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Abstract: Human skeleton data obtained using a depth camera have been used for pathological gait
recognition to support doctor or physician diagnosis decisions. Most studies for skeleton-based
pathological gait recognition have used either raw skeleton sequences directly or gait features, such as
gait parameters and joint angles, extracted from raw skeleton sequences. We hypothesize that using
skeleton, joint angles, and gait parameters together can improve recognition performance. This study
aims to develop a deep neural network model that effectively combines different types of input data.
We propose a hybrid deep neural network framework composed of a graph convolutional network,
recurrent neural network, and artificial neural network to effectively encode skeleton sequences, joint
angle sequences, and gait parameters, respectively. The features extracted from three different input
data types are fused and fed into the final classification layer. We evaluate the proposed model on
two different skeleton datasets (a simulated pathological gait dataset and a vestibular disorder gait
dataset) that were collected using an Azure Kinect. The proposed model, with multiple types of
input, improved the pathological gait recognition performance compared to single input models on
both datasets. Furthermore, it achieved the best performance among the state-of-the-art models for
skeleton-based action recognition.

Keywords: hybrid deep neural network; feature fusion; pathological gait recognition; skeleton-based
gait analysis

1. Introduction

Gait represents crucial bioinformation, necessitating the proper integration of sen-
sory, motor, and cognitive functions, and has consequently been the subject of extensive
investigation for a considerable duration [1,2]. If the weakness of some body parts has a
negative influence on those functions, the gait pattern can become abnormal and unbal-
anced. In other words, abnormal and unbalanced gait patterns indicate disorders of some
body functions, and it is possible to find them by analyzing gait. Parkinson’s disease is a
prominent example of a condition that manifests abnormal gait patterns, with numerous
studies conducted on its gait characteristics [3–6]. It is marked by symptoms including
a gradual reduction in walking speed, diminished swinging motion of the arms, shorter
stride length, impaired balance, and a decline in the coordination of arm and trunk move-
ments during walking. Additionally, numerous studies have explored the relationship
between gait patterns and other specific diseases, including autism spectrum disorder [7,8],
stroke [9,10], Alzheimer’s disease [11], vestibular problems [12–14], and functional gait
disorders [15,16]. Furthermore, gait patterns have been used in practice to support doctor
or physician decisions for patients. There are many research groups studying gait patterns
and various research results continue to be published.
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Recognizing pathological gait patterns helps to diagnose a disease and even to find a
presymptom of a disease before it worsens. Therefore, there have been many approaches
for pathological gait recognition using various sensors, such as inertial measurement units
(IMUs), plantar foot pressure sensors, motion capture systems, and depth cameras. Sensor-
based systems have many advantages. They make it possible to automatically prescreen
for specific diseases without visiting a hospital. People hardly realize whether their gait
patterns are changed or not because they change gradually. It might be too late if they
realize their abnormal gait by themselves. On the other hand, sensor systems can analyze a
gait pattern with objective standards, so it is possible to detect abnormal gaits in the early
phase of a disease, and patients can receive proper treatment before the disease worsens.
Therefore, if a sensor-based pathological gait recognition system is installed in a home or
elderly care center and people conduct gait analysis periodically, specific diseases can be
prescreened without visiting a hospital.

A depth camera was used to recognize pathological gaits in this study. A depth camera,
such as Kinect (Microsoft Corp., Redmond, WA, USA), Astra (Orbbec 3D Technology
International, Inc., Troy, MI, USA), and Realsense (Intel Corp., Santa Clara, CA, USA),
can obtain not only RGB data but also depth data for each pixel. The collected RGB and
depth data can be used to simulate the human skeleton, which contains three-dimensional
positional information of each joint. A depth camera can measure gait data without
attaching sensors or markers, whereas an IMU and motion capture system require the
attachment of sensors or markers, which can make the walker feel uncomfortable and walk
unnaturally. Furthermore, a depth camera can obtain information on all body joints. A
depth camera-based gait analysis system is simple to operate and has a relatively low cost
and reasonable accuracy, so it can be operated in various environments. Therefore, many
studies have used human skeleton data obtained through a depth camera to recognize
pathological gaits [3,4,11,17–27].

In the domain of skeleton-based pathological recognition, numerous research studies
have been conducted utilizing machine learning algorithms. For instance, Li et al. [3]
proposed a method to classify normal individuals and patients with hemiplegia and Parkin-
son’s disease using k-nearest neighbors. They used a covariance matrix representing joint
motions and speeds extracted from the skeleton sequence. Dranca et al. [4] introduced
a machine learning-based method to classify Parkinson’s disease stages. They extracted
features from the skeleton by applying correlation-based feature selection, information
gain, or consistency subset evaluation. Seifallahi et al. [11] proposed a method to de-
tect Alzheimer’s disease by employing a support vector machine (SVM) classifier with a
Gaussian kernel. Gait parameters, such as time walking, step length, step number, stride
length, gait cycle, and stride velocity, were fed to the classification model in their work.
Bei et al. [22] proposed a method to detect movement disorders using machine learning
algorithms. Gait parameters, such as gait symmetry, step length, and gait cycle, were fed
to the classification model in their study. Chakraborty et al. [23] introduced a method for
the automatic diagnosis of cerebral palsy gait using a multi-Kinect system and SVM-based
classification model. They extracted spatiotemporal features from the skeleton and used
them as the input data to the classifier. Chakraborty et al. [24] employed a multiple adaptive
regression splines model to recognize equinus foot deformity gait. The hip, knee, and
ankle angles of both sides were extracted from the skeleton and used as the input data in
their work.

Deep neural network models have also been applied to skeleton-based pathological
gait recognition. For instance, Guo et al. [17] proposed a bidirectional long short-term mem-
ory (LSTM)-based model to classify normal, in-toeing, out-toeing, drop-foot, pronation, and
supination gaits. The lower limb skeleton was used to extract statistical features and angle
sequences in their study. Tian et al. [25] proposed a spatiotemporal attention-enhanced
gait-structural graph convolutional network (AGS-GCN) to recognize abnormal gaits. They
used the lower limb joints and spine base to extract spatiotemporal gait parameters, such
as the joint trajectory, joint angle, and gait link. Sadeghzadehyazdi et al. [26] proposed a
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hybrid model composed of a convolutional neural network (CNN) and LSTM to model
spatiotemporal patterns for gait anomaly recognition. They used normalized joints for
the classification. Kim et al. [27] applied a spatiotemporal GCN with an attention mech-
anism to the spatiotemporal features extracted from skeleton data for the recognition of
abnormal gaits.

Most existing methods for skeleton-based pathological gait recognition use gait fea-
tures extracted from raw skeletons, such as static gait parameters [11,22,23] and joint angle
sequences [4,17,24]. They have shown their effectiveness in recognizing pathological gaits.
Gait features effectively represent gait abnormalities, so they can be interpreted more easily
than raw skeleton data. However, this does not mean that they can represent all the impor-
tant information of the raw skeleton data. On the other hand, the raw skeleton data include
all the important information; however, it is difficult to understand a gait abnormality
because of the complicated structure and large data size. Recently, studies inputting the
skeleton itself into a model have been published [28–30]. They showed the possibility of
recognizing pathological gaits by interpreting the skeleton data, but gait features were
not considered at all. Prior studies have not extensively explored a hybrid approach that
combines the advantages of both gait features and raw skeleton data. This means that
while gait features provide valuable insights into gait abnormalities, they may not fully
exploit the richness of information contained in the raw skeleton data. Thus, there is an
opportunity to investigate novel methods that leverage both gait features and raw skeleton
data to enhance the recognition of pathological gaits. Following this observation, our moti-
vation evolved into exploring novel methods that harness the complementary strengths of
both gait features and raw skeleton data to improve pathological gait recognition.

We hypothesized that using both gait features and raw skeleton data could further
improve the performance of pathological gait recognition since they have different advan-
tages and representations. Gait parameters are the most compressed form to effectively
represent the abnormality of a gait, joint sequences are focused on showing the bending
and balancing abilities of lower limb joints, and raw skeleton sequences preserve all impor-
tant information for pathological gait recognition and show the overall movement of the
whole body during walking. Using these together can facilitate a model to converge to the
global minima since gait abnormalities can be interpreted through a variety of perspectives.
However, a method to use all of them together for pathological gait recognition has not yet
been proposed. In consideration of these factors, we have innovatively introduced a novel
methodology encompassing the concurrent utilization of gait parameters, joint sequences,
and raw skeleton sequences, marking a pioneering advancement in the field.

In this paper, we propose a novel hybrid deep learning model designed to maximize
the utilization of raw skeleton data and gait features for pathological gait recognition.
Since the input data have different characteristics, we applied different deep learning
architectures to encode each input data effectively. A graph convolutional network (GCN),
recurrent neural network (RNN), and artificial neural network (ANN) are used to encode
the raw skeleton sequences, the joint angle sequences, and the gait parameters, respectively.
Their outputs are fused together and fed into the final classification layer. This fusion of
features can be achieved through concatenation, with further performance enhancements
achievable through feature selection or weighting techniques. This involves the selection
or assignment of weights to features and matching scores that demonstrate low correlation,
as exemplified by [31], and high discrimination, as illustrated by [32].

The primary objective of this study is to demonstrate improved performance in recog-
nizing pathological gait patterns through the fusion of raw skeleton data and gait features
with our hybrid deep learning model designed to synergize diverse input types. Given the
inherent diversity in the characteristics of input data, our approach incorporates distinct
deep learning architectures tailored for encoding each specific data type. Our proposed
model stands as an innovative contribution by integrating raw skeleton sequences, joint
angle sequences, and gait parameters, marking the first of its kind in the realm of patholog-
ical gait recognition. To substantiate the efficacy of this pioneering model, comprehensive
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evaluations were conducted on diverse pathological gait datasets, including a simulated
pathological gait dataset and a vestibular disorder gait dataset, both meticulously col-
lected utilizing Azure Kinect. Furthermore, rigorous comparative analyses were conducted
against state-of-the-art models specialized in skeleton-based action recognition.

2. Materials and Methods

Most studies in the field of skeleton-based pathological gait recognition have tradi-
tionally focused on two primary approaches: utilizing raw skeleton sequences directly or
extracting gait features, such as gait parameters and joint angles, from these raw sequences.
However, these studies have often treated each data type in isolation or separately. In this
study, we aim to address the potential for improved recognition performance by effectively
combining different types of input data. To achieve this, we propose a novel deep neural
network model. This model adopts a hybrid deep neural network framework, consisting of
GCN, RNN, and ANN layers. Each of these components is specifically designed to encode
skeleton sequences, joint angle sequences, and gait parameters, respectively. The extracted
features from these three distinct data types are then fused together and input into the final
classification layer. A comprehensive illustration of this network is presented in Figure 1.
By employing this innovative approach, our research aims to enhance pathological gait
recognition performance. To demonstrate the effectiveness of our proposed model, we
collected two skeleton datasets using Azure Kinect: a simulated pathological gait dataset
and a vestibular disorder gait dataset, and subsequently conducted evaluations using
these datasets.
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Figure 1. Structure of the proposed multi-input hybrid deep neural network. The skeleton sequences,
joint angles, and gait parameters are input to the GCN, RNN, and ANN layers, respectively. Each
encoding layer encodes the input data into a one-dimensional feature vector. The outputs of each
encoding layer are concatenated together and fed to the final classification layer.

2.1. Data Acquisition

A depth camera-based skeleton data collection system was developed in the healthcare
robotics laboratory at the Gwangju Institute of Science and Technology, Korea. An Azure
Kinect and the corresponding body tracking software development kit (SDK) developed
by Microsoft were used to collect the skeleton data. The system collected the data while
a subject walked straight forward toward the sensor approximately 4 m away. The sen-
sor was calibrated by recognizing an ArUco marker [33] to collect the data in the same
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coordinate system. The XYZ coordinate system of the sensor was transformed to the XYZ
coordinate system of the marker. The 3-dimensional position of each vertex of the marker
was measured using the sensor, and the transformation matrix was obtained. Each data
example contained 80–120 frames of skeleton data with an average collection rate of 22.7
fps. We evaluated the proposed hybrid model on two skeleton datasets (a simulated patho-
logical gait dataset and a vestibular disorder gait dataset) collected by the data acquisition
system. The evaluation encompassed the assessment of the model’s proficiency in handling
intricate gait classification tasks, specifically its ability to differentiate among six distinct
gait patterns within the simulated pathological gait dataset. Simultaneously, the vestibular
disorder gait dataset, comprising genuine patient data, facilitated an examination of the
model’s practicality and suitability in real world contexts, particularly when confronted
with datasets originating from individuals afflicted by vestibular disorders. This compre-
hensive evaluation allowed us to assess both the model’s technical capabilities and its
real-world applicability.

2.1.1. Simulated Pathological Gait Dataset

Most previous studies conducted binary classification by differentiating pathological
gaits from a healthy gait [11,22–25], and there have also been a few studies recognizing
various and complicated pathological gaits [3,17,27]. Multilabel pathological gait classifi-
cation is much more difficult than binary classification and can help to evaluate a model
from various directions. Therefore, we collected various and complicated pathological gait
data. Normal gait and five pathological gaits, i.e., antalgic, steppage, lurching, stiff-legged,
and Trendelenburg gaits, were collected through simulations of 12 healthy subjects. They
were asked to walk along a 7 m walkway, as shown in Figure 2a. The characteristics and
causes of each pathological gait are described in detail in [20]. The subjects understood
the mechanical reason for the pathological gaits before data collection, so they could sim-
ulate the pathological gaits similarly to real patients. The data collection was conducted
under strict expert supervision. The subjects were asked to walk with each gait 20 times.
Therefore, 1,440 examples (12 subjects × 6 gaits × 20 walks) were included in this dataset.
Furthermore, we augmented the dataset by reversing the left and right sides of the skeleton,
so 2,880 examples were used for the experiments. Through this dataset, the performance of
the proposed model on the classification of complicated pathological gaits was evaluated.

2.1.2. Vestibular Disorder Gait Dataset

Regardless of how well the simulated gait data were classified, it was difficult to verify
their practicality in the real world. Therefore, we collected real patient data to evaluate
the practical applicability of the proposed model. Gait data of real patients with vestibular
problems were obtained with the support of the Kosin University Gospel Hospital. The
subjects were asked to walk two laps around a 16 m track. We collected the skeleton
data while the subjects were walking on the data collecting area, as shown in Figure 2b,
because the sensor and the body tracking SDK do not guarantee high-quality skeleton
data when the human is not facing the sensor. Thirty-three healthy subjects (12 females
and 21 males, with a mean age of 38.9 ± 16.4 years) and 128 patients with a vestibular
disorder (94 females and 34 males, with a mean age of 58.5 ± 13.5 years) participated in the
data collection. Since there was a large difference in the average age between the healthy
subjects and the patients, we downsampled the patient data and made a balanced group
with 33 healthy subjects and 54 patients with a vestibular disorder (34 females and 20 males,
with a mean age of 46.1 ± 10.4 years). Ten data examples whose sequences were less than
90 were excluded from the evaluation. Therefore, we evaluated the proposed model on the
all-subject group with 312 data examples (161 subjects × 2 walks—10 exemptions) and the
balanced group with 170 data examples (87 subjects × 2 walks—4 exemptions).
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2.2. Graph Convolutional Network for Skeleton Data

CNNs are renowned for their effectiveness in tasks involving visual data analysis,
primarily due to their ability to capture intricate spatial relationships between pixels within
an image, a feature that sets them apart [34]. In contrast, a GCN is particularly well
suited for tasks such as node classification and link prediction within data structured as
graphs [35]. Examples of such data encompass social networks, chemical molecules, and
skeletal datasets. A GCN is known as the most powerful structure for skeleton-based action
recognition. Yan et al. [36] first introduced a method to apply a spatial–temporal graph
convolutional network (ST-GCN) for skeleton-based action recognition. They suggested a
way to efficiently process skeleton sequences by simultaneously understanding the spatial
and temporal characteristics of the skeleton data. Subsequently, many modified GCN
structures have been introduced, and the performance of skeleton-based action recognition
continues to improve [37–43]. In this study, we adopt the ideas and formulations of the
ST-GCN proposed in [36] to encode skeleton data.

The skeleton sequences are denoted as a spatial–temporal graph G = (V, E). The node
set V = {vti|t = 1, ..., T, i = 1, ..., N} contains all the joints in the skeleton sequences, where
T and N denote the number of sequences and the number of joints, respectively. Every
node includes three channels vti = (xti, yti, zti) since we use the 3-dimensional position
information of each joint. The edge set E is divided into two subsets, the edge set of
naturally connected human joints (intraskeleton edges) and the edge set of consecutive
frames on the same joint (interframe edges), which are denoted by ES =

{
vtivtj

∣∣(i, j) ∈ H
}

and EF =
{

vtiv(t+1)i

}
, respectively, where H is the set of naturally connected joints.

The spatial convolution operation for a joint node vti can be formulated as the follow-
ing equation:

Fout(vti) = ∑
vtj∈B(vti)

1
Zti(vtj)

Fin(p(vti, vtj)) ·w(Mti(vtj)) (1)
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where Fout and Fin denote the output and input features of the GCN, respectively. Zti
(
vtj
)

denotes a normalization term to balance the contribution of each subset. A sampling
function p

(
vti, vtj

)
is defined on the neighbor set B(vti) =

{
vtj
∣∣d(vtj, vti

)
≤ D

}
, where

d
(
vtj, vti

)
denotes the minimum length of the path from vtj to vti. A weight function w is

defined by partitioning the neighbor set into subsets with a numeric label based on a
mapping function Mti

(
vtj
)

that maps the neighbor nodes into their subset labels.
Yan et al. [36] extended the concept of a neighborhood to cover temporally consecutive

joints by modifying the neighbor set B(vti) and defining a spatial–temporal mapping
function MST as follows:

B(vti) =
{

vqj
∣∣d(vtj, vti

)
≤ K, |q− t| ≤ bΓ/2c

}
(2)

MST
(
vqj
)
= Mti

(
vtj
)
+ (q− t + bΓ/2c)× K (3)

where K and Γ denote the number of subsets derived by mapping function Mti
(
vtj
)

and
the range of interest for temporal convolution, respectively.

In this study, we implemented a multilayer ST-GCN to encode the skeleton sequences
into a 1-dimensional feature vector fS. Global pooling was applied to the outputs of the ST-
GCN layers, and then a convolutional operation was conducted to extract the feature vector
with a specific size. Finally, the multichannel output was resized to a 1-dimensional vector.

2.3. Recurrent Neural Network for Joint Angles

We extracted the joint angle sequences from the skeleton sequences and used them
as another input to the proposed hybrid model. We extracted the bending angles and link
angles of specific joints according to [17], which showed their effectiveness on pathological
gait recognition. Examples of the joint angles are shown in Figure 3.
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The bending angle of joint α ∈{left_hip, right_hip, left_knee, right_knee, left_ankle,
right_ankle} at time t was calculated according to the following equation:

θα(t) = cos−1

((
vtβ − vtα)2 +

(
vtγ − vtα)2 −

(
vtγ − vtβ)

2

2
(
vtβ − vtα

)
· (vtγ − vtα)

)
(4)

where β and γ denote the joints connected to joint α. For example, θle f t_knee(t) was calcu-
lated using the left knee, left hip, and left ankle joints.

The link angle of link l ∈{left_thigh, right_thigh, left_shank, right_shank, left_foot,
right_foot, trunk} about x-axis at time t was calculated using the following equation:

φx
l (t) = cos−1

(
(vtm − vtn) · ux

|vtm − vtn||ux|

)
(5)

where m and n denote the joints used to construct link l. The thigh consisted of the knee
and hip joints, the shank consisted of the ankle and knee joints, the foot consisted of the
tiptoe and ankle joints, and the trunk consisted of the pelvis and head joints. ux denotes
the unit vector along x−axis. φ

y
l (t) and φz

l (t) were calculated similarly by utilizing uy and
uz instead of ux.

A total of 25 angles were extracted from each skeleton and the sequences of the
angles were fed to the RNN encoding layers. An RNN is a specialized architecture for
handling sequential data, including time series data like stock prices, audio data, and
skeletal sequences. Since the structure of a basic RNN has a long-term dependency problem
in which the influence of the previous information continues to decrease as the hidden
state is updated for long-term sequential data, we adopt LSTM to construct the RNN layers.
LSTM can solve the problem by employing a gated structure to update the hidden state
ht. The variables for the gated structure, i.e., the forget gate ft, input gate it, output gate ot,
and cell state Ct, are formulated as follows:

ft = σ
(

Wx f xt + Wh f ht−1 + b f

)
(6)

it = σ(Wxixt + Whiht−1 + bi) (7)

ot = σ(Wxoxt + Whoht−1 + bo) (8)

Ct = ft ◦ Ct−1 + it ◦ tan h(WxCxt + WhCht−1 + bC) (9)

where x, W, b, σ, and ◦ denote the input, weights, biases, sigmoid function, and elementwise
product, respectively. The hidden state ht and the output yt can be updated as follows:

ht = ot ◦ tan h(Ct) (10)

yt = Wy · ht + by. (11)

We constructed a multilayer LSTM to encode the joint angle sequences into a 1-dimensional
feature vector fA. The output of the multilayer LSTM operation was the last hidden state of the
final LSTM layer, which was fed to the fully connected layer to extract a feature vector with a
specific size as follows:

fA = ReLU(WALSTM(xA) + bA) (12)

where xA, WA, bA, and LSTM(·) denote the input joint angle sequences, weight, bias, and
multilayer LSTM operation, respectively.

2.4. Artificial Neural Network for Gait Parameters

Gait parameters are important indicators to recognize pathological gaits [44–46]. We
obtained basic gait parameters, gait phase-based parameters, and angle-based parameters
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using 3-dimensional skeleton sequences. These parameters encompass various aspects of
walking and are instrumental in assessing an individual’s gait.

The basic gait parameters include average step length, step length asymmetry, step
width, and walking speed. Average step length measures the typical distance a person
covers with a single step, typically from one heel to the other throughout a complete
walking cycle. Step length asymmetry highlights the difference in step lengths between the
left and right legs during walking, providing insights into the symmetry and balance of
steps. Step width assesses the lateral distance between the feet at their widest point during
the gait cycle, indicating whether steps are wide or narrow. Walking speed represents the
rate of forward movement during walking, offering information about walking pace.

The gait phase-based parameters encompass stance and swing time on both legs.
Swing time on both legs indicates the duration when the leg is not in contact with the
ground during the gait cycle, typically measured in seconds, covering the time from foot
lift off to foot strike. Stance time on both legs measures the duration of the gait cycle when
the leg is in contact with the ground, providing essential information about how long each
leg supports the body’s weight during walking.

Lastly, the angle-based parameters encompass mean, minimum, and maximum values
for frontal spine angle, lateral spine angle, knee angle, and hip angle. Frontal spine angle
measures how the spine deviates from the vertical plane when viewed from the front,
particularly relevant in posture and gait analysis for detecting deviations in the frontal
plane. Lateral spine angle quantifies spine deviation from the vertical plane when viewed
from the side, providing insights into body alignment during walking, especially lateral
deviations. Knee angle on both legs describes the angle formed at the knee joint between
the thigh and the lower leg for both legs during different phases of the gait cycle, offering
insights into knee joint flexion and extension. Hip angle on both legs measures the angle at
the hip joint between the thigh and the pelvis on both sides of the body during walking,
reflecting hip movement and positioning throughout the gait cycle.

It is important to note that all parameters, except angle-related ones, fall within the
range of 0 to 2, while angle-related parameters could potentially range from 0 to 180
degrees. To ensure consistency for input into an artificial neural network, these angle-
related parameters were normalized by dividing them by 100. This normalization process
brings them into the same 0 to 2 range as the other parameters, improving the training
stability and convergence of an artificial neural network.

We used the extracted gait parameters as the final input data to the proposed model. A
fully connected ANN was used to encode the gait parameters into a 1-dimensional feature
vector fP with a specific size as follows:

fP = ReLU(WPxP + bP) (13)

where xP, WP, and bP denote the input gait parameters, weight, and bias, respectively.

2.5. Fusion of Features and Classification

The skeleton sequences, joint angle sequences, and gait parameters were input to the
GCN-based, RNN-based, and ANN-based layers, respectively. The features extracted from
each layer were concatenated into a 1-dimensional vector, and the integrated features were
fed to the final classification layer using the following equations:

f f usion = concatenate(fS, fA, fP) (14)

y = softmax
(

Wyf f usion + by

)
(15)

where y, Wy, and by denote the output, weight, and bias of the fully connected layer
to recognize the gait type. Batch normalization and dropout were conducted before the
operation of the fully connected layer to prevent overfitting. The index of the maximum
value in y is the recognized gait type.
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A cross-entropy loss function was adopted to calculate the loss LCE, and L2 regulariza-
tions were applied to avoid overfitting as follows:

LCE(y, {y) = −
C

∑
i=1

yilog( {yi) +
λ

2
|W|2 (16)

where λ and W are the regularization parameter and trainable weights, respectively. Table 1
provides an exhaustive delineation of the intricate configuration of the multi-input hybrid
neural network.

Table 1. The detailed configuration of the hybrid deep neural network architecture.

Type Layer Configuration

GCN Encoding Layers

ST-GCN In_channels = 3, out_channels = 64, kernel_size = (9,3)
ST-GCN In_channels = 64, out_channels = 64, kernel_size = (9,3)
ST-GCN In_channels = 64, out_channels = 64, kernel_size = (9,3)
ST-GCN In_channels = 64, out_channels = 64, kernel_size = (9,3)
ST-GCN In_channels = 64, out_channels = 128, kernel_size = (9,3)
ST-GCN In_channels = 128, out_channels = 128, kernel_size = (9,3)
ST-GCN In_channels = 128, out_channels = 128, kernel_size = (9,3)
ST-GCN In_channels = 128, out_channels = 256, kernel_size = (9,3)
ST-GCN In_channels = 256, out_channels = 256, kernel_size = (9,3)
ST-GCN In_channels = 256, out_channels = 256, kernel_size = (9,3)

Average Pooling /
2D Convolution In_channels = 256, out_channels = 64, kernel_size = 1

Flatten /
ReLU Activation Hidden unit = 64

RNN Encoding Layers

LSTM Hidden unit = 128, return_sequences = True
LSTM Hidden unit = 128, return_sequences = True
LSTM Hidden unit = 128, return_sequences = True
LSTM Hidden unit = 128, return_sequences = False

Batch Normalization /
Fully Connected Layer Hidden unit = 16

ReLU Activation /

ANN Encoding Layers Fully Connected Layer Hidden unit = 16
ReLU Activation /

Classification Layers

Batch Normalization /
Dropout Ratio = 0.5

Fully Connected Layer Hidden unit = the number of classes
Softmax /

2.6. Training Environment

The experimental configurations of the computer are an Intel®Core™ i7-7700K central
processing unit, an NVIDIA GeForce RTX 2080 Ti graphics processing unit, and 64 GB of
random access memory. In this study, PyTorch and scikit-learn were adopted to implement
the deep learning and machine learning models, respectively. All deep learning models
used in the experiments were trained under the same training options (a batch size of
50, 200 training epochs, early stopping, cross-entropy loss, and the Adam [47] optimizer).
However, some training options, such as the learning rate and weight decay, were set
according to the suggested training configurations of each state-of-the-art model.

3. Results

The performance of the proposed model for skeleton-based pathological gait recogni-
tion was evaluated on the simulated pathological gait dataset and the vestibular disorder
gait dataset. They include different gait abnormalities and have different subject con-
figurations, so it is meaningful to evaluate the proposed model using both datasets and
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to compare the results. Furthermore, diverse state-of-the-art models for skeleton-based
action recognition, such as the ST-GCN [36], hierarchical cooccurrence network (HCN) [37],
decoupling GCN [38], two-stream adaptive graph convolutional network (2s-AGCN) [39],
multistream attention-enhanced adaptive graph convolutional network (MS-AAGCN) [40],
part-based graph convolutional network (PB-GCN) [41], decoupled spatial–temporal atten-
tion network (DSTA-NET) [42], and channelwise topology refinement graph convolutional
network (CTR-GCN) [43], were compared to demonstrate the effectiveness of the proposed
hybrid model.

3.1. Evaluation on the Simulated Pathological Gait Dataset

Leave-one-subject-out cross validation was applied to the simulated pathological gait
dataset to compensate for the small number of subjects. The number of skeleton and joint
angle sequences used as the input data was set to 100. We abandoned the last 10 sequences
and used the 100 sequences immediately preceding them because the skeleton data were
noisy if the distance between the human and the depth camera was too close.

We compared the performances of various models when only a single type of in-
put data was used, as shown in Table 2. Classic machine learning-based models, such
as AdaBoost, a decision tree, Gaussian Naïve Bayes, random forest, k-nearest neighbor
(k-NN), and SVM, and deep neural network-based models, such as a multilayer perceptron
(MLP), GRU [20], LSTM [20], and ST-GCN [36], were used for the comparison. For the
gait parameters, the MLP achieved the best performance with 90.49% accuracy, and the
SVM showed the second highest accuracy with 88.47% accuracy. For the joint angles, the
RNN architectures showed their powerfulness in analysis. LSTM [20] achieved the best
performance with 93.30% accuracy, and the GRU [20] showed the second highest accuracy
with 92.92% accuracy. For the skeleton data, the ST-GCN [36] achieved the best performance
with 96.94% accuracy, and the GRU [20] showed the second highest accuracy with 95.83%
accuracy. Among the three input data types, the highest accuracy was achieved when the
skeleton data were input to the ST-GCN [36] model.

Table 2. Accuracy of single input models on the simulated pathological gait dataset.

Model
Input Data

Gait Parameters (%) Joint Angles (%) Skeleton (%)

AdaBoost 76.20 56.70 55.24
decision tree 74.54 57.05 55.28

Gaussian Naïve Bayes 83.61 79.86 58.19
random forest 87.18 82.26 67.67

k-NN 83.98 76.46 74.44
SVM 88.47 78.82 72.64
MLP 90.49 79.97 86.11

GRU [20] / 92.92 95.83
LSTM [20] / 93.30 95.20

ST-GCN [36] / / 96.94

The proposed hybrid model fed with multiple types of input data achieved 99.03%
accuracy, which was higher than that of the best single input models for each data type.
The fusion of the gait features and the raw skeleton sequences improved the performance
of pathological gait classification. Figure 4 shows the confusion matrices of the results of
the single input models and the proposed hybrid model. The parameter-based classifica-
tion had poor performance in classifying normal and Trendelenburg gaits, which were
misclassified 115 and 89 times, respectively. The joint angle-based classification showed
better performance than the parameter-based classification for this dataset. However, it
showed poor performance in classifying the Trendelenburg gait with 74 misclassifications.
The skeleton-based classification showed the best performance among the single input
models. The overall gaits were well classified, but the antalgic gait classification seemed
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to need further improvement. The proposed multi-input hybrid model achieved the best
performance by classifying the normal and five pathological gaits with a few errors.
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Figure 4. Confusion matrices of the best single input models and the proposed multi-input model on
the simulated pathological gait dataset: (a) the gait parameters were input to the MLP model; (b) the
joint angle sequences were input to the LSTM [20] model; (c) the skeleton sequences were input to
the ST-GCN [36] model; and (d) all types of inputs were input to the proposed model.

The proposed model showed the highest accuracy among the state-of-the-art mod-
els for skeleton-based action recognition, as shown in Table 3. The CTR-GCN [43] and
2s-AGCN [39] showed the second and the third most accurate performances with 98.75%
and 98.06% accuracy, respectively. The GCN-based models showed better performance
than the RNN-based models. Although the state-of-the-art GCN models showed their
powerfulness in skeleton-based pathological gait recognition, they could not surpass the
performance of the proposed hybrid model combining the skeleton data and gait features.

Table 3. Accuracy of the state-of-the-art models and the proposed model on the simulated pathologi-
cal gait dataset.

Model Accuracy (%)

LSTM [20] 95.20
GRU [20] 95.83

ST-GCN [36] 96.94
HCN [37] 96.07
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Table 3. Cont.

Model Accuracy (%)

Decouple GCN [38] 96.25
2s-AGCN [39] 98.06

MS-AAGCN [40] 97.78
PB-GCN [41] 97.53

DSTA-NET [42] 97.91
CTR-GCN [43] 98.75

Proposed 99.03

3.2. Evaluation on the Vestibular Disorder Gait Dataset

We evaluated the proposed model using a real patient dataset to verify its practical
applicability to the real world. Fivefold cross validation was applied for the evaluation of
the vestibular disorder gait dataset since it had a large number of subjects. The number
of skeleton and joint angle sequences used as the input data was set to 80. As before, we
abandoned the final 10 sequences and used the 80 sequences immediately preceding them.

The proposed model was compared with state-of-the-art models for skeleton-based
action recognition. The statistical indices (accuracy, sensitivity, specificity, and precision)
of the models were evaluated on the all-subject group and the balanced group. Table 4
shows the accuracy, sensitivity, specificity, and precision for the all-subject group with the
true positive (TP), false positive (FP), true negative (TN), and false negative (FN) values.
The proposed model achieved 91.03% accuracy, 93.15% sensitivity, 82.81% specificity, and
95.45% precision. The accuracy and sensitivity of the proposed model were the highest
among the models. MS-AAGCN [40] and CTR-GCN [43] showed the second and third
highest accuracies of 89.74% and 89.42%, respectively. DSTA-NET [42] achieved the second
highest sensitivity of 91.94%. The specificity and precision of the proposed model were
not the highest among the models. The MS-AAGCN [40] and CTR-GCN [43] showed
higher specificity than the proposed model by achieving 85.94%. The MS-AAGCN [40],
CTR-GCN [43], and 2s-AGCN [39] showed higher precision than the proposed model by
achieving 96.15%, 96.14%, and 95.61%, respectively. In the case of HCN, we excluded it
from the comparison as it demonstrated an accuracy of less than 70% on this dataset.

Table 4. Performance on the all-subject group of the vestibular disorder gait dataset.

Model
All-Subject Group

Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) TP FP TN FN

LSTM [20] 84.94 87.50 75.00 93.13 217 16 48 31
GRU [20] 85.26 87.10 78.13 93.91 216 14 50 32

ST-GCN [36] 85.90 88.31 76.56 93.59 219 15 49 29
Decouple GCN [38] 86.22 87.10 82.81 95.15 216 11 53 32

2s-AGCN [39] 87.18 87.90 84.38 95.61 218 10 54 30
MS-AAGCN [40] 89.74 90.73 85.94 96.15 225 9 55 23

PB-GCN [41] 85.26 89.52 68.75 91.74 222 20 44 26
DSTA-NET [42] 86.86 91.94 67.19 91.57 228 21 43 20
CTR-GCN [43] 89.42 90.32 85.94 96.14 224 9 55 24

Proposed 91.03 93.15 82.81 95.45 231 11 53 17

Table 5 shows the results for the balanced group. The proposed model achieved 90.59%
accuracy, 91.51% sensitivity, 89.06% specificity, and 93.27% precision. Similar to the results
for the all-subject group, the accuracy and sensitivity of the proposed model were the
highest among the models. The CTR-GCN [43] showed the second highest accuracy with
89.41%. DSTA-NET [42] achieved the second highest sensitivity of 90.57%. The specificity
and precision of the proposed model were not the highest among the models. The CTR-
GCN [43] and LSTM [20] showed higher specificity than the proposed model by achieving
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92.19% and 90.63%, respectively. The CTR-GCN [43] and LSTM [20] also showed higher
precision than the proposed model by achieving 94.90% and 93.33%, respectively.

Table 5. Performance on the balanced group of the vestibular disorder gait dataset.

Model
Balanced Group

Accuracy (%) Sensitivity (%) Specificity (%) Precision (%) TP FP TN FN

LSTM [20] 83.53 79.25 90.63 93.33 84 6 58 22
GRU [20] 84.12 83.96 84.38 89.90 89 10 54 17

ST-GCN [36] 85.88 85.85 85.94 91.00 91 9 55 15
Decouple GCN [38] 86.47 86.79 85.94 91.09 92 9 55 14

2s-AGCN [39] 87.06 87.74 85.94 91.18 93 9 55 13
MS-AAGCN [40] 88.24 88.68 87.50 92.16 94 8 56 12

PB-GCN [41] 88.24 87.74 89.06 93.00 93 7 57 13
DSTA-NET [42] 85.88 90.57 78.13 87.27 96 14 50 10
CTR-GCN [43] 89.41 87.74 92.19 94.90 93 5 59 13

Proposed 90.59 91.51 89.06 93.27 97 7 57 9

We conducted an additional experiment to verify the effectiveness of using all of
the gait parameters, joint angles, and skeleton data together. The encoding layers for the
unused input data types were deactivated during the training, so the layers for only the
used input data type affected the training. For example, the GCN layer was deactivated
when the joint angles and the gait parameters were input to the model and the skeleton
data were not used. The data of the balanced group were used for the evaluation, and
the results are shown in Table 6. When a single type of input was fed to the model, using
the skeleton data showed the best performance with 85.88% accuracy, 85.85% sensitivity,
85.94% specificity, and 91.00% precision. Using the gait parameters showed the second
highest accuracy and sensitivity, with 79.41% and 80.19%, respectively. The results of
using the joint angles showed the lowest accuracy and sensitivity of 72.35% and 64.15%,
respectively. However, they showed higher specificity and precision than the results of
using the gait parameters. When two types of input were fed to the model, the performance
was improved compared with the results using the single type of input. Using the gait
parameters and the skeleton data together showed the highest accuracy of 88.24%, which
was the same as using the joint angles and the skeleton data together. Using the gait
parameters and joint angles showed the lowest accuracy of 84.12%, which was 1.76% lower
than the accuracy of using only the skeleton data. The highest sensitivity of 92.45% was
achieved when using the joint angles and the skeleton data. The highest specificity and
precision of 85.94% and 91.35%, respectively, were achieved when using the gait parameters
and the skeleton data. When all types of input data were fed to the model, the highest
accuracy, specificity, and precision were achieved compared to the results of using one or
two types of input data. The sensitivity was lower than the results of using the joint angles
and skeleton data.

Table 6. Performance of the proposed model on the balanced group of the vestibular disorder gait
dataset when changing the combination of the inputs.

Number of
Input Types Input Type Accuracy (%) Sensitivity (%) Specificity (%) Precision (%)

1
Gait parameters 79.41 80.19 78.13 85.86

Joint angles 72.35 64.15 85.94 88.31
Skeleton 85.88 85.85 85.94 91.00

2
Gait parameters, joint angles 84.12 84.91 82.81 89.11

Gait parameters, skeleton 88.24 89.62 85.94 91.35
Joint angles, skeleton 88.24 92.45 81.25 89.09

3 Gait parameters, joint angles, skeleton 90.59 91.51 89.06 93.27
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4. Discussion
4.1. Principal Findings

We have uncovered several principal findings in the evaluation of our proposed model
for skeleton-based pathological gait recognition through our experiments. We conducted
assessments on both the simulated pathological gait dataset and the vestibular disorder
gait dataset, each characterized by distinct gait abnormalities and subject configurations.
This dual evaluation approach was crucial to assess the model’s robustness and versatility.
The following findings promise to be a valuable contribution to the field of skeleton-based
pathological gait recognition.

4.1.1. Effectiveness of Integration of Gait Parameters, Joint Angles, and Skeleton Data

This study first tried to use all of the gait parameters, joint angles, and skeleton data
together for pathological gait recognition. GCN, RNN, and ANN layers were used to
effectively encode the skeleton sequences, joint angle sequences, and gait parameters,
respectively. The model showed the best stable performance among the state-of-the-art
models for skeleton-based action recognition on the different datasets. The skeleton data
contain all information, so the maximum performance could theoretically be achieved
by using the skeleton data alone. However, it is not easy for a model to understand the
characteristics of pathological gaits using sequential skeleton data since the data are large
and complicated. The gait features can be key to making a model better understand the
skeleton data and to improve the performance. The gait parameters and joint angles
are manually extracted features whose performances have been verified through various
studies. If they are input to the model together with the skeleton data, they can help the
model understand the skeleton data in a more effective way since they are the essence of
human knowledge for pathological gait recognition.

4.1.2. Performance Variation of Machine Learning Algorithms Based on Input Data Type

The machine learning algorithms were powerful when interpreting the gait param-
eters compared to the joint angles and skeleton data. Based on the results shown in
Table 2, the average accuracies of the results of all machine learning algorithms for the
gait parameters, joint angles, and skeleton data inputs were 82.33%, 71.86%, and 63.91%,
respectively. The larger the volume of information was, the lower the performance of a
machine learning-based classifier was. If the raw data were compressed to the features
while preserving the important factors, the machine learning algorithms could better un-
derstand the distinguishable characteristics of the data and achieve better classification
performance. However, there might be a loss of important factors when extracting features.
Although the extracted features were powerful for the machine learning algorithms, the
performance was lower than the results of feeding the raw skeleton sequences to the neural
network-based classifiers.

4.1.3. Differential Effects of Joint Angles and Gait Parameters Depending on Dataset

The joint angles were more effective than the gait parameters for the simulated patho-
logical gait dataset, as shown in Table 2. However, contradictory results were obtained
for the vestibular disorder gait dataset, as shown in Table 6. The effectiveness of the gait
parameters and the joint angles depends on the pathological gait type to be recognized.
The joint angle sequences could be more effective for pathological gaits related to motor
functionalities, such as joint bending, muscle compensation, and postural balancing. Gait
parameters might be more effective for pathological gaits, such as Parkinson’s disease and
vestibular disorder gaits, which are related to sensory or cognitive functions and show
irregular and unstable motions. Therefore, it is reasonable to use the gait parameters and
joint angles together for the recognition of various gait abnormalities.
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4.2. Comparison with Prior Work

The performances of existing studies for skeleton-based pathological gait recognition
are as follows. Li et al. [3] classified normal controls, patients with hemiplegia, and patients
with Parkinson’s disease with 79.0% accuracy using a k-NN classifier. They achieved high
accuracy even in noisy and low-resolution data without calibration or synchronization
requirements. Dranca et al. [4] recognized the stages of Parkinson’s disease with 93.40%
accuracy using a Bayesian network with correlation-based feature selection. The key
features for classification included left arm movement, trunk position during slightly
displaced walking, and left shin angle for straight walking. An even higher accuracy of
96.23% was attained by focusing solely on features extracted from slightly displaced and
spin walking steps. Seifallahi et al. [11] detected Alzheimer’s disease with an accuracy of
92.31%, sensitivity of 96.33%, precision of 88.62%, and specificity of 90.81% using an SVM
with a Gaussian kernel. Guo et al. [17] classified normal, in-toeing, out-toeing, drop-foot,
pronation, and supination gaits with 90.75% accuracy using bidirectional LSTM. They
integrated this algorithm into a mobile robot system with potential applications in assisting
elderly or neurologically impaired patients at home to reduce fall risks and improve their
quality of life. Chakraborty et al. [23] recognized cerebral palsy gaits with 98.59% accuracy
using an SVM with a radial basis function kernel. According to the ReliefF feature ranking
algorithm, the walking ratio was identified as the highest-ranked feature among classical
gait features, and its inclusion in the classification process substantially enhanced the
performance of all classifiers. Chakraborty et al. [24] recognized equinus foot deformity
gaits with 88.3% accuracy using a multiple adaptive regression splines model. To enhance
accuracy, they created feature vectors using six joint angles, encompassing hip, knee, and
ankle angles on both sides, and integrated these vectors over multiple time instances.

Our proposed model distinguishes itself from existing research in the field of skeleton-
based pathological gait recognition through the introduction of a novel methodology that
adeptly integrates a diverse range of input data. In terms of our model’s classification
performance, it has exhibited exceptional proficiency in categorizing a broad spectrum of
pathological gait types, encompassing normal, antalgic, steppage, lurching, stiff-legged,
and Trendelenburg gaits, achieving an impressive accuracy rate of 99.03%. Furthermore, our
model has demonstrated robust capabilities in discriminating vestibular disorder-related
gaits, achieving accuracies of 91.03% in the all-subject group and 90.59% in the balanced
group, confirming its applicability to real-world scenarios involving actual patients. How-
ever, it is essential to exercise caution when attempting to directly compare classification
accuracies with previous studies within this context. This caution is warranted due to sig-
nificant disparities in the pathological gait categories considered, the depth camera utilized
for data acquisition, and the methodologies employed for pose estimation. Therefore, while
our model’s achieved accuracy is undeniably impressive within the specialized scope of
our study, it is advisable to avoid making direct comparisons with earlier research, given
the substantial divergence in pathological gait typologies and dataset characteristics.

We have been steadily studying skeleton-based pathological gait recognition. In our
first study [18], we improved the performance of pathological gait recognition by applying
an RNN autoencoder to extract features from raw skeleton sequences. The automatically
extracted features were more effective than the raw skeleton sequences. However, it
took a long time for training since the RNN autoencoder and classification model were
trained separately. The walking gait dataset [48] used in the research was composed of
simple abnormal gait patterns created by padding a sole or attaching a weight, which were
relatively easy to classify. Furthermore, the skeleton data were collected on a treadmill,
so the subjects might not generate a natural gait pattern. For these reasons, we needed
to collect complicated pathological gait data using our Kinect system without a treadmill.
Therefore, in our second study [20], we collected complicated pathological gait patterns,
i.e., antalgic, steppage, lurching, stiff-legged, and Trendelenburg gaits. We also proposed
a GRU-based end-to-end model and applied a joint selection strategy to increase the
performance. In our third study [49], we added a foot pressure sensor to our Kinect system.
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The performance of pathological gait recognition was further improved by using foot
pressure and skeleton data together. However, the multimodal system was complicated,
and the foot pressure sensor was costly, so it was not suitable for practical use. Therefore,
we studied a method for maximizing pathological gait recognition performance using a
single Kinect sensor and eventually arrived at the hybrid model proposed in this study.

4.3. Limitations and Future Works

This study had several limitations. First, the proposed hybrid model was validated
on the limited types of pathological gaits. In the future, we should collect abnormal
gait data with diverse diseases, such as Parkinson’s disease, autism spectrum disorder,
stroke, Alzheimer’s disease, sarcopenia, and functional gait disorders, and validate the
proposed model on those data to verify the application validity on other pathological
gaits. Second, we focused on skeleton-based pathological gait recognition, so we only used
skeleton-induced gait parameters, whereas there are many other clinical parameters, such
as body composition analysis, hemanalysis, video head impulse test, videonystagmography,
Montreal cognitive assessment, mini-mental state exam, time up and go test, or the Tinetti
test. Therefore, in the future, we plan to collect those clinical parameters and apply them to
the proposed model to improve the performance of pathological gait recognition. Third, we
just concatenated the encoded features and fed them to the classification layer. In the future,
we aim to further enhance our method by implementing adaptive feature selection or
weighting techniques. This will involve the selection or assignment of weights to features
and matching scores that demonstrate low correlation and high discrimination. Fourth,
the ST-GCN, LSTM, and ANN are effective neural network architectures to encode the
skeleton data, joint angle sequences, and gait parameters, respectively, but might not be
the best neural network architectures to encode each of them. The proposed model can be
further improved by replacing the encoding layers with advanced algorithms optimized for
each input data type. In the future, we will continue to modify the current neural network
architectures with the latest algorithm and reflect on it in future works.

5. Conclusions

The proposed hybrid deep neural network, which effectively used gait parameters,
joint angles, and skeleton data, improved the performance of pathological gait recognition
on two different datasets. The proposed model not only classified the diverse pathological
gaits (simulated) but also recognized the gait abnormalities of real patients with a vestibular
disorder. The fusion of the different inputs had a positive synergy on pathological gait
recognition by integrating the features based on human knowledge and those automat-
ically extracted by artificial intelligence. The framework can provide inspiration for the
development of skeleton-based pathological gait recognition models. Furthermore, it can
be flexibly modified by replacing the encoding layers or adding clinical information, which
can further improve the performance. In the future, we will collect skeleton datasets for
patients with other diseases, such as Parkinson’s disease and sarcopenia, and evaluate the
performance when classifying different diseases to verify the practical use and expansion
of the application.
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