n = 8411)

One Year Later, HbA1c
Level is Greater Than

or Equal to 7
(62.3%, n = 5240)

One Year Later, HbA1c
Level is Less Than 7

(37.7%, n = 3171)
p-Value *

Length of illness, mean (SD) 7.1 (7.3) 8.2 (7.4) 5.2 (6.7) <0.001
Age, mean (SD) 59.5 (12.2) 59.1 (12.1) 60.0 (12.2) 0.001
Gender, n (%)

Female 3933 (46.8) 2466 (47.1) 1467 (46.3) 0.491
Male 4478 (53.2) 2774 (52.9) 1704 (53.7)

BMI, mean (SD) 26.0 (4.3) 26.1 (4.4) 25.9 (4.2) 0.100
Exercise, n (%)

No 4098 (48.7) 2662 (50.8) 1436 (45.3) <0.001
Yes 4313 (51.3) 2578 (49.2) 1735 (54.7)
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Table 1. Cont.

Variable Overall
(n = 8411)

One Year Later, HbA1c
Level is Greater Than

or Equal to 7
(62.3%, n = 5240)

One Year Later, HbA1c
Level is Less Than 7

(37.7%, n = 3171)
p-Value *

Average meals per day, mean (SD) 2.7 (1.1) 2.7 (1.2) 2.8 (1.1) 0.004
Protein (g), mean (SD) 61.9 (23.8) 62.0 (21.7) 61.7 (26.8) 0.669
Lipids (g), mean (SD) 61.4 (26.6) 61.7 (24.8) 60.9 (29.3) 0.206
Carbohydrates (g), mean (SD) 191.0 (62.8) 190.7 (62.1) 191.4 (64.0) 0.652
Daily calories, mean (SD) 1602.1 (559.4) 1607.9 (554.1) 1592.5 (568.2) 0.224
Cho. total, mean (SD) 187.9 (47.3) 189.5 (47.6) 185.3 (46.7) <0.001
TG, mean (SD) 169.0 (171.9) 174.9 (174.2) 159.3 (167.5) <0.001
Cho. LDL, mean (SD) 114.0 (39.7) 114.6 (39.9) 112.9 (39.4) 0.056
Cho. HDL, mean (SD) 47.6 (13.5) 47.8 (13.7) 47.3 (13.2) 0.136
eGFR, mean (SD) 72.8 (22.8) 72.9 (23.4) 72.7 (21.8) 0.685
CRP/hs-CRP_group, n (%)

<1 6698 (79.6) 4148 (79.2) 2550 (80.4) 0.335
1 ≤ CRP ≤ 10 772 (9.2) 487 (9.3) 285 (9.0)
>10 941 (11.2) 605 (11.5) 336 (10.6)

Glucose AC, mean (SD) 167.1 (70.8) 175.3 (72.4) 153.5 (66.0) <0.001
HbA1c, mean (SD) 9.0 (2.3) 9.3 (2.2) 8.6 (2.3) <0.001

Note: * For an alpha level of 0.05, categorical variables (gender, exercise, and CRP/hs-CRP) were evaluated using
the chi-squared test approach, whereas numerical features were assessed using the two-sample t-test approach.

3.2. Analysis of Blood Biochemistry Results

As shown in Table 1, the blood biochemical values determined were 167.1 ± 70.8
mg/dL for fasting blood glucose, 114.0 ± 39.7 mg/dL for LDL cholesterol, 47.6 ± 13.5
mg/dL for HDL cholesterol, 187.9 ± 47.3 mg/dL for total cholesterol, 169.0 ± 171.9 mg/dL
for TGs, 9.0 ± 2.3% for current glycosylated hemoglobin (HbA1c), and 72.8 ± 22.8 for the
estimated glomerular filtration rate (e-GFR). Moreover, Spearman’s correlation analysis
identified the correlation between the outcome and each feature variable (Table 2). It
revealed that length of illness and current HbA1c levels had the highest correlations with
the outcome, while gender, carbohydrates, and eGFR had the lowest correlations.

Table 2. Spearman’s correlations between each feature and outcome (1-year HbA1c levels < 7).

Feature Correlation Coefficient

Length of illness −0.244

Age 0.031

Gender 0.008

BMI −0.016

Exercise 0.053

Average meals per day 0.022

Protein (g) −0.010

Lipids (g) −0.016

Carbohydrates (g) 0.005

Daily calories −0.011

Cho. total −0.047

TG −0.059
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Table 2. Cont.

Feature Correlation Coefficient

Cho. LDL −0.021

Cho. HDL −0.011

eGFR 0.002

CRP/hs-CRP_group −0.016

Glucose AC −0.198

HbA1c −0.215

3.3. Prediction Model Building and Feature Importance Analysis

In this study, several common and advanced machine learning algorithms were em-
ployed to predict whether patients would control HbA1c levels below 7% after one year
using the 18 feature variables. The algorithms used included logistic regression (LR), ran-
dom forest (RF), multilayer perceptron (MLP), light gradient boosting machine (light GBM),
and extreme gradient boosting (XGBoost). A grid search with five-fold cross-validation
for hyperparameter (Table 3) tuning for each algorithm was conducted to obtain the opti-
mal model.

Table 3. Hyperparameter range for experiments.

Method and Hyperparameter Value

XGBoost
learning_rate 1e-3, 1e-2, 1e-1

gamma 0, 1e-2, 1e-3, 1e-4, 1e-5
n_estimators 200, 500, 750, 900, 1000
max_depth 3, 15, 25, 30, 50

num_parallel_tree 2, 5, 15
random_state 8, 16, 29, 42

objective binary:logistic
LightGBM

learning_rate 1e-3, 1e-2, 1e-1
n_estimators 120, 200, 500, 750, 1000
max_depth 7, 9, 15, 30, 50, 100

random_state 8, 16, 30, 42
Random forest
n_estimators 110, 250, 500, 750, 950, 1000
max_depth 7, 9, 15, 30, 45, 50, 100

min_samples_split 2, 5, 10, 15
max_features auto, sqrt, 0.5, 1.0, 1.5, 2.5
random_state 8, 16, 30, 42

MLP

hidden_layer_sizes (125), (125, 35), (100, 75, 30), (100, 55), (100, 75),
(100, 45), (100), (96), (90, 60), (90)

max_iter 1000, 500, 250, 200, 100, 50, 30
learning_rate_init 1e-3, 1e-2, 1e-1

early_stopping True, False
Logistic regression

penalty l1, l2
C np.logspace (−3, 3, 7), 1, 5, 10

max_iter 7, 9, 10, 15, 50, 75, 100
Note: The hyperparameters that are not described in this table are set to the default values used in the scikit-
learn library.

The accuracy of the prediction methods ranged from 0.611 to 0.690. Among these
algorithms, XGBoost demonstrated the highest accuracy of 0.690, sensitivity of 0.684,
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specificity of 0.693, and an area under the curve (AUC) value of 0.738. The sensitivity,
specificity, and AUC values for all the algorithms are presented in Table 4.

Table 4. Performance comparison of the machine learning methods (using the XGBoost model as
a basis).

Algorithm Accuracy Sensitivity Specificity AUC p-Value

XGBoost 0.690 0.684 0.693 0.738 -
LightGBM 0.682 0.682 0.682 0.735 0.097

Random forest 0.670 0.670 0.670 0.724 <0.001
MLP 0.633 0.632 0.633 0.667 <0.001

Logistic regression 0.611 0.611 0.611 0.634 <0.001
Note. (1) The DeLong test was utilized for significance testing. (2) The LightGBM model does not exhibit
significant differences compared with the XGBoost model, whereas notable differences are observed with other
models, with the XGBoost model demonstrating superior quality.

To visualize the results, the receiver operating characteristic (ROC) curves and the
precision–recall curves were plotted, as shown in Figure 2 These curves provide graph-
ical representations of the performances of the prediction models and their abilities to
discriminate between positive and negative outcomes. Overall, the XGBoost algorithm
was identified as the best prediction model in terms of accuracy, sensitivity, specificity, and
AUC. The ROC curves and precision–recall curves provide additional insights into the per-
formances of the models and their potential usefulness in predicting HbA1c reduction after
one year. We performed the DelongTest to compare the model qualities. The results show
that there was no significant difference between the LightGBM model and the XGBoost
model, but the remaining models were significantly different from the XGBoost model.
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Furthermore, we conducted a SHAP analysis for feature importance to interpret how
each feature contributed to the prediction in a visual manner. A SHAP value of >0 means
that it is positively related to the outcome, and vice versa. For example, in Figure 3a, the
smaller the length of illness one year later, the higher the probability of controlling HBA1
below 7%, and patients with exercise habits have a higher chance of having HBA1 levels of
<7 one year later. This analysis helps us understand why certain features were considered
more or less important in the best XGBoost model. The feature importance plot shown in
Figure 3 allows us to identify the order of importance of the model features. According to
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the feature importance plot of the XGBoost model (Figure 3b), we can clearly observe that
the top three influential factors in the best model for predicting 1-year HbA1c levels of <7%
are the length of illness, current HbA1c levels, and glucose AC.
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3.4. Prediction System Implementation and User’s Acceptance

The best model was successfully implemented in a web-based forecasting system. The
system screen, as depicted in Figure 4, displays the graphical interface and user-friendly
design of the prediction system. This visual representation of predictions adds value by
providing a clear and intuitive understanding of the patient’s expected outcomes. At
present, the AI prediction system has been integrated into the workflow of dietitians and
provides real-time and automatic prediction without manual input. Overall, the feedback
received from the dietitians indicates positive acceptance and appreciation of the prediction
system. The system’s graphical interface and specific prediction rates were identified
as valuable tools for personalized patient care and effective communication within the
medical team.

Seven nutritionists were given the opportunity to use the system and provide feedback.
We collected and analyzed their experiences and suggestions to assess user acceptance
of the system. We asked three structured questions (on a five-point scale, one point
indicating strongly disagree, and five points strongly agree): (1) Is it easy to operate? (2) Is
it clinically useful? (3) Are you willing to use it? They were also encouraged to provide
other comments. The survey results show that they were positive about the prediction
system (the mean values of ease-of-use, usefulness, and use intention were 4.4, 3.9, and 4.1,
respectively), but the score for usefulness was only 3.9, showing that the nutritionists were
still not very satisfied with the system’s functions. Moreover, they expressed particular
appreciation for the graphical interface, which provides specific prediction rates that allow
for personalized and accurate predictions of potential improvement in a patient’s condition.
The dietitians found that the tool could improve communication between the healthcare
team and patients, facilitating discussions about subsequent nutritional treatment plans.
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3.5. Comparative Models Utilizing Alternative Feature Selection Methods

We conducted a comparison between the best all-feature model (18 features) and the
significant-feature model (8 features, as indicated in Table 1) using the DeLong test. As
illustrated in Table 5, although the all-feature model exhibited a slightly better performance
compared with the significant-feature model, the difference did not reach statistical signifi-
cance (p = 0.085). This suggests that the significant-feature model could be considered for
clinical use, particularly when healthcare resources are limited.

Table 5. Performance comparison between all-feature model and significant-feature model.

Model Accuracy Sensitivity Specificity AUC DeLong Test
(p-Value)

All-feature model
(18 features) 0.690 0.684 0.693 0.738 -

Significant-feature
model (8 features) 0.678 0.679 0.678 0.734 0.058

Note: The 8 features utilized were length of illness, age, exercise, average meals per day, cho. total, TGs, glucose
AC, and HbA1c.

4. Discussion

The use of AI models to develop a chronic disease nutritional status monitoring
system for assessing prognostic risk is an area that lacks extensive research. However,
there have been some studies exploring the use of machine learning techniques to predict
the individual risk of cardiometabolic disease based on dietary or supplement intake.
One such study by Panaretos et al. [22] utilized the KNN algorithm and RF decision tree
to evaluate cardiometabolic risk over a 10-year period. They found that these AI/ML
techniques explained a significant portion of the cardiometabolic risk, with the RF decision
tree outperforming the KNN algorithm. The study also highlighted the advantages of
machine learning techniques over logistic regression classification for predicting health
disease risk.
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The present study aligns with this research trend and contributes to it by building the
best model, specifically an XGBoost-based model, which surpasses the results obtained by
Panaretos et al. This study is, to the best of our knowledge, the first implementation study
to utilize AI/ML technologies to predict the control of changes in HbA1c levels after one
year in patients with diabetes and successfully apply it in clinical practice. By leveraging
the power of AI/ML, this study expands the possibilities for personalized medicine and
the use of AI in improving patient outcomes in diabetes management [23].

To explore the model’s explainability, a feature importance plot was generated, re-
vealing 12 prominent factors in the best XGBoost model. Notably, some of these factors,
including current HbA1c levels, age, BMI, HDL, and eGFR, were also identified as leading
factors in other models such as RF, LR, and Light GBM. This information empowers dieti-
tians to provide targeted recommendations to patients, aiming to strengthen positive factors
and mitigate negative factors, thereby increasing the likelihood of long-term reductions in
HbA1c levels [24].

Based on the important features identified, we can modify them in our AI prediction
system to simulate probability changes and elucidate them to patients, a process known as
shared decision making (SDM). However, it is pivotal to recognize that while some elements
like exercise and average meals per day can be altered through lifestyle modifications,
inherent factors like age and gender remain immutable. For example, a dietitian can
illustrate to a specific patient how altering the exercise feature from “No” to “Yes” can
shift the probability from 45% (indicating a tendency to not achieve an HbA1c level of
<7%) to 56% (indicating a tendency to achieve an HbA1c level of <7%). This visualization
can motivate the incorporation of regular exercise routines, such as partaking in physical
activities at least thrice a week. By concentrating on adaptable significant factors and
offering tailored advice, dietitians can aid patients in effectuating substantive lifestyle
modifications and enhancing long-term glycemic control.

In recent years, the digitization of medical data has revolutionized healthcare by
enabling clinicians to access vast amounts of historical medical data and develop accurate
predictive models for clinical decision making. This predictive tool can also be utilized by
healthcare professionals to provide patients with a more precise understanding of their
future outcomes, allowing them to actively participate in the decision-making process
and improving communication between patients and doctors [19]. This, in turn, enhances
patients’ confidence in implementing the recommended changes [7].

The AI model developed in this study has been integrated into the existing DNC
information system. As a result, when dietitians collect data on patients’ diets, lifestyles,
medication intakes, and nutritional assessments during consultations, they can utilize the
predictive model seamlessly without the need for manual input. The model automatically
processes the collected data to estimate the patient’s HbA1c improvement one year later.
This streamlined approach enables dietitians to provide timely interventions and person-
alized guidance on diet and lifestyle modifications, fostering effective communication
between clinicians and patients in outpatient clinics [25–28].

In clinical practice, we set blood sugar control goals based on a patient’s condition.
Factors such as pre-meal and post-meal blood sugar levels, HbA1c values, age, and the
patient’s motivation to improve diabetes through lifestyle changes are all taken into account
when predicting their HbA1C reduction target for the following year. With this AI predic-
tion tool, we can assess the likelihood of achieving those goals and adjust nutritional or
therapeutic plans accordingly [3]. For instance, for patients who are very likely to have their
blood sugar controlled to HbA1c levels of <7% a year later (with a predicted probability
of ≥50%), we intensify health education on significant features like exercise and dietary
habits. We encourage them to maintain good dietary and living habits once they are back
home. For patients with a tougher challenge of controlling their HbA1c levels to <7% a
year later (with a predicted probability of <50%) who may struggle with consistent lifestyle
and dietary habits, nutritionists not only provide active nutritional education but might
also need to discuss with the attending physician about adjusting medication timings and
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treatment modalities. Overall, this AI prediction system serves as a smart and useful tool
to achieve shared decision making between healthcare professionals and patients.

Overall, the AI system in this study stands as a pivotal tool to enhance patient aware-
ness and motivate lifestyle alterations for optimized blood glucose control. It aids in
mitigating the risks associated with both macrovascular and microvascular complica-
tions by maintaining stable glucose levels [9], ultimately serving as a facilitator in shared
decision-making processes between healthcare providers and patients [29].

We recommend that practitioners integrate AI predictive models into the routine
care of diabetic patients to identify high-risk individuals early and tailor interventions
more effectively. Medical institutions should utilize such models to optimize resource
allocation and enhance healthcare delivery, requiring proper training for practitioners in
using these models. Regarding policy, it is essential to formulate and implement strategies
that integrate AI technologies into healthcare protocols, advocating for the utilization of
advanced technologies like IoT and wearables for real-time data acquisition and monitoring,
thus improving overall disease management and mitigating the risks of complications.

5. Conclusions

In conclusion, our AI prediction system, utilizing the valuable big data accumulated
at Chi Mei Medical Center, presents a novel approach for predicting a patient’s 1-year
HbA1c change and aiding nutritionists in making informed decisions regarding appro-
priate nutritional interventions. The system holds significant potential for establishing a
personalized health education system, facilitating shared decision making, and enhancing
the effectiveness of diabetes nutrition counseling and health education. The feature impor-
tance analysis provided a clear understanding of each feature’s impact on the prediction
outcome, contributing to the system’s transparency and interpretability.

Furthermore, this study represents an innovative application of AI/ML technology
in healthcare practice, particularly in investigating diabetic dietary habits and long-term
glycemic control. It aligns with the principles of personalized precision medicine and
carries substantial clinical value. We firmly believe that our prediction system can con-
tribute to improving long-term glycemic control, reducing the incidence of diabetes-related
complications, and enhancing the overall quality of medical care.

Though patients in this study were enrolled in the P4P program, the results of this
study are also applicable to non-P4P patients. However, patients not enrolled in the
P4P program receive fewer long-term case management follow-ups and reminders. As
a consequence, their disease awareness and adherence to medical instructions may be
reduced, which could subsequently impact their chances of improving their HbA1c levels.

Despite the rigorous procedure followed in this study, certain limitations should be
acknowledged. Firstly, this study relied on retrospective data from a single medical center
in Taiwan, potentially limiting the generalizability of the findings. Additionally, the sample
was restricted to patients who participated in the P4P project, and the authenticity of
nutrition counseling records, primarily relying on questions asked by medical staff and
self-reported patient data, may be challenging to verify. Finally, patients’ varying opinions
and responses to nutrition education questions may have introduced common method bias.

Based on our results, we propose several future research directions. Firstly, the effect
of medication on predictive models is an interesting but complex research topic that
deserves further exploration. Secondly, gathering new patient records, referred to as a
testing dataset, is valuable for estimating the expected accuracy of the proposed models
to ensure generalizability. Thirdly, expanding the model’s applicability and value by
including patients and healthy individuals in the analysis would be beneficial. Fourthly,
investigating diabetic outpatients with cardiovascular disease, cerebrovascular disease,
diabetic nephropathy, and other related complications could yield valuable insights. Fifthly,
considering the long-term impact of diabetes health interventions, incorporating time-
series AI algorithms such as RNN and LSTM to develop long-term (multi-year) prediction
models holds promise. Sixthly, prospective studies can be designed to explore patients’
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compliance with lifestyle changes using AI approaches [30,31]. Lastly, for real-time and
continuous prediction, embracing the IoT, wearable technology, and smart technology to
directly capture physiological data and daily life records (e.g., diet photos for calorie in-take
determination and continuous glucose monitors (CGMs)) from patients through wearable
devices and mobile apps would be a valuable avenue to pursue. However, considerations of
stability, seamless connectivity, privacy, security, user-friendly interfaces, and affordability
are crucial.
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