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Abstract: Cervical cancer is one of the most common cancers that threaten women’s lives, and its early
screening is of great significance for the prevention and treatment of cervical diseases. Pathologically,
the accurate segmentation of cervical cells plays a crucial role in the diagnosis of cervical cancer.
However, the frequent presence of adherent or overlapping cervical cells in Pap smear images makes
separating them individually a difficult task. Currently, there are few studies on the segmentation of
adherent cervical cells, and the existing methods commonly suffer from low segmentation accuracy
and complex design processes. To address the above problems, we propose a novel star-convex
polygon-based convolutional neural network with an encoder-decoder structure, called SPCNet. The
model accomplishes the segmentation of adherent cells relying on three steps: automatic feature
extraction, star-convex polygon detection, and non-maximal suppression (NMS). Concretely, a new
residual-based attentional embedding (RAE) block is suggested for image feature extraction. It
fuses the deep features from the attention-based convolutional layers with the shallow features from
the original image through the residual connection, enhancing the network’s ability to extract the
abundant image features. And then, a polygon-based adaptive NMS (PA-NMS) algorithm is adopted
to screen the generated polygon proposals and further achieve the accurate detection of adherent
cells, thus allowing the network to completely segment the cell instances in Pap smear images. Finally,
the effectiveness of our method is evaluated on three independent datasets. Extensive experimental
results demonstrate that the method obtains superior segmentation performance compared to other
well-established algorithms.

Keywords: computer-aided diagnosis; convolutional neural network; star-convex polygon; segmen-
tation; cervical cytology

1. Introduction

According to the World Health Organization (WHO), the incidence of cervical cancer
in women worldwide is the second highest among female malignancies [1]. There are more
than 0.57 million new cases of cervical cancer and about 0.23 million deaths in the world
each year, with nearly 80% of them coming from developing countries. Worryingly, the
disease has a tendency to develop at a younger age. From a pathological point of view,
the incubation period of cervical cancer is generally 8–10 years, during which there are
no obvious symptoms [2]. Although it has a high risk, its cure rate is closely related to
the disease duration. As long as it is detected early and supplemented with appropriate
treatment, the survival rate of cervical cancer patients will be greatly improved. Therefore,
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early screening and regular examinations of cervical cancer are of great benefit for its
diagnosis and subsequent treatment.

The clinical examination of cervical precancerous lesions is mainly based on cervical
cytology [3] (such as Pap test), and it usually requires pathologists to diagnose whether
cervical lesions occur through the structural information (such as shape, texture, and stain-
ing intensity) of cervical cells. In addition, the canceration of cervical cells is a continuous
process, and the visual differences between normal and abnormal cells are small, making it
quite tedious and error-prone to screen out abnormal cells from a large number of normal
cells. As has been noted in refs. [2,3], traditional manual interpretation and screening
methods suffer from high cost, heavy workload, and low reliability. Therefore, to improve
the segmentation efficiency of cervical cells, it is necessary and meaningful to explore and
develop automated segmentation methods.

Automatic segmentation of cervical cells contributes to the detection and identification
of cervical cancer cells in computer-aided diagnosis (CAD) [4–7], and it is also the primary
task in the entire process of pathological image processing and analysis. However, the task
still faces several new challenges, mainly in the following aspects: (1) The complexity of
cervical cell structure (e.g., cell color, contour, distribution, and overlap, etc.) makes its
segmentation difficult; (2) The production process of smear images, as well as the influence
of different staining and lighting conditions, aggravate the blurring of cell boundaries;
(3) The presence of impurities such as blood, bacteria, and mucus in Pap images can also
affect the segmentation results. Figure 1 provides an example of the challenges facing
cervical cell segmentation.

(a) (b) (c)

(a) (b) (c)

Figure 1. Examples of various challenges. (a) The complex structure of cervical cells, including differences
in cell shape, color, number, distribution, etc. (b) Blurred cell boundaries caused by uneven lighting and
staining conditions. (c) Blood stains, bacteria, and other impurities remained in the Pap image.

To further identify adherent individuals within complex images, He et al. [8] proposed
an instance segmentation algorithm called Mask R-CNN, which first produces region-
based proposals by extracting image features, then classifies these proposals and generates
the corresponding bounding boxes (bboxs) and masks. Zhang et al. [9] suggested an
instance segmentation network for macro-semantic differences, which can model local
features through a larger receptive field to generate more discriminative features and
effectively reduce the number of network parameters. Although these methods obtain
good performance in natural images, they still cannot segment adherent cells well due
to the high similarity between cervical cells coupled with the limitation of the standard
non-maximum suppression (NMS) [10] with strictly predefined properties. After that,
Schmidt et al. [11] presented a polygon-based StarDist method, which is a single-stage
instance segmentation approach designed for circular-like objects. It first generates the
polygon-based proposals by combining the predicted object probability for each pixel and
the corresponding Euclidean distances in different directions. Then, the NMS algorithm
is utilized to filter out a final set of polygons that represent object instances. The method
differs from the traditional two-stage bbox-based methods. Instead, it employs the star-
convex polygons to directly predict and localize targets within images. Additionally, it
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adopts a simple yet well-performing network structure to segment the adherent targets,
which provides a new idea for the segmentation of circular-like objects.

To solve the challenges encountered in the segmentation of adherent cervical cells,
considering the excellent performance of the above-mentioned Stardist on circular-like
targets, we select the model as the baseline for cervical cell segmentation in this paper.
However, it suffers from the following several drawbacks: on the one hand, the down-
sampling operation in the feature extraction stage easily leads to the loss of spatial and
edge details of images with complex content and backgrounds. On the other hand, the
standard NMS for screening proposals in the object detection stage is required to manually
set the threshold, which may affect the overall segmentation accuracy. If the threshold is
not set properly, it will cause false detection or missed detection. Based on the circular-like
characteristics of cervical cells, we thus propose a star-convex polygon-based convolutional
network (SPCNet) for the instance segmentation of adherent cervical cells. The model
employs the star-convex polygons, generated by jointly predicting the object probability
for each pixel belonging to an object and the Euclidean distances of that pixel to the object
boundary, to represent and segment cervical cells. Specifically, a newly designed residual-
based attentional embedding (RAE) block is introduced into the feature extraction stage
to make the network focus on the boundary pixels of adherent cells, thereby improving
the segmentation accuracy of cervical cells with the help of the rich contour features
obtained. In addition, the polygon-based adaptive NMS (PA-NMS) algorithm is used at the
post-processing stage to realize the adaptive setting of the intersection over union (IoU)
threshold, so that the polygons that predict adherent targets can be preserved rather than
suppressed, thus boosting the final segmentation result.

The contributions of our work can be summarized as follows:

• A star-convex polygon-based SPCNet is proposed for the segmentation of adherent
cervical cells. The method utilizes the star-convex polygons to detect objects within
Pap smear images and then screens the polygons using a post-processing algorithm to
complete the automatic segmentation of cervical cells.

• A residual-based attention embedding block RAE is designed to extract relevant
image features. The module provides strong feature extraction and representation
capabilities. Moreover, a polygon-based adaptive NMS algorithm is used as the post-
processing step of the network to improve the accuracy of cervical cell segmentation.

• The segmentation performance of SPCNet is evaluated on three public datasets. The
experimental results demonstrate that our method outperforms other popular algo-
rithms in both segmentation performance and generalization ability.

The rest of this paper is organized as follows. Section 2 introduces the domestic and
international technologies and trends related to the research topic. Section 3 describes
the overall pipeline of the proposed method, including image pre-processing, network
structure, loss function, as well as the adaptive NMS post-processing algorithm. Section 4
explains the detailed implementation of our network and reports the experimental results
and performance analyses. Section 5 concludes the paper.

2. Related Work

Various segmentation algorithms have been developed to address the issues discussed
above over the last few decades. Early ones mainly include threshold method [12], mor-
phological operation [13], K-means [14], level set [15] and gradient vector flow (GVF) [16].
For example, Putzu et al. [17] proposed a cell segmentation method based on color space
thresholding. The method can accurately segment cell images with uniform colors but
presents a poor segmentation effect on cells with uneven colors. Ruberto et al. [18] utilized
a method based on K-nearest neighbors to classify cell images at the pixel level, but the
classification result is not satisfactory when the number of samples is unbalanced. Li et al. [19]
presented a gradient vector snake model based on prior knowledge, but it offers low segmen-
tation performance for cells with blurred contours due to the small capture range of external
forces. Lu et al. [20] used the edge strength function as a shape prior to segmenting adherent
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cells, but it provides low segmentation accuracy for cell images with complex backgrounds.
Therefore, traditional methods cannot solve the segmentation problem of complex cell images,
because they mainly rely on the manually extracted low-level features rather than the high-
level semantic features representing the cell information in different dimensions. Moreover,
the manual-based features have certain limitations and the design process is cumbersome,
resulting in a gap between the cell segmentation accuracy and clinical application.

In recent years, deep learning techniques [21–25], which can automatically extract
image features and provide strong data representation capabilities, have achieved great
success in the field of computer vision [26–29]. In particular, convolutional neural net-
works (CNNs) are widely used in medical image processing and analysis. For instance,
Long et al. [30] proposed the classic work of applying deep learning to image segmen-
tation tasks - a fully convolutional network (FCN). The network directly employs only
convolutional layers to perform the pixel-level classification of images in an end-to-end
manner, laying a foundation for the subsequent semantic segmentation. Ronneberger
et al. [31] extended FCN and suggested the U-Net model, which adopts the U-shaped
encoder-decoder structure to extract and recover image features, and then completes the
accurate cell segmentation through multi-level information fusion. Nevertheless, the model
is still incapable of segmenting adherent targets under complex image conditions. Chen
et al. [32] proposed a deep contour-aware network (DCAN) in the MICCAI Gland and
Nucleus Segmentation Challenge. The method makes full use of the multi-layer contex-
tual features and incorporates the multi-task regularization strategy during the training
process to enhance the discriminative ability of the intermediate features, and finally ac-
complishes the adherent object segmentation under an end-to-end multi-task learning
framework. However, it still cannot effectively separate the adherent cells with uneven
internal grayscale and severe artifacts.

3. Methodology

The presented SPCNet mainly includes three parts in the overall process: image
pre-processing for multi-cell labeling, cell segmentation based on star-convex polygons,
and NMS post-processing. Figure 2 shows some intermediate results produced by our
approach, where Figure 2a,b indicate the sample image and its corresponding original label,
respectively. Figure 2c depicts the star-convex polygon-based label, which is annotated
by the image pre-processing. Figure 2d denotes the predicted object probability map.
Figure 2e–g represents the predicted Euclidean distances in different radial directions, and
here only three distance maps are shown, for the sake of simplicity. Figure 2h depicts the
final segmented cervical cell instances.
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Figure 2. Intermediate results generated by our method. (a) An original image and (b) its corre-
sponding label. (c) The star-convex polygon-based label and (d) the object probability map. (e–g) The
normalized Euclidean distance maps for different directions, and (h) the final segmentation result.
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3.1. Pre-Processing

To apply the star-convex polygon-based method to the segmentation of cervical cells,
it is necessary to label the sample images with target probabilities and Euclidean distances
in different directions before feeding them into the network. The main pre-processing
procedure is as follows: first, a flood-filling algorithm [33] is used to fill the holes existing
in the original labels. Next, for the target probability of each sample image, we first classify
each pixel as the object or background pixel according to the binary mask, and then define
its target probability as the normalized Euclidean distance to the nearest background
pixel. After that, for the star-convex polygon distances of each pixel in different radial
directions, we first localize the centroid [34] of each cell, and then calculate the Euclidean
distances [35] from this point to the boundary of the cell to which it belongs, along the
predefined n equiangular radial directions. Finally, the corresponding coordinate values for
n vertices can be computed based on the above n radial distances, and then all vertices are
sequentially connected to form a star-convex polygon. In this way, the label for each cell
within the sample images can be obtained. Figure 3 shows the pre-processing results for a
sample image. Figure 3a–c represents the original image, its corresponding label with holes,
and the filled label, respectively. Figure 3d–g depicts the labels of star-convex polygons
with a different number of vertices (8, 16, 32, and 64 vertices from left to right, respectively).
As can be seen that Figure 3f,g can delineate the boundaries of cervical cells more accurately
compared to Figure 3d,e. Considering the high computational overhead in Figure 3g, we
have to make a trade-off between accuracy and computational cost, and eventually select
the star-convex polygons with 32 vertices as labels for the network training.
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Figure 3. Intermediate results of image pre-processing. (a) A sample image, (b) the original label with
holes, and (c) the corresponding filled label. (d–g) The label images are based on convex polygons
with 8, 16, 32, and 64 vertices, respectively.

In addition, to enhance the generalization ability of the model, the labeled sample
images discussed earlier need to be expanded by data augmentation techniques [36], mainly
including scale transformation, elastic deformation, random rotation, translation, cropping,
and flipping. Meanwhile, the grayscale histogram processing [37–41] is also performed
on these augmented images to enhance their brightness and contrast. It has an obvious
equalizing effect on images with uneven illumination. Then, we resize the training dataset
to the same resolution to accelerate the training of the model. More details on the cervical
cell dataset can be seen in Section 4.1.

3.2. Network Architecture

Figure 4 depicts the network architecture of the proposed SPCNet, which is a two-
branch weight-sharing convolutional network based on the encoder-decoder structure. The
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model can segment the sample images with an arbitrary resolution, because it is essentially
a full CNN composed of different convolutional layers. As shown in Figure 4, our SPCNet
takes the single-channel cervical cell images as input, and outputs the segmented images
with the same size as the input images. To avoid feature conflicts at the model output caused
by only one shared 1 × 1 convolutional layer before decoupling the object probability and
polygon distance prediction tasks, two point-wise convolutions are applied to map the
input image features into the single-channel target probability map and the 32-channel
normalized Euclidean distance map, respectively. And lastly, the convex polygons formed
by the above predictions are screened using the NMS algorithm to obtain the segmented
cervical cell instances. Specifically, SPCNet is primarily composed of four types of modules:
feature extraction module RAE (green bar), 2 × 2 maximum pooling down-sampling
module (orange bar), bilinear up-sampling module (pink bar), and feature recognition
module (blue bar). Among them, the RAE module enhances the feature extraction capability
by fusing the residual connection and spatial attention mechanism, and also effectively
alleviates the gradient disappearance caused by increasing the network depth.
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Figure 4. The overall structure of SPCNet, which adopts an encoder-decoder structure and mainly
consists of down-sampling and up-sampling paths. Here, the rectangular bars of different colors
represent different functional modules, and C denotes the number of channels in the feature map. In
the output image, the cell outlines of different colors indicate the segmented cervical cell instances.

On the whole, the network structure of SPCNet is essentially symmetrical. In the
down-sampling path, the RAE and down-sampling modules are alternately connected, and
a total of three down-sampling operations are used to reduce the computational cost while
preserving relatively abundant feature information. Besides, considering that the accurate
segmentation of cervical cells with various scales usually requires different receptive fields,
we connect the ASPP module [42] to the end of the down-sampling path to extract the
rich multi-scale features from Pap smear images. Afterward, the output features from the
down-sampling path are fed into the up-sampling path, where the up-sampling and feature
recognition modules are also alternately connected. After three up-sampling operations,
two separate 1 × 1 convolutional layers are employed to jointly predict the cervical cell
contours based on star-convex polygons, and then the predicted results are optimized
using the adaptive NMS algorithm. The above strategy ensures that our deep segmentation
network SPCNet can achieve satisfactory performance in the segmentation of adherent
cervical cells.
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3.2.1. RAE Module

As noted in the previous discussion of the overall network structure, continuous
down-sampling operations can easily lead to the loss of position information for the pixels.
Therefore, it is necessary to incorporate the shallow features from the original image into
deep features from earlier modules during the feature extraction stage, to enhance the
model’s feature capturing and representation capabilities. In addition, more focus should be
put on the boundaries of cervical cells in direct contact with each other. Given the excellent
performance of the attention mechanism [43] in CNNs, we introduce a spatial attention
unit into our feature extraction module. The unit progressively suppresses the feature
response of irrelevant background regions and focuses on the border pixels of adherent
cells, to produce a more discriminative feature representation. Figure 5a shows the RAE
module that adopts a parallel structure. Concretely, two successive 3 × 3 convolutional
layers (with ReLU activation functions) are first utilized to extract the shallow features from
the original image, and the same operation is used to acquire the deeper features from the
earlier modules. After that, the pixel weights of the above feature maps are reconstructed
by the feature fusion attention (FFA) unit in Figure 5b to generate space-based attentional
feature maps. Finally, a shortcut connection is employed to directly transmit the output
of the previous module to the result of the latter module, which not only strengthens the
gradient back-propagation during the network training but also improves the network
performance.
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Figure 5. The residual-based attention embedding (RAE) block in (a) and the feature fusion attention
(FFA) unit in (b), where ©, ⊕ and ⊗ denote the feature map concatenation, pixel-wise addition, and
pixel-wise multiplication operations, respectively. And H, W, C, and S represent the height, width,
number of channels, and convolution stride of the feature map, respectively.

The FFA unit from the feature extraction module RAE can automatically learn impor-
tant information about cell structure by capturing the spatial dependencies of features. The
unit is performed in the down-sampling path so that only the relevant activation features
of coding layers are merged. As depicted in Figure 5b, the FFA unit is used to reconstruct
feature maps by combining 1 × 1 convolution kernels with ReLU and Sigmoid activation
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functions, where Fe denotes the deep feature vector extracted by the encoder and Fo indi-
cates the shallow feature vector from the original image. For the input feature vectors Fe
and Fo, their non-linear transformations are separately computed using C 1× 1 convolution
kernels followed by the ReLU function, thus enabling Fe and Fo to be linearly mapped to the
RC dimensional space. Next, the features obtained from the previous step are non-linearly
transformed into a spatial attention weight map Wa through a 1 × 1 convolution layer
followed by the Sigmoid function. Afterward, the weight map Wa is multiplied by the
corresponding pixels of the input feature map Fe to get the final feature map Fa, which is
defined by, 

Fa = Wa · Fe,

ψatt = ϕT(σ1(WT
e Fe + WT

o Fo + bo)) + bϕ,

Wa = σ2(ψatt(Fe, Fo; θatt)),

(1)

where Fa, Fe and Fo denote the weighted attention feature vector, the deep feature vector
extracted by the encoder and the shallow feature vector from the original image, respec-
tively. And then σ1 and σ2 represent ReLU and Sigmoid activation functions, respectively.
It is found that the FFA unit described in Equation (1) is mathematically characterized
by a set of parameters θatt, which contains the convolution operations We, Wo and ϕ, and
bias terms bϕ and bo. Besides, Wa indicates the attention coefficient, whose value ranges
from 0 to 1, identifies the salient feature regions from encoding layers and suppresses
the task-irrelevant feature responses, to retain the activation features associated with cell
segmentation. In simple terms, it means that the attention coefficient Wa concentrates more
on the border portions of adherent cervical cells in low-contrast images.

3.2.2. Loss Function

The design of the loss function is directly related to the model’s final convergence
degree. Depending on the task properties of our network, a compound loss function is
utilized here as the objective function to jointly train the network model. Specifically, the
binary cross entropy (BCE) loss is used for the pixel-wise probability prediction of cervical
cells. And the weighted mean absolute error (WMAE) loss is employed for the star-polygon
distance prediction of the corresponding pixels. It is weighted by the ground-truth object
probability so that predictions for pixels closer to the center of each object are weighted
more. To ensure the stability of the network training, these two loss functions are jointly
weighted, and the total loss function Ltotal is then defined by,

Ltotal = αLBCE + βLWMAE,

LBCE = − 1
N

N

∑
i=1

C

∑
j=1

yi,j log xi,j,

LWMAE =
1
N
[yi,j

N

∑
i=1

M

∑
j=1

∣∣ti,j − pi,j
∣∣],

(2)

where Ltotal , LBCE and LWMAE denote the total loss, the binary cross-entropy loss, and the
weighted mean absolute error loss, respectively. And then α = 0.5 and β = 1 represent the
weighted coefficients of BCE and WMAE loss functions respectively, yi,j and xi,j indicate
the true and predicted results of the object probability for the ith pixel belonging to the
jth class respectively, and ti,j and pi,j are the true and predicted values of the star-convex
distance of the ith pixel, along the jth radial direction, to the boundary of the cell to which
it belongs, respectively. In addition, C is set to 2 in the BCE loss, M is set to 32 in the WMAE
loss, and N denotes the total number of cervical cell pixels within a Pap smear image.

3.2.3. Post-Processing

In view of the fact that the traditional NMS algorithm based on the axis-aligned
rectangular bboxes has strong limitations on the detection of convex polygons for circular-
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like objects. Moreover, the algorithm directly discards the adjacent bboxes with low
confidence scores, which easily leads to missed and false detections when similar targets
are dense. Therefore, for the star-convex polygons used for the characterization of cervical
cells, inspired by Adaptive-NMS [44], we leverage a polygon-based adaptive NMS (PA-
NMS) algorithm to perform the detection of convex polygons. Instead of manually setting
the IoU threshold, the PA-NMS algorithm defines an output for each object regarding the
density of the scene in which it is located, and then takes the output as the IoU threshold to
achieve the adaptive threshold setting.

Algorithm 1 shows the pseudocode of the PA-NMS algorithm in Python format. The
algorithm flow is as follows: given an image containing many adjacent targets as well as
multiple candidate polygon boxes that may overlap with each other for object detection
(i.e., each polygon box may represent a certain target), all we need to do is to only retain the
best polygon boxes. Suppose there are n polygon boxes within an image, each with a score
of si (1 <= i <= n) calculated by the classifier, and then we construct four sets B, S, D, and
F, where B is used to store the candidate polygon boxes to be processed, with all n boxes
initialized; S is utilized to store the detection scores of the polygon boxes; D is the set that
stores densities of the corresponding polygon boxes; And F is employed to store the optimal
boxes and is initialized to the empty set. Besides, here Nt denotes the initial threshold value
of the IoU. Concretely, the algorithm is divided into the following four steps: (1) Sort the
confidence of all predicted polygons in list B, and remove the polygon M with the highest
score and add it to the target list F; (2) Automatically adjust the suppression threshold NM
based on the density of the scene where M is located; (3) Calculate the polygon-based IoU
values by pairing all polygons in B with the polygon M, and remove the polygons in B
larger than the threshold NM as well as the corresponding scores in S; (4) Repeat the first
three steps for all remaining polygons in B until the last polygon is left. After the PA-NMS
operation, the segmented cervical cell instances are finally obtained, and each polygon
represents a cervical cell instance in the Pap smear image.

Algorithm 1 The polygon-based PA-NMS algorithm
Input: B = [p1, . . . pn], S = [s1, . . . sn], D = [d1, . . . dn], Nt
B is the list of initial polygon boxes
S is the list containing corresponding detection scores
D is the list of corresponding detection densities
Nt is the initial threshold
F = []
while B ! = []:

m argmax(S)
M = B[m]
NM = max(Nt, dM)
F.append(M)
B.remove(M)
for p in B:

if polygon_IoU(M, p) >= NM
B.remove(p)
S.remove(s)

return F, S

4. Experiments
4.1. Datasets

A total of three datasets, namely TCC-ISBI, ALL-IDB [45] and EDF-ISBI, are used
to test and evaluate the performance of our proposed method. Concretely, TCC is our
synthetically generated cervical cell dataset based on the raw samples from ISBI-14 [46]. To
validate the feature extraction ability of SPCNet for adherent cervical cells, we randomly
synthesize the corresponding cell images according to pre-set parameters such as image
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size and cell number, so that each image contains 3-9 cells of various numbers and shapes,
with only adhesions but no overlaps among them. The dataset includes 3260 single-channel
grayscale images of size 256 × 256 with corresponding ground truths. Additionally, ALL-
IDB is a publicly-available blood cell dataset from the University of Milan in Italy, and
consists of 108 blood smear images of size 2592 × 1944 pixels with corresponding labels.
Since the limitations of the experimental equipment make it difficult to process high-
resolution images, we crop the images from the dataset using the sliding window-based
method to make them more compatible with the corresponding equipment conditions, and
finally obtain 314 images at the resolution of 512 × 512 after discarding the sub-images
without any targets. Moreover, the EDF-ISBI dataset is created by cropping the original
16 extended depth-of-field (EDF) images of size 1024 × 1024 pixels from ISBI-15 [46], where
each image contains many separated, adherent, and overlapping cervical cells with varying
degrees of overlap. Based on the same limitations regarding the experimental equipment,
we perform the sliding crop operation on these EDF images to generate sub-images with a
resolution of 256 × 256, and then select 26 sub-images with less overlap as test images.

4.2. Evaluation Metrics

To quantitatively assess the segmentation results of our method on adherent cervical
cells, we use the pixel-based and object-based indicators [47] as evaluation metrics, with
the former containing Dice coefficient (DC), true positive rate (TPp), and false positive
rate (FPp), and the latter containing only false negative rate (FN). Besides, considering
that an excessive number of false positive objects can affect the accuracy of segmentation
results, the average precision (AP) mentioned in ref. [11] is utilized to penalize the false
positive detections. The DC and AP indicators, as defined by Equation (3) and Equation (4)
respectively, are shown below.

DC = 2 · TPp/(2 · TPp + FNp + FPp) (3)

where TPp denotes the correctly identified target pixels, FNp represents the pixels incor-
rectly identified as background, and FPp indicates the pixels incorrectly segmented as
targets. When the value of DC is higher than a predefined threshold τ (usually set to 0.7),
the network is considered to obtain good segmentation performance.

AP =
TP

TP + FP + FN
(4)

where TP indicates the positive sample that is correctly identified when the IoU of the
predicted object and the corresponding label is higher than the threshold τ, FP is the
negative sample that is misidentified when the IoU of the predicted object and its label
is lower than the threshold τ, and FN denotes the positive sample that is not correctly
matched with its label when the IoU value is greater than the threshold τ.

4.3. Implementation Details

All experiments are based on the PyTorch deep learning framework and conducted
under the Ubuntu 18.04 operating system, with an Intel(R) Core(TM) i7-8700 CPU @ 3.20
GHz with 32 GB RAM, and two NVIDIA GeForce GTX 1080 Ti GPUs. Three datasets
described in Section 3.1 are utilized in our experiments: the TCC dataset is used for the
model training and testing, and the other two datasets are employed for the model testing
only. Note that the TCC dataset needs to be pre-processed according to the method in
Section 3.1 before training the network. After that, all sample images are uniformly resized
to 256 × 256 pixels, and then divided into the training and test sets in a ratio of 8:2. In the
hyperparameter settings, SGD is selected as the optimizer to train the SPCNet network on
the TCC dataset, the momentum and weight decay are set to 0.99 and 1 × 10−8 respectively,
and the initial learning rate and batch size are set to 1 × 10−3 and 12 respectively, and the
number of epochs is 650. Additionally, the threshold for the polygon proposals is set to 0.3,
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and the IoU thresholds used in the PA-NMS algorithm and the AP indicator are set to 0.4
and 0.7, respectively.

4.4. Ablation Study
4.4.1. The Effect of RAE Module on Network Performance

Based on the analysis in Section 3.2, it is clear that down-sampling in CNNs can
effectively preserve important image features while avoiding overfitting, but it may lead
to the loss of feature information in spatial locations. To this end, a feature extraction
module RAE is designed. It allows learning the new information associations of different
features through the residual connection and attention mechanism, to enhance the feature
information flow among network layers. To test the effectiveness of the module, we use
the traditional convolution block (TCB) consisting of two consecutive 3 × 3 convolutional
layers, the residual connection-based TCB block, the attention fusion-based TCB block, and
our RAE module as encoders in the down-sampling path of the network, to retrain the
network on the TCC dataset, respectively. The experimental results are shown in Table 1.

Table 1. The impact of our RAE module on model performance.

Encoders DC (%) TPp (%) FPp (%) FN (%) AP (%)

TCB 89.23 84.49 0.46 7.51 86.04
TCB + RC 90.37 84.72 0.41 7.32 86.45
TCB + FFA 91.29 85.68 0.38 7.14 86.72
RAE (ours) 91.86 85.97 0.31 6.56 87.35

It is clearly seen from the results in Table 1, that the proposed RAE module combining
the residual connection and attention mechanism achieves higher scores on different
indicators (e.g., DC, TPp, FPp, FN, and AP), especially reaching 91.86% on the metric of
DC, compared with other encoding modules. It indicates that our module can not only
obtain the rich shallow information through residual connections, but also focus on and
learn the important edge features of cell regions through the spatial attention module, thus
demonstrating its strong feature extraction capability, as well as its rationality in terms of
structure.

4.4.2. The Effect of ASPP Module on Network Performance

For the presence of cervical cells of various sizes in Pap smear images, we introduce the
ASPP module in the down-sampling path of the proposed network to improve the accuracy
of cell segmentation. The module mainly consists of multiple parallel atrous convolutional
layers with different sampling rates, and it performs well in capturing multi-scale feature
information in CNNs. To validate the module’s performance, we retrain the network by
using the RAE modules as primary encoders and then connecting the ASPP module to the
end of the encoding path of the network. The experimental results are shown in Table 2.

The experimental results show that compared to the network without the ASPP
module, the network with the module improves by 0.22% and 0.58% in DC and AP,
respectively, as well as a slight increase in other metrics. It demonstrates that the network
with the module can extract the abundant multi-scale information of cervical cells using
the atrous convolutions with different dilation rates, thus promoting the overall network
performance. It also indicates that it is reasonable and meaningful to add the module to
our network.

Table 2. The impact of ASPP module on network performance.

ASPP Module DC (%) TPp (%) FPp (%) FN (%) AP (%)

5 91.86 85.97 0.31 6.56 87.35√
92.08 86.15 0.24 6.15 87.93
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4.4.3. The Effect of PA-NMS Algorithm on Model Performance

Considering that the conventional NMS may discard the better-performing boxes due
to the strict culling criteria, and the improper setting of manual thresholds may easily cause
missed or false target detections, our polygon-based PA-NMS algorithm is used as the
post-processing operation to improve the performance of cervical cell segmentation, based
on the RAE and ASPP modules discussed above as the network encoders. The experimental
results are shown in Table 3.

Table 3. The influence of PA-NMS algorithm on model performance.

Post-Processing DC (%) TPp (%) FPp (%) FN (%) AP (%)

NMS 92.08 86.15 0.24 6.15 87.93
PA-NMS (ours) 92.57 86.78 0.19 5.46 89.45

The results in Table 3 demonstrate that our PA-NMS algorithm can adaptively adjust
the IoU threshold depending on the density of cervical cells, and discard the redundant
polygons on the same or adjacent objects according to the threshold. This allows for the
accurate detection of all adherent cervical cells in complex scenes, thus increasing the
accuracy of the final segmentation. Compared with the NMS algorithm, PA-NMS attains
better performance in several metrics, indicating that our post-processing algorithm is
effective.

4.5. Comparison with Other Popular Models
4.5.1. Evaluation on TCC Dataset

To assess the effectiveness of the constructed SPCNet model, we compare the segmen-
tation performance of the model with other semantic and instance segmentation models on
the TCC cervical cell dataset. It is considered that the proposed algorithm is dedicated to ex-
tracting the effective features of adherent cervical cells by optimizing the backbone network
with a UNet-like structure in the single-stage StarDist, our selected semantic segmentation
algorithms mainly include the original U-Net [31], attention-based ATT-UNet [48] and con-
tour aware-based DCAN [32], while the instance segmentation algorithms mainly contain
the single-stage StarDist [11] and YOLACT [49], and the two-stage Mask R-CNN [8]. The
test results of different models on the TCC dataset are shown in Table 4.

Table 4. Performance comparison between our model and the classical segmentation models on the
TCC dataset.

Models DC (%) TPp (%) FPp (%) FN (%) AP (%)

U-Net 83.34 82.49 0.72 19.32 82.73
ATT-UNet 84.75 82.86 0.66 16.08 83.06

DCAN 85.63 83.05 0.63 13.59 83.71
Mask R-CNN 89.18 84.37 0.37 9.87 85.82

YOLACT 87.59 83.21 0.58 11.63 84.59
StarDist 89.23 84.49 0.46 7.51 86.04

SPCNet (ours) 92.57 86.78 0.19 5.46 89.45

The experimental results indicate that the instance segmentation networks outperform
the semantic segmentation networks in the segmentation performance of adherent cervical
cells, and it can also be observed that the overall performance of the presented SPCNet
is optimal. Specifically, compared with the popular instance segmentation models, our
SPCNet has a maximum increase of 4.98%, 3.57%, 0.39%, 6.17%, and 4.86% in DC, TPp,
FPp, FN, and AP indicators, respectively. In addition, compared to StarDist, the model
improves the above abcd indicators by 3.34%, 2.29%, 0.27%, 2.05%, and 3.41%, respectively,
which further proves the effectiveness of our constructed model for the segmentation of
adherent cervical cells.
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The visual segmentation results of the SPCNet model are shown in Figure 6, from
which it can be seen that our model can correctly detect the inter-adherent cells in Pap
smear images, as well as predict and outline individual cell instances more completely. In
particular, for those cervical cell instances with irregular shapes, low contrast of foreground
and background, and slight overlap of edge contours, the SPCNet model still sustains
excellent performance in accurately separating them from the complex background images.

(a) (b) (c) (d)

Figure 6. Segmentation results of our SPCNet on the TCC dataset. (a) Sample images and (b) the
corresponding ground truths. (c) Predicted results and (d) the segmented instances based on random
color processing.

4.5.2. Evaluation on Other Datasets

To validate the generalization capability of the proposed method, we also assess the
segmentation performance of our model on the ALL-IDB and EDF-ISBI datasets. Table 5
shows the performance comparison of our SPCNet and other models on the ALL-IDB
dataset. It is clear that our approach presents the best generalization ability compared
to other methods. Concretely, compared to the competitive Mask R-CNN, our SPCNet
improves by 1.43%, 0.92%, 0.23%, 3.23%, and 1.13% in DC, TPp, FPp, FN, and AP metrics,
respectively. Besides, compared with StarDist, the model has an increase of 0.78%, 0.64%,
0.11%, 1.84%, and 0.67% in the above indicators, respectively. It is clear that the suggested
method not only offers superior performance but also exhibits strong generalization ability
in cervical cell instance segmentation compared to other advanced segmentation methods.
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The visual segmentation results of our algorithm on four sample images from the
ALL-IDB dataset are shown in Figure 7. It can be seen that the leukocytes (white blood cells)
in blood smear images vary in number, size, and shape, and most of the cells are adherent
to each other or slightly overlapping. Based on the obtained segmentation results on the
sample images, it can be confirmed that the proposed SPCNet can not only correctly identify
the inter-adherent leukocytes, but also accurately depict their edge contours, especially for
those cells with relatively blurred edges. It demonstrates that our method can effectively
segment the leukocytes in blood smear images, and also proves its strong generalization
ability on this dataset.

(a) (b) (c)

Figure 7. Segmentation results of the SPCNet model on the ALL-IDB dataset. (a) Input images,
(b) the corresponding ground truths, and (c) the predicted results.

Figure 8 depicts the qualitative analysis of the proposed method on the EDF-ISBI test
set. It is obvious that our algorithm can effectively detect cervical cell instances in real
EDF images. Moreover, it can perform the accurate segmentation of cervical cells under
complex conditions (e.g., impurities, low-contrast targets, and adherent or overlapping
cells). It further validates the strong generalizability ability of our model on other cell
image datasets.
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Figure 8. Segmentation results of our model on the EDF-ISBI test set, where the input images and
their predictions are shown from top to bottom, respectively.

Table 5. Performance comparison of our model and the classical segmentation models on the ALL-
IDB dataset.

Models DC (%) TPp (%) FPp (%) FN (%) AP (%)

U-Net 86.64 84.62 0.68 17.28 83.42
ATT-UNet 87.12 85.07 0.62 16.64 84.27

DCAN 88.34 86.25 0.56 15.88 84.93
Mask R-CNN 92.24 89.76 0.41 9.56 88.96

YOLACT 90.53 87.83 0.47 12.30 86.58
StarDist 92.89 90.04 0.29 8.17 89.42

SPCNet (ours) 93.67 90.68 0.18 6.33 90.09

5. Conclusions

In this paper, we proposed a star-convex polygon-based segmentation method for
adherent cervical cells. The method extracts the important feature information of cervical
cells, especially the rich contour features, through the attention embedding module based
on residual connection, and then utilizes the convex polygon-based PA-NMS algorithm
to complete the accurate prediction of cell instances. Experimental results show that our
method achieves superior performance on three independent datasets. In future research,
considering the importance of accurate segmentation of cervical cells for subsequent classi-
fication and diagnosis of cervical cancer cells, there is still a need to optimize our network
so that it can be widely used for the segmentation of other medical images.
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