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Abstract: Nasopharyngeal carcinoma (NPC) is a kind of malignant tumor. The accurate and automatic
segmentation of computed tomography (CT) images of organs at risk (OAR) is clinically significant.
In recent years, deep learning models represented by U-Net have been widely applied in medical
image segmentation tasks, which can help to reduce doctors’ workload. In the OAR segmentation of
NPC, the sizes of the OAR are variable, and some of their volumes are small. Traditional deep neural
networks underperform in segmentation due to the insufficient use of global and multi-size infor-
mation. Therefore, a new SE-Connection Pyramid Network (SECP-Net) is proposed. For extracting
global and multi-size information, the SECP-Net designs an SE-connection module and a pyramid
structure for improving the segmentation performance, especially that of small organs. SECP-Net
also uses an auto-context cascaded structure to further refine the segmentation results. Comparative
experiments are conducted between SECP-Net and other recent methods on a private dataset with CT
images of the head and neck and a public liver dataset. Five-fold cross-validation is used to evaluate
the performance based on two metrics; i.e., Dice and Jaccard similarity. The experimental results
show that SECP-Net can achieve SOTA performance in these two challenging tasks.

Keywords: auto-context cascaded network; deep learning; segmentation of organs at risk of nasopha-
ryngeal carcinoma; se-connection pyramid network

1. Introduction

Nasopharyngeal Carcinoma (NPC) is a kind of malignant tumor of high incidence in
China [1], ranking first in attack rate beyond malignant tumors of the ear, nose, and throat.
If the areas to be treated are not controlled precisely through radiotherapy (RT), normal
organs may be affected, which has negative effects on the patients’ health. Computed
Tomography (CT) images are a standard resource for the manual segmentation of OAR in
the process of RT, which strictly limits the RT areas in the target region. Thus, RT will not
damage normal organs. This shows that the segmentation of CT images plays an important
role in clinical diagnosis and treatment. However, the workload of manual segmentation is
incredibly heavy and time-consuming. If an automatic segmentation method for OAR can
be designed for CT images, it will not only reduce doctors’ workload, but also improve the
efficiency of clinical treatment.

To achieve automatic and accurate segmentation, methods of deep learning have been
applied in recent years [2–12]. Various models based on convolutional neural networks
(CNN) have been proposed for medical segmentation tasks and have achieved great success.
Since it was first proposed, FCN [13] has become a basic frame of semantic segmentation.
The encoder-decoder structure of FCN is capable of extracting image features from local
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information to higher spatial features through convolution and pooling measures. Based
on FCN, U-Net [14], proposed in 2015, made some improvement on the skip-connection,
which fuses features from the encoder with the corresponding parts from the decoder in
the channel dimension to obtain more refined segmentation results. Thus, U-Net has been
the most representative network of medical segmentation tasks in recent years. Many
models based on U-Net have been proposed for obtaining more accurate results aiming at
various application scenarios. Res-U-Net [15], inspired by residual connection, replaces the
submodules in U-Net with residual modules to learn different features; Dense-U-Net [16]
leverages the dense connection to maximally retain the information and gradient flow.

U-shape networks have intrinsic disadvantages, as follows: First, the skip-connection
in U-Net is too simple because it directly introduces features captured by an encoder to
the decoder instead of performing non-linear transformation; therefore, it will weaken
its learning ability and result in classification errors due to noise. Second, U-Net does
not extract or utilize sufficient multi-size information, and thus does not achieve a good
performance for objects with a complex structure. Third, U-Net does not use global
context information, and the extracted information will be diluted when transmitted to
shallower layers.

To improve U-Net, many methods based on attention mechanisms have been pro-
posed [17–21]. Attention U-Net [20] was a classical model based on U-Net which added a
novel self-attention module to the skip-connection and adopted non-linear transformation
to enhance the learning ability. Recently, many methods have further improved the accuracy
of the segmentation by utilizing multi-scale information [22]. Among them, CE-Net [23]
employed various blocks with different receptive fields to improve its ability in multi-size
information extraction; UNet++ [24] proposed a kind of pyramid-like network to integrate
the information from diverse levels, which made good use of global and multi-scale context
information; CPF-Net [25] not only designed a global pyramid guidance module to com-
bine multi-stage global context information, but also imported some convolution blocks
with various dilation rates to capture the structure information.

To return to our specific segmentation task, there are multi-size OARs of NPC. Com-
pared to big organs, the profile of small organs is not clear enough, due to their size; thus,
it is more difficult to segment them using deep learning networks. In this paper, eight
organs will be segmented; namely, eyes, temporal lobe, mandible, brain stem, parotid,
submandibular, thyroid gland, and spinal cord. It is obvious that these organs have differ-
ent shapes, and there is no doubt that we need a strong network to be able to capture the
multi-size features. As previously mentioned, CPF-Net captures different sizes of features
through several dilated convolution kernels of various dilation rates. In the original paper,
the author chose three different kernels at most. However, in the segmentation task of OAR
of NPC, there are eight organs of different shapes to be segmented. CPF-Net has insufficient
parallel dilated convolutions for capturing multi-size information from all of the organs. It
is not a suitable method for OAR segmentation tasks in NPC due to its intrinsic character.

Inspired by the above-discussion, a novel skip-connection module and a pyramid struc-
ture are proposed in this paper to overcome the three previously mentioned disadvantages.
We named the proposed network SE-Connection Pyramid Network (SECP-Net). For the
first disadvantage, we designed an SE-Connection (SEC) module for skip-connection. The
SEC module makes use of the Squeeze-and-Excitation (SE) block [18] for its non-linearity
and channel-wise attention to enhance the learnability and reduce useless noise influence
from the input images, respectively. For the second and third disadvantages, we further
propose a pyramid network that cooperates with the SEC module to merge information
from multiple stages and to obtain the global context information.

The overall structure of this paper takes the form of five sections, including an intro-
duction in Section 1. Section 2 gives the details of the proposed method. Section 3 shows
the experiment details. Section 4 presents a discussion about the different methods. Finally,
the conclusion is drawn in Section 5.
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2. Method

Figure 1 shows the overall structure of SECP-Net, which is a cascaded network. The
left part is the primary part of SECP-Net and the right part is the secondary network. The
primary network, based on a U-shape network, consists of three parts: feature encoder,
SEC module, and decoder. The SEC is located at the skip-connection between the feature
encoder and decoder. In cooperation with the pyramid structure, the SEC can extract
multi-size and global context information. The SEC also leverages the attention mechanism
to highlight contributing features for segmentation. The secondary network is an original
U-Net connected with the left part using the auto-context method, which increases the
depth of the network to make the segmentation more accurate.
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Figure 1. Overall structure of SECP-Net. After multiple convolutions and down-sampling, there are
different sizes and levels of information captured in different stages for input images. We utilize
SEC and pyramidal networks to fuse the information and extract more contributing features to
segmentation by the channel attention mechanism of the SE block [18]. Then the information flow is
transmitted to the decoder through a skip-connection. After the extraction of the primary part, we
combine original inputs and the probability distribution from the primary network according to the
auto-context, which is sent to the secondary U-Net for further segmentation and more accurate results.

The encoder is used for capturing the feature information from input CT images while
the decoder is used to restore images. In SECP-Net, there are two pairs of encoders and
decoders in the primary network and secondary network, respectively. In the process of up-
sampling, we conduct bilinear interpolation instead of deconvolution to avoid checkerboard
artifacts [26].

For a U-shape network, its encoder can learn global context information by gradually
increasing the respective field of convolution kernels, which contains a background of
segmentation targets and their features. However, the information flow may be weakened
when transmitted to shallower stages in the steps of up-sampling. U-Net utilizes the
skip-connection to overcome this disadvantage. However, as mentioned previously in the
first disadvantage of U-Net, the skip-connection of U-Net is so simple that the learning
ability will be weakened due to non-linearity, and this type of structure will introduce noise,
resulting in ambiguous errors for pixel classification. U-Net is not capable of extracting
multi-size information, which causes the model to underperform in tasks of segmenting
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multiple targets according to the second and third disadvantages. In this paper, we present
an SEC module and a pyramid network to address the above disadvantages. The structure
of the SEC is shown in Figure 2.
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The fusion information will be sent to the SE block for the acquisition of more contributing features.
Then the output of the SE block is sent to the decoder by skip-connection.

In the SEC, the information between adjacent level stages is fused. As shown in
Figure 2, Level 1 and Level 2 are feature maps captured in two continuous levels of network
depth. Level 1 is from a shallower stage, and Level 2 is the output of the SEC from a deeper
stage. Firstly, to keep the same channel space as Level 1, the feature maps of Level 2 will
be convoluted (kernel size is 3 × 3 with the same padding and the stride is 1), and the
feature maps after convolution will be up-sampled to the same size as Level 1. Secondly,
we concatenate them together in a channel-wise way and utilize convolution (The kernel
size is 3 × 3 with the same padding and the stride is 1) to obtain the fusion results. Finally,
the fusion results are sent to an SE block, which is an attention mechanism that is proposed
in [18]. SE has two steps; i.e., Squeeze and Excitation. To exploit contextual information,
the squeeze operation extracts the global spatial information into a channel descriptor,
which is achieved using global average pooling to generate channel-wise statistics. To
make use of the information aggregated in the squeeze operation, the excitation operation
employs a simple gating mechanism with a sigmoid activation to fully capture channel-
wise dependencies. As SE can adaptively recalibrate channel-wise feature responses by
explicitly modeling interdependencies between channels, our method uses an SE block
after feature fusion to capture more contributing multi-size features with a channel-wise
attention mechanism.

The process of extracting features of input stage by stage not only includes the ac-
quisition of global context information, but of obtaining features of organs from small to
large sizes. Therefore, we design a pyramid structure to make full use of the information.
As shown in Figure 1, the dotted box is the proposed pyramid structure. The deepest
part of the network has no information from a higher level. Thus, an SE block is added at
the bottom of the pyramid structure to only extract features of big organs with a channel
attention mechanism, and send them to the SEC to fuse them the with information from
the corresponding encoder. Next, in this stage, we send the output of this SEC module to
the decoder and shallower SEC module, which provides details for the up-sampling and
fusing features of big organs from the deeper stage and smaller organs from the shallower
stage, respectively. Similarly, multi-size and global context information is transmitted
between neighboring layers. Thus, the information flow runs through the whole network,
from bottom to top, which overcomes the second and third disadvantages. It provides an
abundant contribution for image recovery and also results in more accurate segmentation.

In summary, the scientific contribution of the primary network is the SEC mod-
ule and the pyramid structure. The SEC is an SE-Connection structure that is used
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for skip-connection. By embedding the SEC between encoders and decoders, the skip-
connection has more non-linearity due to the more complex structure and learnable SE
block. Therefore, the SEC can improve the network’s learning ability by increasing the
non-linearity module. The pyramid structure can extract multi-size and global context
information, and two kinds of useful information are transmitted between neighboring
layers, and finally run through the whole network from bottom to top. Therefore, the
cooperation between the SEC and pyramid structure can help to efficiently extract the
multi-size and global context information.

There are eight organs of different shapes and sizes, which makes our segmentation
of OAR of NPC difficult. If we use a pre-trained network to capture the ROI, we can
focus on the areas of the targets to be segmented. Then, the output is sent to another deep
network, resulting in a reduction in the learning difficulty of this secondary network. Thus,
concatenating a pre-trained network and the other one makes it easier to segment the
targets in ROI. Considering this, we design a cascaded network. As shown in Figure 1,
we use a method called auto-context for connecting these two networks. The left dotted
part of the SECP-Net in Figure 1 is the primary network that will be pre-trained. The right
dotted part of the SECP-Net in Figure 1 is the secondary network. Auto-context [22] is also
used for semantic segmentation. It combines the original input image data and the output
probability distribution and then sends the fusion into the network. With this iteration, the
final segmentation results will be more accurate.

3. Experiments
3.1. Dataset and Preprocessing

Two datasets are used to evaluate the system performance; i.e., a private dataset of the
head and neck and a public LiTS dataset [27] of the liver.

The private NPC dataset used in this paper comprises CT images of the head and neck,
which were collected by the Sun Yat-sen University Cancer Center (RDDA2020001435). It
consists of over 40,000 CT images from 356 patients, and the resolution of a single image file
is 512 × 512. We made masks containing 13 kinds of labels for the required segmentation
targets, which include the left eye, right eye, left temporal lobe, right temporal lobe, left
mandible, right mandible, brain stem, parotid left, parotid right, spinal cord, submandibular
left, submandibular right, and thyroid gland. Table 1 shows the average volumes of these
13 organs. On this dataset, the eye, submandibular, and thyroid are rather small organs
compared to others. We randomly divided the dataset into a training set and a test set: CT
images from 285 patients are the training set and CT images from 71 patients are the test
set. We applied five-fold cross-validation to the experiment, and the images were sampled
into 256 × 256 while keeping the average aspect ratio due to insufficient GPU memory.

Table 1. The average volumes of 13 kinds of organs.

Organ Average Volume
(cm3) Organ Average Volume

(cm3)

left eye 8.4 parotid left 21.8

right eye 8.8 parotid right 22.4

left temporal lobe 134.3 spinal cord 23.1

right temporal lobe 125.8 submandibular left 9.3

left mandible 35.9 submandibular right 8.9

right mandible 37.2 thyroid gland 12.8

brain stem 30.8

The liver dataset was provided by MICCAI 2017 LiTS Challenge and consists of 201
CT volumes, and 130 volumes were used for training. As the test set cannot be evaluated
online on the official website of LiTS, we split the training set into two parts (100 patients for



Bioengineering 2023, 10, 1119 6 of 14

training and 30 patients for testing). The provided segmentation resulted in two different
labels: liver and tumor. Like the multiple organs dataset, we applied five-fold cross-
validation to the experiment, and the input size was resized into 256 × 256 to save the
GPU memory.

3.2. Experimental Setting

In our experiment, we use multi-class cross-entropy loss as a loss function. The loss
function L is described as:

L = −∑i pilog2(qi) (1)

where i is the number of organs. The pi is the probability distribution of true labels and qi
is the probability distribution of the results predicted by the deep networks.

To obtain the best performance of our model, we chose to utilize a strategy of learning
rate decay, which is described as:

lr =
(

1− epochn

epochtotal

)0.9
lr0 (2)

where lr0 represents the initial learning rate, which is 0.01, epoch n is the n-th training
epoch, and epochtotal represents the number of training epochs, which is 100. We chose
SGD as the optimizer, in which the momentum and weight decay are set to 0.9 and 0.0001,
respectively. These experimental settings are the same in CPF-Net [25]. In general, the
larger the batch size, the better the performance. The maximum batch size is 16 because of
the constriction of the computing device. The implementation of the proposed SECP-Net is
based on the Pytorch platform and Nvidia GeForce RTX2080ti GPU with 12GB memory.
We will release our codes on GitHub.

3.3. Evaluation Metrics

For the multiple organ datasets, we chose the Dice coefficient (Dice) for evaluating
the performance of the models, which is the official evaluation standard for medical image
segmentation. The higher the Dice, the more similar the results of the segmentation
network and ground truth will be, and thus the better the performance. Dice can be
described as follows:

Dice =
2×|A ∩ B|
|A|+|B| (3)

where A and B are the results predicted by the deep networks and true results, respectively.
∩ represents the intersection. |·| is the number of pixels in the regions A and B.

For the LiTS challenge dataset, we used the official evaluation metrics: Dice per case
and Dice global. Dice per case is used to accumulate the Dice of all the volumes (a set of
CT slices for a single patient) and to average the sum. Dice global regards all volumes as a
whole, and then it is calculated.

To evaluate the proposed framework’s performance, we also used two evaluation
metrics used in this research field: precision and recall. They are calculated as follows:

Precision =
TP

TP + FP
× 100% (4)

Recall =
TP

TP + FN
× 100% (5)

where true positive (TP) indicates the number of positive classes correctly classified; false
positive (FP) indicates the number of negative classes misclassified into positive classes;
false negative (FN) indicates the number of positive classes misclassified into negative
classes. As the background occupies the largest area, the accuracy and specificity will be
dominated by the value of the background accuracy. Therefore, the accuracy and specificity
are not used as evaluation metrics in our experiment.
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We performed 5-fold cross-validation in both the ablation experiments and contrast
experiments. The experiment was run 10 times, and the mean and standard deviation of
metrics were calculated.

3.4. Training Scheme

To effectively train the cascaded network, SECP-Net, we trained our network according
to the common method used for the cascade network. We first trained the primary part of
the network, and then the secondary part. For the primary part, there were two steps: in
step 1, we trained the backbone U-Net to convergence; in step 2, we added the SEC and
pyramid structure, and then optimized the model with the initialized weights from step 1.
Then, we fixed the parameters in the primary network and began to train the secondary
part; thus, the whole network was fine-tuned.

Generally speaking, 2.5D or 3D deep networks perform better than 2D deep networks
in medical image segmentation tasks. H-DenseUNet [28] was selected to test our dataset,
which is a 2.5D model, and is considered as a SOTA method based on their published
experimental results. As the GPU memory is 12Gbits, the batch size can only be 1 to avoid
the overflow of memory in our experimental setting. This method resulted in a worse
performance than the 2D deep network. The main reason is as follows: the lower the batch
size is, the worse the performance achieved by the deep network. In addition, each slice
is one training sample in a 2D network, but the total slice of one patient is one training
sample in a 2.5D or 3D network. Therefore, the scale of the training set is bigger in the
2D deep network than in the 2.5D or 3D deep network. Based on these above reasons, we
decided to use 2D networks in our experiments.

3.5. Results

We compared the proposed network with other remarkable models based on a U-
shape network, including U-Net [14], Attention U-Net [20], CE-Net [23], UNet++ [24],
CPF-Net [25], Res-U-Net [15], and Dense-U-Net [29]. Additionally, we also performed an
ablation study to verify the validity of the SECP and auto-context. In the contrast and
ablation experiments, U-Net is the baseline.

As is shown in Table 2, the values of the figures highlighted in black bold show the best
performance corresponding to the organs to be segmented. They show that by improving
certain shortcomings of U-Net, networks like Attention U-Net offer a better performance
for every target organ than U-Net. It is obvious that UNet++ and SECP-Net perform better.
This suggests that for the segmentation of multi-size organs, UNet++ and our method are
more effective. Our SECP-Net has achieved the most excellent results in this experiment.
Compared to the other methods, from U-Net to CPF-Net, in Table 2, SECP-Net achieves a
significant improvement on small organs in terms of the Dice. For submandibular_L, the
improvement of SECP-Net reached 5.06%, 2.57%, 7.92%, 1.72%, 4.57%, 3.56%, and 4.53%,
respectively; for submandibular_R, the improvement reached 6.48%, 1.06%, 9.15%, 1.55%,
5.36%, 5.09%, and 6%, respectively; for thyroid, the improvement reached 5.04%, 2.82%,
5.93%, 2.24%, 3.83%, 5%, and 6.2%, respectively; for Eye L, the improvement reached 5.46%,
3.73%, 7.75%, 1.27%, 3.22%, 3.67%, and 4.05%, respectively; for Eye_R, the improvement
reached 5.13%, 0.48%, 5.2%, 0.78%, 1.41%, 3.17%, and 2.53%, respectively. Small organs are
difficult to segment using deep networks due to their size. In particular, when large organs
are in a single CT slice together with small organs, traditional deep learning models tend to
focus more on the big organs and ignore the small organs. By fusing and utilizing multi-
size features from various organs, our method can balance the performance of organs of
various sizes. The experimental results further prove that the proposed method successfully
focuses on the information of small organs, and achieves a better performance in small
organs. When segmenting the temporal lobe, mandible, and parotid left, UNet++ slightly
outperforms SECP-Net. We investigated the significance of the differences in the average
Dice obtained using our SECP-Net and seven medical image segmentation methods by
applying a paired sample t-test with a 95% confidence level. The average improvement
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and significance are shown in Table 3. Our SECP-Net also achieved an improvement in the
average Dice, and p < 0.5, which means that the statistical significance of the improvement
is correct based on the statistical analysis. In our experiment, we only calculated the
average precision and recall, as shown in Table 4. Our SECP-Net also achieved the best
performance among all of the methods. Overall, in this experiment, SECP-Net showed the
best performance, especially for small-sized organs. This is because our SECP-Net makes
full use of the attention mechanism to focus on the most important information, and it
refines the segmentation in the secondary network to obtain more accurate results.

Table 2. The Dice Results of NPC Segmentation Task (%, Mean ± Standard Deviation).

Organs

Methods
U-Net Attention

U-Net CE-Net UNet++ CPF-Net Res-U-Net Dense-U-
Net SECP-Net

Temporal Lobe_L 86.55 ± 0.51 88.49 ± 0.60 86.01 ± 1.44 89.04 ± 0.47 88.17 ± 0.75 86.21 ± 0.45 86.63 ± 0.92 88.56 ± 0.66

Temporal Lobe_R 86.16 ± 0.61 86.66 ± 0.59 85.45 ± 1.20 87.75 ± 0.50 87.18 ± 0.81 87.33 ± 0.53 86.37 ± 1.18 87.55 ± 0.61

Eye_L 75.73 ± 0.73 77.46 ± 0.66 73.44 ± 1.11 79.92 ± 0.52 77.97 ± 0.63 77.52 ± 0.74 77.14 ± 0.46 81.19 ± 0.77

Eye_R 75.68 ± 0.82 80.33 ± 0.67 75.61 ± 1.08 80.03 ± 0.56 79.39 ± 0.67 77.64 ± 0.58 78.28 ± 0.79 80.81 ± 0.71

Mandible_L 86.17 ± 0.65 88.08 ± 0.53 84.82 ± 0.85 88.38 ± 0.57 87.70 ± 0.77 84.48 ± 0.82 85.37 ± 0.56 88.27 ± 0.58

Mandible_R 86.52 ± 0.67 87.10 ± 0.61 85.42 ± 0.79 88.66 ± 0.49 88.04 ± 0.73 85.19 ± 0.86 85.61 ± 0.59 88.60 ± 0.52

Brainstem 82.39 ± 0.68 84.08 ± 0.59 81.22 ± 0.73 84.38 ± 0.54 82.22 ± 0.56 80.40 ± 0.44 82.44 ± 0.64 85.55 ± 0.41

Parotid_L 78.40 ± 0.78 79.48 ± 0.44 76.17 ± 0.77 80.87 ± 0.61 79.61 ± 0.48 79.25 ± 0.35 79.62 ± 0.32 80.35 ± 0.53

Parotid_R 77.34 ± 0.74 78.89 ± 0.46 77.87 ± 0.84 80.53 ± 0.70 78.77 ± 0.56 77.28 ± 0.41 78.44 ± 0.38 80.61 ± 0.48

Spinal cord 88.06 ± 0.35 87.94 ± 0.41 86.41 ± 0.60 88.41 ± 0.38 87.19 ± 0.53 88.17 ± 0.35 88.52 ± 0.65 89.77 ± 0.29

Submandibular_L 72.32 ± 1.13 74.81 ± 0.65 69.46 ± 1.21 75.66 ± 0.87 72.81 ± 1.07 73.82 ± 0.71 72.85 ± 0.81 77.38 ± 0.89

Submandibular_R 72.71 ± 1.24 78.13 ± 0.67 70.04 ± 1.31 77.64 ± 0.89 73.83 ± 1.16 74.10 ± 0.37 73.19 ± 0.42 79.19 ± 0.85

Thyroid 69.77 ± 0.64 71.99 ± 0.71 68.88 ± 0.84 72.57 ± 0.59 70.98 ± 0.53 69.81 ± 0.84 68.61 ± 0.59 74.81 ± 0.39

Ave 79.83 ± 0.73 81.80 ± 0.58 78.52 ± 0.98 82.68 ± 0.59 81.19 ± 0.63 80.09 ± 0.57 80.23 ± 0.64 83.28 ± 0.59

Table 3. Average improvement and significance of our SECP-Net versus seven medical image
segmentation methods.

Vs U-Net Vs Attention
U-Net Vs CE-Net Vs UNet++ Vs

Res-U-Net
Vs Dense-U-

Net Vs CPF-Net

Average
improvement
of SECP-Net

3.45% 1.48% 4.76% 0.6% 3.19% 3.05% 2.09%

The
significance of
improvement

p < 0.5 p < 0.5 p < 0.5 p < 0.5 p < 0.5 p < 0.5 p < 0.5

Table 4. Average precision and recall of NPC Segmentation Task.

U-Net Attention U-Net CE-Net UNet++ CPF-Net Res-U-Net Dense-U-Net SECP-Net

Precision 0.876 0.900 0.889 0.901 0.896 0.898 0.892 0.908

Recall 0.847 0.899 0.878 0.892 0.890 0.893 0.883 0.902

As shown in Tables 5 and 6, we evaluated different models on the LiTS dataset
according to the dice per case and dice global. The values in black bold show the best
segmentation performances for the liver and tumor. Obviously, our SECP-Net provided
the best performance for both the liver and tumor. This also shows that by improving
certain shortcomings of U-Net, other methods, like Attention U-Net, and UNet++, offer a
better performance for liver and tumor than U-Net. There is no significant difference in
the performance of the liver segmentation with dice per case among the various models.
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This is because the liver is large, so it is easy for deep networks to segment it. Table 5
shows that only the dice per case of the proposed SECP-Net is over 70%, whereas the others
are all below 70%. SECP-Net performs far better than the other methods, achieving an
average improvement of 9.5%, 7.26%, 5.96%, 4.19%, and 1.99% in dice per case, respectively.
These big improvements show the effectiveness of our proposed SEC module and pyramid
structure when it comes to multiple target segmentation, especially for a tumor that is much
smaller than the liver. Our SECP-Net can capture and utilize information on multi-size
organs effectively so that we can obtain more accurate results. The improvement in the
dice global is far more than that of the dice per case as a result of its calculation method.
Overall, SECP-Net also achieves the best performance in this dataset.

Table 5. The Dice per case on LiTS (%, Mean ± Standard Deviation).

Organs
Methods

U-Net Attention
U-Net CE-Net UNet++ CPF-Net SECP-Net

Liver 80.21 ± 1.38 81.59 ± 0.62 84.05 ± 1.26 84.73 ± 0.92 84.39 ± 0.83 85.47 ± 0.69

Liver Tumor 62.12 ± 1.55 64.36 ± 0.74 65.66 ± 1.37 67.43 ± 0.53 69.63 ± 0.79 71.62 ± 0.78

Table 6. The Dice global on LiTS (%, Mean ± Standard Deviation).

Organs
Methods

U-Net Attention
U-Net CE-Net UNet++ CPF-Net SECP-Net

Liver 81.65 ± 1.23 82.73 ± 0.73 83.55 ± 1.34 85.43 ± 1.02 84.78 ± 0.76 87.82 ± 0.58

Liver Tumor 68.06 ± 1.61 72.27 ± 0.81 74.66 ± 1.42 75.59 ± 0.51 76.68 ± 0.83 78.89 ± 0.69

3.6. Ablation Study

The results of the ablation experiments are shown in Table 7. The baseline is the
original U-Net. The values in black bold show the best segmentation performances.

(a) Baseline-concat: This represents the two original cascaded U-Nets. The left U-Net is
used for the rough segmentation of ROI. The output of the primary U-Net is sent to
the secondary network to refine the results.

(b) Baseline-auto-concat: We combine the classification probability from the primary
network and original input images. Then, the combination is transmitted to the sec-
ondary network for more accurate segmentation, which achieves a better performance
than a direct connection.

(c) Baseline-SEC: The SEC is embedded in an original U-Net. For small organs, such as
the spinal cord, left submandibular, and right submandibular, this method performs
far better than the baseline, which reaches 1.53%, 3.78%, and 5.6% for Dice, respec-
tively. Comparing UNet++ with Baseline-SEC, Baseline-SEC outperforms UNet++,
especially in small organs like the spinal cord, submandibular, and thyroid. For the
spinal cord, the improvement reached 1.18%; for submandibular_L, the improvement
reached 0.84%; for submandibular_R, the improvement reached 0.87%; for thyroid,
the improvement reached 1.91%. This proves that the SEC is effective.

(d) Baseline-SEC-concat: Based on Baseline-SEC, we concatenate Baseline-SEC and an
original U-Net. Baseline-SEC-concat achieves a better performance than Baseline-SEC.
The network concatenation has a positive effect on the NPC segmentation task.

Finally, for the results of SECP-Net in the far-right column, the method proposed in this
paper introduces auto-context for concatenated networks while tackling the disadvantages
of U-Net, such as the lack of multi-size information and global context information. SECP-
Net achieves the best performance in our ablation experiments.



Bioengineering 2023, 10, 1119 10 of 14

Table 7. The Dice of Ablation Experiments (%, Mean ± Standard Deviation).

Organs
Methods

Baseline Baseline-
Concat

Baseline-
Auto-Concat

Baseline-
SEC

UNet++ Baseline-
SEC-Concat SECP-Net

Temporal Lobe_L 86.55 ± 0.51 88.49 ± 0.66 88.54 ± 0.47 88.69 ± 0.41 89.04 ± 0.47 88.56 ± 0.58 88.56 ± 0.66

Temporal Lobe_R 86.16 ± 0.61 87.54 ± 0.64 87.52 ± 0.53 87.38 ± 0.46 87.75 ± 0.50 87.78 ± 0.60 87.55 ± 0.61

Eye_L 75.73 ± 0.73 79.78 ± 0.71 79.49 ± 0.74 79.52 ± 0.48 79.92 ± 0.52 81.06 ± 0.53 81.19 ± 0.77

Eye_R 75.68 ± 0.82 79.05 ± 0.73 79.21 ± 0.69 80.63 ± 0.47 80.03 ± 0.56 80.30 ± 0.49 80.81 ± 0.71

Mandible_L 86.17 ± 0.65 87.47 ± 0.42 87.54 ± 0.69 88.03 ± 0.73 88.38 ± 0.57 88.56 ± 0.66 88.27 ± 0.58

Mandible_R 86.52 ± 0.67 87.33 ± 0.56 88.10 ± 0.74 88.55 ± 0.76 88.66 ± 0.49 88.16 ± 0.68 88.60 ± 0.52

Brainstem 82.39 ± 0.68 84.06 ± 0.38 85.48 ± 0.70 84.72 ± 0.78 84.38 ± 0.54 85.18 ± 0.59 85.55 ± 0.41

Parotid_L 78.40 ± 0.78 80.33 ± 0.47 80.47 ± 0.67 80.04 ± 0.72 80.87 ± 0.61 80.10 ± 0.54 80.35 ± 0.53

Parotid_R 77.34 ± 0.74 79.16 ± 0.48 79.45 ± 0.61 80.31 ± 0.59 80.53 ± 0.70 80.20 ± 0.52 80.61 ± 0.48

Spinal cord 88.06 ± 0.35 88.42 ± 0.59 88.71 ± 0.51 89.59 ± 0.57 88.41 ± 0.38 89.67 ± 0.31 89.77 ± 0.29

Submandibular_L 72.32 ± 1.13 73.91 ± 0.67 75.44 ± 0.62 76.50 ± 0.78 75.66 ± 0.87 76.62 ± 0.91 77.38 ± 0.89

Submandibular_R 72.71 ± 1.24 74.71 ± 0.69 75.96 ± 0.53 78.51 ± 0.80 77.64 ± 0.89 78.21 ± 0.83 79.19 ± 0.85

Thyroid 69.77 ± 0.64 72.44 ± 0.49 71.84 ± 0.52 74.48 ± 0.60 72.57 ± 0.59 74.53 ± 0.43 74.81 ± 0.39

Ave 79.83 ± 0.73 81.75 ± 0.58 82.13 ± 0.62 83.09 ± 0.63 82.68 ± 0.59 83.10 ± 0.59 83.28 ± 0.59

3.7. Visualization Results

Figure 3 shows the visualization results of the different models on multiple organs.
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and the green part is an intersection of ground truth and the segmented results by the model (TP).
From left to right: original image, U-Net, UNet++, Attention U-Net, CE-Net, CPF-Net, and our SECP-
Net. (a) includes eyes, temporal lobe, and brain stem to be segmented from the top down; (b) includes
mandible, submandibular and spinal cord to be segmented from the top down (submandibular and
spinal cord are small organs); (c) includes mandible and parotid from top to bottom; (d) includes
mandible and parotid from top to bottom; (e) includes thyroid and spinal cord to be segmented from
top to down.

As shown in Figure 3a, the eyes, temporal lobe, and brain stem are segmented. It is
easily seen that U-Net, UNet++, Attention U-Net, and CE-Net all give incorrect segment
results for the left eye, while the left eye does not exist in this single slice. Neither CPF-Net
nor our SECP-Net makes such a mistake, while our SECP-Net provides a more accurate
segmentation on the right eye and temporal lobe.

As shown in Figure 3b, the mandible, submandibular, and spinal cord are segmented,
where the submandibular and spinal cord are small organs. Attention U-Net and U-Net
both achieve poor results for the mandible. while UNet++, CE-Net, and CPF-Net all
provide redundant segmentation parts of the mandible (the red part). Our SECP-Net
gives a more accurate result, especially for the submandibular, due to it possessing more
intersection parts.

As shown in Figure 3c, the mandible, parotid, and spinal cord are segmented. Com-
pared to U-Net, Attention U-Net, and CE-Net, SECP-Net provides a more accurate seg-
mentation for the left parotid due to the greater overlap part of the ground truth and
the predicted.

As shown in Figure 3d, the mandible, parotid, and spinal cord are segmented. In fact,
the submandibular does not exist in this image. However, nearly all of the methods provide
an incorrect prediction regarding the submandibular (the red part in the middle position of
images), with the exception of the proposed SECP-Net. SECP-Net performs far better than
the above-mentioned models when it comes to small organs; namely, the submandibular.

As shown in Figure 3e, the thyroid and spinal cord are segmented, which are small or-
gans. In comparison to UNet++ and SECP-Net, the other methods give rather less accurate
results. The proposed SECP-Net makes full use of the multi-size feature information from
big to small organs so that it can also obtain more accurate results for small targets.

4. Discussion

Attention U-Net [20] introduces the attention gate (AG) in the skip-connection. In
the AG, the input features are scaled with the computed attention coefficients, and spatial
regions are selected by analyzing both the activation and contextual information provided
by the gating signal. It improves the skip-connection through the attention mechanism and
can highlight the salient features useful for a specific task. However, Attention U-Net does
not deal with global context information or multi-size information. Compared to Attention
U-Net, our method not only uses the proposed SEC module and pyramid structure to
extract the global multi-size information flow, but also utilizes the fusion structure and
channel-wise attention mechanism in the SEC module to improve the skip-connection.

CE-Net [23] embeds the dense atrous convolution (DAC) block and the residual
multi-kernel pooling (RMP) block in the deepest part of the network to overcome the
disadvantage of lacking multi-size feature extraction. The DAC block has four cascade
branches with a gradual increment of the number of atrous convolutions, from 1 to 1,
3, and 5; then, the receptive field of each branch will be 3, 7, 9, and 19. Therefore, the
network can extract features from different scales. The proposed RMP block gathers context
information with four different-size pooling kernels to overcome the disadvantage of the
various sizes of objects in medical images [23]. However, CE-Net does not pay attention
to the global context information. Compared to CE-Net, we consider both global context
information and multi-size information in the proposed SECP-Net by adding the SEC
module and designing a pyramid network. CE-Net does not improve the excessively
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simple skip-connection, while we set the SEC module in the skip-connection for more
non-linearity and learnability.

UNet++ fulfills the blank part of the original U-Net using a dense connection from the
low- to high-level stages in the network [24]. The receptive fields vary in different stages,
which have varying sensitivity to diverse targets. In this case, UNet++ can capture features
of different levels and overlie them in the channel dimension. In addition, global context
information from deeper stages of the network can also be transmitted to shallower stages.
Through iterative concatenation, this makes full use of the global context information. At the
same time, this dense structure also makes the skip-connection more complex. Compared
to UNet++, our SECP-Net designs a similar pyramid architecture for extracting multi-
size information. In addition, the proposed SEC module improves the skip-connection
through the channel-wise attention mechanism of SE, which makes the skip-connection
more learnable. With the help of the attention mechanism, SECP-Net can emphasize more
contributing features in the global multi-scale information flow, and ignore the useless
information, while UNet++ just directly gathers global context information and multi-size
features without any extra process.

In our OAR segmentation task of NPC, there are eight kinds of organs, of multiple
shapes and sizes, to be segmented. CPF-Net proposes the global pyramid guidance (GPG)
module, in which the global information flow is transmitted to the decoder by fusing
the global context information from higher stages. In CPF-Net, multi-scale information
is captured by a module named scale-aware pyramid fusion (SAPF), which consists of
three parallel dilated convolution layers and is dynamically fused by two scale-aware
modules [25]. CPF-Net primarily extracts multi-size organ information using several
dilated convolution kernels with various dilation rates. When CPF-Net is applied to several
kinds of organs, it performs excellently. On our multiple organs dataset, CPF-Net possessed
inadequate dilated convolution kernels of various dilation rates for eight different kinds of
organs. The proposed SECP-Net directly utilizes and fuses the multi-size information from
different stages of the network, which can avoid the above disadvantage.

In summary, the main techniques and drawbacks of the five medical image segmenta-
tion methods are shown in Table 8. Attention U-Net, CE-Net, and UNet++ are all unable
to completely overcome the disadvantages of U-Net. Although CPF-Net can improve all
three of the shortcomings of U-Net, CPF-Net has the disadvantage of insufficient dilated
convolution kernels to match the various organs in our segmentation task. SECP-Net
meets the requirement of OAR segmentation of NPC. Furthermore, compared to the above
methods, our auto-context concatenation improves the segmentation performance by in-
troducing the probability distribution. As our SECP-Net is a cascaded network with two
parts, which increases the depth of the network to make the segmentation more precise
and accurate, our SECP-Net requires higher computation costs. However, the drawback of
higher computation costs will be minimized with the development of computing devices.

Table 8. The main techniques and drawbacks of five medical image segmentation methods.

Main Techniques Drawbacks

Attention U-Net The attention gate (AG) in skip-connection It does not deal with global context information or
multi-size information.

CE-Net The dense atrous convolution block (DAC) and the
residual multi-kernel pooling (RMP)

It does not pay attention to the global
context information.

UNet++ The dense connection from low to high-level stages
in the network skip-connection is more complex

CPF-Net The global pyramid guidance (GPG) module It is difficult to design dilated convolution kernels of
various dilation rates for different kinds of organs.

Our SECP-Net The SE-connection module and the
pyramid structure It needs more computation costs
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5. Conclusions

As the traditional U-shape networks have an intuitive skip-connection, their per-
formance is easily distorted by the presence of some noise due to the weakness of the
learning ability. Moreover, U-shape networks cannot extract multi-size information and
lack global context information. To overcome these disadvantages of U-shape networks,
a novel pyramidal deep learning model, named SECP-Net, is proposed to automatically
segment the OAR of NPC in CT images. In SECP-Net, the SE-Connection module and
pyramid structure are used to capture the global multi-size information flow. The channel
attention mechanism is fully utilized to highlight the contributing features, and the global
context information is applied when concatenating networks with auto-context.

A private NPC dataset, which was provided by a local cancer center, was used to
evaluate the performance of SECP-Net. Compared to the other competitive models—i.e., U-
Net, Attention U-Net, UNet++, CE-Net, and CPF-Net—the experimental results show that
the proposed SECP-Net can outperform the other competitive models. The same results
can be achieved on the public LiTS dataset, which further confirms the effectiveness and
generalization of our method. Moreover, the designed SEC module, pyramid structure, and
auto-context concatenation were proven to be successful and effective parts for the OAR
segmentation during the ablation study. With the exception of the channel attention, the
local region attention requires further research, especially in establishing the relationship
between the foreground and background. In the future, the image segmentation method
based on U-shape networks will be combined with the transformer architecture to further
improve the performance.
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