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Abstract: AquaCrop is a well-known water-oriented crop model. The model has been often used to
simulate various crops and the water balance in the field under different irrigation treatments, but
studies that relate AquaCrop to fertilization are rare. In this study, the ability of this model to simulate
yield and the water balance parameters was investigated in a wheat field under different nitrogen
management practices. During the 2015–2016 and 2016–2017 growing seasons, meteorological data
were provided from a nearby meteorological station, and the evolution of soil water content and
final yields were recorded. The model showed a very good performance at simulating the soil water
content evolution in the root zone. Notwithstanding its simplicity, AquaCrop based on a semi-
quantitative approach for fertility performed well at the field level for the final yield estimation under
different nitrogen treatments and field topography variation. Although the correlation coefficient
between simulated and measured final yields was high, increased values of variations were observed
in the various zones of this experimental field (−50% to +140%). The model appears to be an efficient
tool for evaluating and improving the management practices at the field level. The experiments were
conducted in Thessaly, which is the largest plain and the main agricultural area of Greece. Thessaly,
however, has a strong negative water balance, which has led to a strong decrease in the level of the
aquifer and, at the same time, to sea intrusion. There is also a significant risk of contamination of the
groundwater aquifer due to increased use of agrochemicals. This analysis is particularly important
for Thessaly due to the need for improvement of agricultural practices in this area, to decrease the
pressure of agricultural activities on natural resources (soil, water) and reverse the consequences of
current management.

Keywords: wheat; nitrogen management; AquaCrop model

1. Introduction

The winter and spring rainy seasons are the periods of wheat cultivation in Greece [1]
with the possible water surplus drained or running off the farms. Some farmers apply
supplementary irrigation in the spring that is usually not scheduled properly [2]. To reduce
water losses and nitrogen leaching, a crop simulation model is needed that is able to
combine the available field data, i.e., temperature, rain/irrigation, soil texture, and dry
yield. Based on the concept of a direct link between crop water use and crop yield [3], the
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AquaCrop model estimates biomass production directly from actual transpiration through
a water productivity parameter. A linear relationship between crop transpiration and
biomass production [4] was assumed by AquaCrop that adopts a water-driven strategy.
AquaCrop was selected for its ability to predict crop productivity, water requirement, and
water use efficiency under unstressed conditions [5], as well as conditions limited by water
or fertility stress [6–14]. As mentioned above in Thessaly where the study was carried out,
the water factor is in crisis. It is also well known that any study of nitrogen fertilization
must take into account the water as nitrates are highly agile and contaminate aquifers and
adjacent streams. Thus, a simulation program with dual targeting is necessary. Our target
is to evaluate the possibilities of AquaCrop to satisfy such studies with sufficient accuracy.
It is a multi-crop model able to simulate the yield of herbaceous crop types under different
biophysical and management conditions [15,16]. It requires a relatively small number of
explicit and mostly intuitive parameters to be defined compared to other crop models and
has been validated and applied successfully for multiple crop types across a wide range of
environmental and agronomic settings (for a recent review, see [17]).

The effects of soil fertility and salinity stresses are also considered indirectly by
the model based on local calibration to relative biomass under different fertility and
salinity conditions.

AquaCrop has also been amended with and evaluated for crop responses to atmo-
spheric [CO2] [18] and can be used for climate impact studies [17,19–21]. With less input
information than Crop-Syst and WOFOST, AquaCrop performs similarly in simulating
both biomass and yield at harvesting [13]. Model calibration for the local environment
is very important for accurate prediction and sustainable management. AquaCrop
has been tested for different crops under different hydro-meteorological conditions
worldwide, for example, potato [21], sunflower [13,22], tomato [23], cotton [6,7,24],
maize [10,11,22,25–28], quinoa [8,9], sugar beet [22], barley [29], tef [30,31], rice [12],
soybean [32,33], and wheat [5,26,27,34–41]. All these investigations have reported
that the AquaCrop model is able to simulate the crop biomass (B), grain yield (GY),
canopy cover (CC), and soil water content accurately under different irrigation and
fertility conditions.

The model has also been validated in Southern Africa [42], Eastern Africa [43–45],
and West Africa [46]. These studies showed that the model could satisfactorily simulate
crop yield and biomass, as well as soil water productivity under rainfed, full and deficit
irrigation, and soil fertility stress [45,46].

The productive portion of water consumption (i.e., transpiration) estimates biomass
accumulated each day, using a crop-specific water productivity parameter that is normal-
ized for reference evapotranspiration [4], making the parameter applicable to a wide range
of climates. Subsequently, the proportion of biomass that becomes harvestable yield is
calculated using a harvest index parameter that increases over the growing season and
responds to water and temperature stresses. Steduto et al., (2009) [16] contains a very
comprehensive description of the model’s conceptual design.

AquaCrop is distinguished from other crop models by several unique features. First,
canopy expansion is simulated in terms of proportional green canopy cover as opposed
to leaf area index. This approach has the advantage that simulated model outputs can be
related directly to easily accessible data from visual field observations and remote sensing,
i.e., vegetation indices obtained from satellite images.

A major limitation of the model is that pests and diseases are not considered,
which at times can lead to crop yield over-estimation. Additionally, the model has
been shown to produce poor estimates under severe water-stress treatments especially
during senescence [10].

This study investigated the ability of the AquaCrop model to simulate the water
balance parameters of winter wheat under different nitrogen (N) management practices.
These included variable rate application (VRA) using a sensor-based model to calculate
spatially adjusted N rates on-the-go [47]. Compared to the conventional uniform practice,
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the in-season VRA approach significantly reduced N inputs without yield losses in winter
wheat, thus offering higher revenue over fertilizer costs with the least uncertainty to the
farmer [40]. However, VRA systems are effective when N does not escape from the rooting
zone after fertilizer has been applied. Furthermore, N leaching raises environmental
concerns in areas of intensive cultivation. European Union member countries are obliged
to comply with the Water Directive (2000/60/CE) [48] that requires countermeasures for
N water pollution. For these reasons (economic and environmental), synchronization of
fertilization with the water cycle variability is the suitable strategy [49].

The objectives of this study were: (i) evaluation of the effectiveness of AquaCrop to
estimate the soil water content evolution and water balance in the field and (ii) calibration
and validation of the model to simulate winter wheat yield under various N treatments.

2. Materials and Methods
2.1. Field Experiments and Data

The field experiments were carried out in a winter wheat field near the village of
Nea Lefki (Larisa, central Greece) at the coordinates of 39◦31′30′′ N, 22◦30′52′′ E and an
altitude of 125 m [50,51]. The temperate Mediterranean climate has cold humid winters
but hot and arid summers (Bsk—Csa according to Köppen’s climatic classification) [1].
Based on historical data, the mean minimum and maximum temperatures are 0.5 ◦C
(January) and 33 ◦C (July), respectively, with an average relative humidity of 67%. The
mean monthly rainfall varies from 15.5 mm (August) to 58.2 mm (November) with
a mean annual total of 313 mm. During the November to May growing season, the
mean total rainfall is 277 mm, and the average monthly temperature varies from 5 ◦C in
January to 17 ◦C in May [51]. The rainfall was 255.0 mm and 283.8 mm during 2015–2016
and 2016–2017 growing seasons, respectively.

A soil sampling was performed with regard to field topography, at lower, middle, and
upper zones of the field. A composite soil sample (0–20 and 20–40 cm depth, n = 3) was
collected from 1 m2 sub-plots in three landscape positions of each treatment strip (lower
zone, middle zone, and upland zone). Soil samples were analyzed in the laboratory for soil
texture as determined by physical fractionation (Bouyoukos 1951) [52], and for soil organic
matter as determined by the Walkley–Black method of wet oxidation [53]. Carbonate
content, as an estimate of inorganic C, was determined by using a Bernard calcimeter to
measure the released carbon dioxide (CO2) after addition of dilute hydrochloric acid (HCl)
solution [53]. Total N was measured by the semimicro-Kjeldahl method [54]. Soil K was
extracted with 1 N ammonium acetate at pH 7 [55] and measured by a Corning 410 flame
photometer. Available P was determined as per Olsen and Sommers (1982) [56].

The soil in the field is classified as a Vertic Xerochrept of clay-to-clay loam texture, but
with differences in the soil properties relevant to topography (Table 1).

Strong effects of soil erosion in the slopes and upland areas of the field have been
reported by Stamatiadis et al. (2018) [50]. Those areas of the field had a higher carbonate
and lower organic matter and total N content than the lowland plots as a result of the
removal of surface horizons that revealed the parent material rich in calcium carbonate.

The topographic variation in the field is shown in Figures 1 and 2. The lower ground
level on the slope by 1–2 m, relative to the adjacent field on the right (Figure 1, see the red
arrow), appears to be the product of soil erosion. In contrast to the adjacent field, winter
wheat was grown without rotation over recent decades. The soil properties in different
sections of the field were analyzed in the laboratory.

The grown wheat cultivar was Simeto, an Italian variety that is popular among Greek
farmers. This cultivar was selected based on its high yield, climatic adaptability, and
performance stability. Seeds were sawn at a density of 270 kg/ha on 21 November 2015
and on 26 November 2016. Supplementary irrigation was applied in all plots: 68 mm in
May 2016 and 56 mm in May 2017. The grain was harvested on 5 June 2016 and 10 June
2017, respectively.
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Table 1. Soil properties by landscape position (n = 12).

Landscape Position

Soil Depths (cm) Soil Properties Lower Zone Middle Zone ZoneSlope Upper Zone Land

0–20

Sand (%) 38.0 43.8 34.3
Clay (%) 44.4 36.3 46.7
Silt (%) 17.6 19.9 19.1

SOM (%) 2.02 1.44 1.87
CaCO3 (%) 5.4 26.3 35.2
Total N (%) 0.122 0.095 0.107

P-Olsen (mg/kg) 7.54 5.68 8.00
K (cmol/kg) 0.80 0.44 0.48

20–40

Sand (%) 40.1 47.9 31.4
Clay (%) 42.1 35.4 48.5
Silt (%) 17.8 16.7 19.8

SOM (%) 1.68 1.29 1.60
CaCO3 (%) 5.1 24.5 41.5
Total N (%) 0.108 0.087 0.098

P-Olsen (mg/kg) 3.69 3.53 5.38
K (cmol/kg) 0.65 0.39 0.39
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The field was divided into four blocks, and three N treatments were randomly assigned
within each block to follow a randomized complete block design (Figure 3). Each treatment
was a field strip of 7 m wide running the entire length of the field (200 m) to simulate full-
scale field conditions. The three treatments during the 2015–2016 growing season consisted
of preplant application only (100 kg N/ha), a farmer preplant and in-season uniform N
application (100 + 112 kg N/ha), and a preplant with in-season VRA (100 + VRA kg N/ha).
During the 2016–2017 growing season, the farmer rates were reduced so the respective
treatments were the preplant (50 kg N/ha), the farmer application (50 + 100 kg N/ha), and
the VRA treatment (50 + VRA kg N/ha).
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Figure 4a shows the average daily temperatures for the two growing seasons, as well
as the monthly average of a thirty-year period from the CLIMWAT base [57]. The data
allowed us to assess whether the temperature conditions of the two experimentation years
are close to those of an average year. Figure 4b shows the daily rainfall during the two
growing seasons. Average daily temperatures and daily rainfall are inputs for Aqua Crop.
Figure 4c shows the monthly rainfall of the two growing seasons and the average monthly
rainfall of a thirty-year period from the CLIMWAT database [57]. These data allowed us to
assess whether the rainfall conditions of the two experimentation years are close to those of
an average year.
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2.2. Soil Moisture Measurement Network

EM50 and Em50b data loggers and EC5 and 10HS soil moisture capacitance sensors
(Decagon devices, 2365 NE Hopkins Ct, Pullman, WA 99163, USA) were used to dynami-
cally monitor the soil water content during the growing season at different field positions.
Based on topographic features, the experimental field was divided into a lower, a middle,
and an upper zone. Each zone of the field was equipped with soil moisture sensors installed
at a 30 cm depth in the treatment strips of the two central blocks in the fall of 2015. One
additional multi-sensor system (with 10HS sensors) was installed at 10, 30, 50, 70, and
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90 cm depths in the lower and middle zone of block 2 to monitor the soil moisture of the
1 m profile. Their exact position is shown with the star symbols of Figure 2. A similar
arrangement was followed in the fall of 2016, but with four multi-sensor systems to cover all
topographic zones. To improve the accuracy of soil moisture sensors, a specific calibration
was carried out for the soil conditions of the experimental field.

The sensors were installed in a horizontal position a few days after sowing and the
soil water content was measured every 2 h. Disturbed and undisturbed soil samples
were taken from the trenches for texture, gravimetric soil moisture, and bulk density
determination. To minimize disturbance to the soil structure during 10HS-sensor instal-
lation, the soil was excavated layer by layer and was backfilled in its place. The soil
was then thoroughly compacted to make good contact with the sensors and restored
to its natural density. The good sensor–soil contact was checked with a ProCheck de-
vice (Decagon, USA). New grain was sown at the surface to restore plants that were
removed. Sensors were installed at a 30 cm soil depth (EC5 sensors) because a previous
analysis [58] showed that the measurement at this depth is a good approximation of the
average moisture of the 0–100 cm layer.

2.3. AquaCrop Model Description

AquaCrop was designed as an evolution from the original FAO Irrigation Drainage
Paper 33 [3], which represents the yield response to water as a linear, crop-specific function
of the ratio of actual to potential evapotranspiration over a growing season. Steduto et al.,
2009 [16] contains a very comprehensive description of the model’s conceptual design.

AquaCrop simulates soil water balance and crop growth processes as a function of crop,
soil, weather, and management input data on a daily time step [59]. In addition, AquaCrop
simulates soil evaporation and crop transpiration explicitly as individual processes. Crop
yield response is understood as a function of water consumption [60]. The calculation
cycle contains a simulation of green canopy development (CC), crop transpiration (Tr),
aboveground biomass production (B), and crop yield [60,61]. AquaCrop has four sub-model
components: (i) the soil (water balance); (ii) the crop (development, growth, and yield); (iii)
the atmosphere (temperature, rainfall, evapotranspiration (ET), and carbon dioxide (CO2)
concentration); and (iv) the management (major agronomic practices such as planting dates,
fertilizer application, and irrigation if any) [35].

The AquaCrop model is a water-driven model because it simulates aboveground
biomass production in exchange for water transpired by the crop according to the
following relation [16,19]:

Bn = WP∗ ×
n

∑
i=1

(
Tri

EToi

)
(1)

where Bn is the cumulative aboveground biomass produced after n days (g m−2); Tri is
the crop transpiration per day (mm day−1); EToi is the daily reference evapotranspiration
(mm day−1); i = 1 . . . n are the days for Bn production; WP* is the normalized crop water
productivity (g m−2).

The crop canopy development and phenology are driven by temperature. The water
transpired by the crop is determined by the canopy cover [19].

It also simulates daily water movement in and out of the soil profile considering
surface runoff, infiltration, capillary rise, soil evaporation, and crop transpiration. As for
water balance, the simulation starts with the drainage of the soil profile. Subsequently,
water infiltrates into the soil profile (after the subtraction of surface runoff) or moves
upward by capillary rise from a shallow groundwater table. Finally, the amount of water
lost by soil evaporation and crop transpiration is calculated. In each of the described
subroutines, the soil water content is updated at the end of the time step and at each
soil layer, resulting in the final daily water content [61]. When calculating the soil–water
balance, the amount of water stored in the root zone can be expressed as an equivalent
water depth (Wr) or as root zone depletion [2]. This allows the calibration and validation of
the model with soil moisture measurements taken in the field.
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Unlike all other models, AquaCrop uses canopy cover (CC), not leaf area index (LAI).
The use of CC, as opposed to LAI, is meant to introduce simplicity by reducing the overall
aboveground growth into just a single growth function [62].

AquaCrop does not explicitly consider nutrient cycles or balances [46,60]. However,
soil fertility stress is determined by its expected effect on crop biomass production, using a
semi-quantitative assessment to establish the degree of stress resulting from various levels
of nutrient deficiency. Under these conditions, the model is based on local calibration to
relative biomass under different fertility and salinity conditions. This approach yields a
ratio (Brel), calculated as the total dry aboveground biomass at the end of the growing
season in a field with soil fertility stress (Bstress) divided by that without soil fertility stress
(Bref) (see Equation (2) and [37]).

Brel = Bstress/Bref × 100% (2)

As shown in Equation (2), Brel ranges from 0%, meaning complete crop failure
from nutrient deficiency, to 100%, indicating no nutrient stress. This characteristic of the
model allows the user to simulate the combined effect of soil fertility and water stress
that is a major strength of the model [46]. Using Bref, harvest index, and Brel, the final
yield is estimated.

2.4. Simulation Procedure

(i) The evaluation aimed at the effectiveness of AquaCrop to simulate the soil water con-
tent evolution and crop yield in different areas of an experimental field under different
treatments. Two soil water content profiles (up to 1 m depth) in the 2015–2016 growing
season and four profiles in the 2016–2017 growing season were used (Figure 3). Table 2
present the conservative and the nonconservative parameters used for the simulations
during the two growing seasons. The model was adjusted to crop yield (kg/ha) as
measured in plot samples. Measurement of soil water content is a prerequisite for
establishing a reliable water balance at the field scale.

(ii) AquaCrop was evaluated to estimate the wheat yield under different treatments. The
simulation was a two-step procedure: (a) simulations at field positions with 30 cm
soil moisture sensors (blocks/repetitions 2 and 3) were used to determine soil water
content evolution, yield, and average fertility per zone and treatment (Calibration
of the model); (b) using these fertility levels and local soil data, crop production was
estimated in other parts of the field with available yield data (blocks/repetitions 1
and 4) under different N treatments. The simulated yields were compared to the
field yields (Validation of the model). For the simulation, we used the default in the
AquaCrop wheat.cro file (Valenzano).

For the two cultivation periods, the reference evapotranspiration was calculated by the
model using as input the minimum, mean, and maximum daily temperature according to
FAO 56 protocol [63]. For this evaluation, data from a private database (larisa.meteoclub.gr)
were used. For comparative reasons, the mean reference annual evapotranspiration was
presented using 30 year data from the FAO database concerning the region of Larissa (near
the study area). The CROPWAT model was used for the 30 year average ETo. Meteorological
data were provided by CLIMWAT [57].

The physical soil characteristics of all the plots in the upper, lower, and middle zone
of the experimental field were determined. They were processed with Soil Water Hydraulic
Properties Calculator [64] to calculate hydraulic parameters required by AquaCrop. These
included volumetric soil water content at field capacity (FC), permanent wilting point
(PWP), saturation (SAT), and saturated hydraulic conductivity (Ksat). Curve number was
also adjusted to slope variations according to the Sharply–Williams method [65].
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Table 2. Conservative and Fine-tuned non-conservative crop parameters used for AquaCrop.

A. Conservative Crop Parameters

Base temperature (◦C) below which crop development does not progress 0.0
Upper temperature (◦C) above which crop development no longer

increases with an increase in temperature 26.0

Crop coefficient when canopy is complete but prior to senescence (KcTr, x) 1.10
Water productivity normalized for ETo and CO2 (WP*) (g/m2) 15.0
Possible increase (%) in HI due to water stress before flowering 5

Coefficient describing positive impact on HI of restricted vegetative growth
during yield formation 10.0

Coefficient describing negative impact on HI of stomatal closure during
yield formation 7.0

Allowable maximum increase (%) in specified HI 15
Soil water depletion factor for canopy expansion (p-exp)—Upper threshold 0.20
Soil water depletion factor for canopy expansion (p-exp)—Lower threshold 0.65
Soil water depletion fraction for stomatal control (p-sto)—Upper threshold 0.65
Soil water depletion factor for canopy senescence (p-sen)—Upper threshold 0.70
Minimum growing degrees required for full crop transpiration (◦C—day) 14.0

B. Fine-Tuned Non-conservative Parameters

Number of Plants per Hectare 185,000

Degree Days: from sowing to emergence 150
Degree Days: from sowing to max. canopy 1186

Degree Days: from sowing to flowering 1250
Degree Days: from sowing to senescence 1700
Degree Days: from sowing to maturity 2400

Maximum canopy cover (CCx) in fraction soil cover 0.96
Maximum effective rooting depth (m) 1.00

Average root zone expansion (cm/day) 0.9
Reference Harvest Index (HIo) (%) 48

3. Results
3.1. Meteorological and Soil Conditions

The reference evapotranspiration was close to the 30 year average in both years of
the experiment (Figure 5). This was not the case with rainfall (Figure 4c) and the mean
air temperature (Figure 4a). During March and May 2016, the rainfall events were close
or higher than 40 mm (Figure 4b). Monthly precipitation was higher than the 30 year
average during March 2016, and January and May 2016 and 2017. On the contrary, during
December and April of both growing seasons, the monthly rainfall was much lower than
the 30 year average.

Soil texture was significantly affected by the topographic variation. The slope had
coarser soil due to erosion that lowered the level of the ground (see photo in Figure 1) as a
result of management practices and crop rotations.

The soil texture analysis indicated the high spatial variability of the experimental field
(Table 3). The lower zone had a predominantly clay texture. The upper zone also had a clay
texture (C), but some positions were characterized as clay loam (CL) and two positions
with increased sand (sandy clay (SC), in Blocks 1 and 3). Due to slope, the soil of the middle
zone was eroded so that SC and sandy clay loam (SCL) were often present. Only the left of
the experimental field (Block 4) had reduced erosion due to the lower slope, and class C
was the main soil texture.

Wilting point and field capacity were determined using soil texture at the sampling
points and Soil Water Hydraulic Properties Calculator [51]. Their values were higher in the
lowland area due to the increased fine particles (clay and silt).
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3.2. Simulation: Model Calibration and Validation

The model was adjusted to the measured plot yields where the 1 m soil moisture
profile was installed (Table 4). The water balance was calculated for the same plots (Table 5).
Figure 6 presents the measured and simulated 1 m soil water content during the growing
season. Their correlation coefficients are shown in Table 5 (n = 87). For the estimation of
water content in the root zone, data of five soil moisture sensors per profile were used.
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Table 3. Soil texture analysis of the experimental plots (0–20 cm and 20–40 cm) (*).

Field
zone

Block4 Block3 Block2 Block1

(0–20) cm

Preplant Farmer VRT Farmer VRT Preplant VRT Preplant Farmer VRT Farmer Preplant

Upper C C C C C SC C C C/CL C/CL CL C

Middle C C C SCL CL/SCL SC/CL CL SC/SCL SC/CL/SCLSCL L SC/SCL

Lower CL C CL C C C C C C C C C

(20–40) cm

Upper C C C C C C/SC SC C CL CL SC SC/CL

Middle CL C C SC/SCL CL SCL SCL C SCL SCL SCL SC

Lower C C CL C C C C C C C C C

(*) The position of the sampling refers to the 2016–17 experimental design. C: clay, CL: clay loam, SCL: silty clay
loam, SC: silty clay.

Table 4. Measured and simulated yields and the corresponding fertility level (where a 1 m-soil
moisture profile is recorded).

Treatment Measured Yield
(kg/ha)

Simulated Yield
(kg/ha) Fertility Level

2015–2016 VRA low 9220 8793 100%
2015–2016 VRA mid 5380 5410 59%
2016–2017 VRA low 5340 5336 72%
2016–2017 VRA mid 2070 2115 24%
2016–2017 Farm mid 1860 1835 21%
2016–2017 VRA up 3020 3010 34%

The yield simulation results during the calibration phase and the average yearly
fertility using blocks 2 and 3 are presented in Table 6. The simulated yields are close to the
measured ones. This indicates the high adaptation of the model and its ability to predict
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the field data. In the second step, the model estimated crop yield (blocks 1 and 4) using
the average soil fertility by treatment and zone during the calibration procedure. The
calculated yields for the rest of the plots without soil moisture sensors in the same blocks
are shown in Table 7 (validation procedure). The relative variation (%) of simulated final
yields in comparison to the measured ones is presented in the Table 8. The correlation
between measured and simulated yields is presented in Figure 7 and Table 9. In this table,
the same correlation for the upper, middle, and lower zone is also presented.

Table 5. Simulation results (E, evaporation; T, transpiration; R, runoff; D, drainage) and Pearson
correlation coefficients between measured and simulated mean daily soil water content for each 1 m
profile (n = 87).

Treatment E (mm) T (mm) R (mm) D (mm) R

2015–2016 VRA low 43 250.2 32.6 39.8 0.58

2015–2016 VRA mid 77.7 201.8 22.7 52.9 0.82

2016–2017 VRA low 106.7 216.1 12.8 8.2 0.95

2016–2017 VRA mid 162 134.4 15.2 16 0.89

2016–2017 Farm mid 168.8 120.5 15.7 57.1 0.94

2016–2017 VRA up 118.5 206.3 30.3 0 0.82
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Table 6. Results of calibration simulations (kg/ha) using fertility as adjustment parameter. Average fertility for each zone treatment (Blocks 2 and 3).

Lowland Slope Upland

2015–2016
Cult. Per. Treatment Yield Meas Fertility Yield Sim Average

Fertility Yield Meas Fertility Yield Sim Average
Fertility

Yield
Meas Fertility Yield Sim Average

Fertility

Block2 Preplant a 7700 86% 7730 81% 5150 56% 5140 70% 7010 77% 7050 72%
Block3 Preplant a 6920 76% 6930 7560 84% 7530 6110 67% 6160
Block2 Farmer a 6380 69% 6320 79% 4290 46% 4320 61% 6380 70% 6410 66%
Block3 Farmer a 7910 89% 7930 6720 75% 6780 5690 62% 5720
Block2 VRA a 9220 100% * 8790 90% 5380 59% * 5410 78% 6700 74% 6760 75%
Block3 VRA a 7190 79% 7170 8520 97% 8540 6890 75% 6870

2016–2017
Cult. Per. Treatment Yield meas. Fertility Yield sim Average

Fertility Yield meas. Fertility Yield sim Average
Fertility Yield meas. Fertility Yield sim Average

Fertility

Block2 Preplant b 4380 53% 4360 53% 3210 37% 3220 32% 2780 30% 2720 27%
Block3 Preplant b 4190 52% 4210 2400 27% 2400 1990 23% 2020
Block2 Farmer b 4510 57% 4600 55% 1860 21% * 1840 27% 3500 40% 3480 33%
Block3 Farmer b 4350 53% 4360 2860 32% 2870 2210 25% 2210
Block2 VRA b 5340 72% * 5370 63% 2070 24% * 2120 27% 2960 34% * 2910 39%
Block3 VRA b 4440 54% 4440 2700 30% 2690 3810 45% 3850

NB 1. * Position of recorded 1 m soil moisture profile. In all other positions, only a sensor at 30 cm was installed. NB 2. Average fertility per treatment (Blocks 2 and 3): a 2015–2016,
Preplant = 74.33%, Farmer = 68.67%, VRA = 81.00; b 2016–2017, Preplant = 37.33%, Farmer = 38.33%, VRA = 43.00%.
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Table 7. Results of validation simulations (kg/ha) using average yearly fertility per treatment and zone (*) obtained in the calibration stage (Blocks 1 and 4).

Lower Zone Middle Zone Upper Zone

2015–2016 Cult.
Per. Treatment Yield meas Fertility * Yield sim Yield meas Fertility * Yield

sim Yield meas Fertility * Yield
sim

Block1 Preplant 4990
81%

7340 5920
70%

6410 4390
72%

6610

Block4 Preplant 6270 7340 6350 6410 6680 6610

Block1 Farmer 6090
79%

7170 3370
61%

5610 5860
66%

6060

Block4 Farmer 5610 7170 7920 5620 6260 6060

Block1 VRA 7470
90%

8070 3630
78%

7030 5990
75%

6870

Block4 VRA 7190 8070 8870 7120 5880 6870

2016–2017 Cult.
Per. Treatment Yield meas Fertility * Yield

im Yieldmeas Fertility * Yield
sim Yieldmeas Fertility * Yield

sim

Block1 Preplant 3200
53%

4360 1220
32%

2970 1740
27%

2410

Block4 Preplant 4000 4360 2750 2990 2950 2410

Block1 Farmer 3320
55%

4440 3280
27%

2400 2870
33%

2940

Block4 Farmer 4110 4440 4170 2420 3210 2940

Block1 VRA 4670
63%

4990 2610
27%

2420 2900
39%

3260

Block4 VRA 3740 4990 4130 2420 3020 3260
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Table 8. Relative variation in simulated final yield.

Variation in Simulated vs. Measured Yield (%)

2015–2016
Growing Season Treatment Lower Zone Middle Zone Upper Zone

Block1 Preplant +47.09 +8.28 +50.57
Block4 Preplant +17.07 +0.94 −1.05
Block1 Farmer +17.73 +66.47 +3.41
Block4 Farmer +27.81 −29.04 −3.19
Block1 VRA +8.03 +93.66 +14.69
Block4 VRA +12.24 −19.73 +16.84

2016–2017
Growing Season

Block1 Preplant +36.25 +143.44 +38.51
Block4 Preplant +9.00 +8.73 −18.31
Block1 Farmer +33.73 −26.83 +2.44
Block4 Farmer +8.03 −1.97 −8.41
Block1 VRA +6.85 −7.28 +12.41
Block4 VRA +33.42 −41.40 +7.95
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Figure 7. Field versus simulated yield for the plots selected for validation.

Table 9. Correlation of measured (y) and simulated (x) yields.

Data Equation R2

Total Field y = 0.8913x 0.95

Upper Zone y = 0.9059x 0.98

Middle Zone y = 0.9666x 0.89

Lower Zone y = 0.8358x 0.99

The statistical analysis of the data used for validation (Table 7) revealed a strong rela-
tionship between measured yield and fertility, simulated yield and fertility, and measured
yield and simulated yield (Table 10).

In the following Figure 8a–d, the fertility factor and the measured yields for the three
zones and the three treatments are presented.
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Table 10. Correlation coefficients matrix.

Yield Measured Fertility Factor % Yield Simulated

Yield measured 1.0000 0.9718 *** 0.9736 ***

Fertility factor % 1.0000 0.9990 ***

Yield simulated 1.0000
*** Correlations were significant at the 0.001 level (p < 0.001).
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4. Discussion
4.1. Simulations Using the 100 cm Soil Moisture Profile

In most cases, the simulated soil water content was in agreement with the water
content measured in the rootzone (Figure 6). The success of the model in simulating soil
water changes was also evident by the correlation coefficients between simulated and
measured moisture values in each soil profile (Table 5). Water balance parameters, such
as water requirement (actual evapotranspiration), leaching, and runoff, are needed for
scheduling irrigation and fertilization so that N losses can be avoided (Table 5).

Considering the field and simulated data in blocks 2 and 3, the use of VRA resulted
in high fertility for the first growing season (100% in the lowland and 59% in the slope,
Table 4). On the contrary, the lower N rates of the 2016–17 growing season resulted in lower
soil fertility for the VRA operation (72% in lowland, 34% in upland, and 24% in the slope).
Soil fertility in the slope of the farmer treatment was even lower (21%).

The actual soil fertility (expressed as a percentage of the maximum that could be
achieved in Equation (2)) was used for the estimation of simulated yield. Measured yields
were higher in 2016 than 2017 when comparing areas with similar conditions, i.e., lower
and middle zones of VRA treatment (Table 3). This is probably due to the January 2017
frost (Figure 4a), the lower precipitation (Figure 4b,c), and the lower preplant fertilization
during the second growing season. The first growing season (2015–2016) was favored
by the high rainfall of March 2016 at a suitable time for plant growth. In the second
year, the combination of unfavorable weather and lower preplant fertilization halted crop
development, as it is seen in the fractioning of evapotranspiration. Where there was lower
plant development, evaporation was higher than transpiration (Table 5).
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It is also noted that the model responded to the different locations of the field. This is
imprinted on yields with corresponding fertility adjustments in both growing seasons. Fer-
tility was higher in the lower zone than in the middle and upper zone (Table 4). The higher
yields in the lower zone were due to sediment accumulation and deeper and more fertile
soil with higher organic matter content and greater mineralization potential. In the middle
and upper zones, the fertility was lower as conditions are less favorable (increased erosion,
stony and shallow soil). When comparing treatments, the VRA yields were 280 kg/ha
higher than those of the conventional farmer practice by taking into consideration the
middle zone of 2016–17 (Table 4).

We also observed that drainage losses were reduced, so the local environment is safe
from nitrate contamination. Only in the case of the middle zone 2015 and 2016, the leaching
reached up to 53–57 mm and was probably caused by lower clay content that allowed the
increased infiltration of water (Table 5).

There is some concern about surface runoff, so care must be taken to avoid fertilizer
application prior to big storms. The warning concerns even slightly sloped clay soil of
lowland areas of the field that may have considerable runoff (Table 5).

4.2. Simulations in All the Zones of the Field for Yield Estimation

During the calibration procedure, the average fertility by treatment and zone was
estimated using data from blocks 2 and 3 (Table 6). As expected, the fertility was higher in
the lower zone in both growing seasons due to a deeper soil profile with fine soil texture.
The fertility of the middle and upper zones was also higher in 2015–2016 (61–78%) than in
2016–17 (27–39%).

The values of simulated and measured yields during the calibration procedure (Table 6)
demonstrate the ability of AquaCrop to be adapted to the field results.

Fertility stress, explaining the lower-than-potential observed yields, changed the
ranking of several plots. Plots that were expected to give high yields due to their
hydraulic properties and nitrogen treatment in reality appeared with a fertility much
lower than the optimal. This is partially indicated by the high calcium content of the
middle and upper zone [50].

The results show that yield variations were caused mostly by pedoclimatic conditions.
The fertility parameter helped us exclude these external factors for a clear comparison of
fertilization treatments. The comparison shows that the conventional farmer fertilization
was ineffective. In Blocks 2 and 3, the fertility of farmer treatment (average value) was
lower than that of the preplant in all zones of 2015–16 and in the middle zone of 2016–17
(Table 6). The results indicate that large amounts of nitrogen were lost to the environment.

Variable-rate application performed better than the other treatments in almost all cases
(Table 6). In the first growing season, the VRA yields of the lower zone were 12% and 15%
higher than those of the preplant and farmer treatments, respectively (Blocks 2 and 3). In
the second growing season, the VRA yields of the lower zone were 14% and 10% higher
than those of the preplant and farmer treatments, respectively. The fact that the higher
fertility levels were achieved with less fertilizer indicates that VRA was effective as a means
of targeted nitrogen application.

Taking into account the average fertility by zone and treatment (calibration procedure
in Blocks 2 and 3), the model was applied to the corresponding plots of Blocks 1 and 4
(validation procedure, Table 7). The relationship between the obtained simulated yields
and the measured field yields is presented in Figure 7. Regression analysis showed that this
relationship is strongly linear with R2 = 0.95 (Table 9). In the same table, we can observe that
the model slightly overestimated the yields for all field zones. Additionally, the relationship
between simulated and measured yields was stronger in the lower (R2 = 0.99) and upper
(R2 = 0.98) zones compared to the relationship in the middle zone (R2 = 0.89), probably
due to its higher spatial variability (Table 9). The correlations between simulated and
measured grain yield are consistent with those obtained in other studies. For example,
similar values were obtained by Akumaga et al., 2017 [46]: R2 = 0.93; Abedinpour et al.,
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2012 [25]: R2 = 0.96; Mebane et al., 2013 [66]: R2 = 0.96; and Shrestha et al., 2013 [26]:
R2 = 0.90. Although the correlation coefficients were high, the range of relative variations
observed in the various field zones is important: +6.85% to +47.09% in the lower zone,
−41.97% to +143.44% in the middle zone, −18.31% to +50.57% in the upper zone (Table 8).
The yield simulations were more successful in the lower zone.

The fertility factor was significantly higher in the lower zone (p = 0.041) (Figure 8a)
reflecting the more favorable conditions for crop growth. The fertility factor did not
significantly differ between the three treatments (p > 0.05) (Figure 8b). The fertility level
was lower in the second growing season possibly due to less preplant fertilizer applied.
The early-season frost probably contributed to the lower yields in 2017.

The measured yields were also higher in the lower zone but did not differ significantly
from those obtained in the other zones (p > 0.05, Figure 8c). The measured yields did not
differ significantly between the three N treatments (p > 0.05, Figure 8d). However, the
lower fertilizer rate of VRA (131 kg/ha) in comparison to the farmer practice (212 kg/ha)
led to a clear advantage of this technology in terms of improved fertilizer management and
protection of the environment. The VRA was more effective under the favorable conditions
of the low zone (deeper and more fertile root zone) and in the first growing season. The
preplant N treatment was more efficient than the farmer practice.

5. Conclusions

The model was focused on the water factor and successfully simulated the evolution
of soil moisture during the growing season, the estimation of the various water balance
parameters, and the expected yield. The model was useful for scheduling irrigation and
controlling fertilizer losses through leaching and surface runoff.

The irrigation schedule, soil texture, underground water (if any), initial soil moisture
conditions, adjustment of curve number according to the slope variation, and the manage-
ment practices (use of mulch or not) were needed to estimate the evolution of soil moisture
during the growing season. It is important to note that the soil water content profile was
close to the measured profile in most simulations, which is a strong indication of a good
estimate of the water balance at the field level.

AquaCrop allows the impact of climatic conditions to be dissociated from soil
fertility. It is evident that the VRA treatment increased soil fertility with a reduced
nitrogen rate (81 kg N/ha less than that of the farmer in 2015–2016) and was more
effective in the lower zone.

Based on the analysis of the experimental data, the ability of AquaCrop to estimate
wheat yield was demonstrated in a field with high soil and topographic variability. The
analysis showed the potential of AquaCrop to be adapted to the field data (calibration
procedure) and its ability to give a good estimation (high R2) of the measured yield at the
field level (validation procedure). However, simulated yields with significant deviations
from the real yields could be locally observed.

The water-driven AquaCrop model was proven particularly useful in optimizing
agricultural practices regarding the combined effect of water and nitrogen fertilization.
Analyses of this type are particularly useful for areas such as Thessaly, which has environ-
mental issues from intense agricultural activity. The significant falls in the aquifer level,
salinization, but also contamination by agrochemicals are important problems that must
be addressed with the restructuring of crop patterns and the improvement of agricultural
practices. AquaCrop can also help analyze the combined action of water fertilization in the
context of climate change.

The weakness of the model is the qualitative approach of soil fertility. The level of
fertility should be determined by experiments in the study area and/or by historic yield
with corresponding fertilization data.

The model appears to be an efficient tool for evaluating and improving the manage-
ment practices. To catch up with market and environmental challenges, concerted action is
needed that includes improved decision-making supported by scientific evidence. More
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field trials are required to verify our findings in different fields, crops, and growing seasons
in the study region.
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