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Abstract: This paper described the variability of stream temperature, Ts, and compared relationships
between Ts and air temperature, Ta, at 10 sites along a 1.2 km reach in a 2 km2 basin in
New Jersey, USA, using Bayesian Hierarchical Regression. Mean daily mean Ts was significantly
cooler at two sites and significantly warmer at three sites relative to the mean daily Ts for all sites
combined. Seasonal daily mean Ts showed the greatest variation between sites in the summer within
the reach for both daily mean and daily maximum temperatures. Posterior distributions for slope
parameters (β j) for regressions varied significantly by season and showed the greatest variation in
summer. The strongest relationships occurred in autumn with β = 0.743 ± 0.019 (β = 0.712 ± 0.022),
and the weakest relationships occurred in the summer with β = 0.254 ± 0.030 (β = 0.193 ± 0.039).
Results support the conclusion that riparian shading impacts the effect of Ta on Ts, and that Ts

shows a stronger relationship with measured Ta at sites in open areas that are more likely to have
meteorologic conditions similar to bulk conditions.

Keywords: Bayesian hierarchical regression; stream temperature variation; headwater; local-scale;
microhabitat

1. Introduction

Stream temperature (Ts) is an important water quality parameter that has direct effects on a wide
range of important processes in rivers. It plays a significant role in freshwater ecosystems through direct
and indirect impacts on aquatic organisms [1–3]. Stream temperature directly affects the timing of fish
spawning [4], controls freshwater mussel life cycles [5], and high Ts can have lethal affects on most organisms.
Stream temperature indirectly controls overall stream metabolism through impacts on nutrient cycling and
dissolved O2 concentrations [6,7]. Variation of Ts creates heterogeneity of aquatic habitat and influences
the distribution of fish and other organisms in a river network [8]. Furthermore, Ts has been rising along
with global air temperatures throughout most of the world [9,10], and will likely have a significant
impact on many fish species, such as salmonids and trout, that are sensitive to high Ts as well as
other aquatic organisms [11]. For instance, in North America, freshwater mussels (Unionids) are
a highly threatened group of organisms [5] that are vulnerable to increasing Ts [12]. Daraio et al. [13]
indicated that thermal thresholds for mussels will be exceeded more frequently as a result of land-use
and climate change in many areas of a watershed in North Carolina, USA, but not uniformly within
the basin. Understanding Ts variation over a wide range of scales will help conservation efforts and
management of aquatic habitat and fisheries [14].

The fundamental physical processes that determine heat fluxes that control Ts in streams are relatively
well understood (see Webb et al. and Garner et al. [1,15] for reviews). However, the complexity of river
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systems makes it difficult to understand dominant mechanisms that lead to stream temperature variability.
Stream temperature can vary at a wide range of spatial scales, including the basin scale, reach scale,
and laterally across the width of a river [1,16–20].

Some systems show little variation in stream temperature. Groundwater fed streams tend to
show less spatial variation of Ts, and groundwater can be of importance across at local scales [21,22].
For example, gaining streams showed less diurnal Ts variation as a result of the influx of groundwater,
which is at a relatively constant Ts [23]. In contrast, alpine river systems have a high degree of
variation in Ts due to the influence of snowmelt, ice-melt, and hydroclimatological conditions [24,25].
Stream temperature increased by greater than 8 ◦C over a 1 km reach in glacial fed river and extreme
rainfall decreased temperatures up to 10 ◦C [26]. River systems with Ts variation between these
extremes are impacted by a wide range of processes: land-use, clear-cutting, and forest fires impact
Ts [1]. Stream temperature after the occurrence of wildfires in the Canadian Rocky Mountains
increased both mean daily and daily maximum Ts by up to 3 ◦C [27]. Small watersheds in urban
areas produce Ts surges after storm events as runoff travels over heated impervious surfaces [28].
However, the degree to which runoff adds heat is dependent upon characteristics of the rainfall event
and weather conditions prior to the event, e.g., air and dew point temperatures and duration of
rainfall [29]. Riparian cover contributes to spatial heterogeneity of Ts at local scales within stream
networks [30]. Interactions between local and watershed scale processes makes it difficult to parse
and quantify the relative contribution of potential sources of variability in Ts. Djebou and Singh [31]
use an entropy-based index to quantify patterns of precipitation, land-cover, and streamflow across a
watershed, and such an approach may be useful to assess stream temperature variability as well.

Our growing understanding of Ts and Ts variation and its importance to river ecosystems has
led to an increased interest in the use of Ts models to aid in conservation and management decisions.
Many studies have shown a strong relationship between Ta and Ts [10,21,32], which is most likely
because the heat fluxes that determine Ts and Ta are similar. For instance, Johnson et al. [33] found
that 84–94% of variance in Ts at the daily scale was explained by varaiance in Ta. However, transfer of
heat energy from air to water only accounts for a small portion of energy exchanges affecting stream
temperature [34]. While it is likely that regional models of Ts based on Ta do not capture the variation
in local scale Ts and fail to represent small-scale thermal variation [35], it is possible that variations in
relationships between Ts and Ta could point to sources of variation in Ts at local scales.

There have been relatively few studies that attempt to quantify differences in the relationship
between Ts and Ta. Rice and Jastram [36] used principal components analysis to examine trends in air
and water temperature based on landscape scale factors such as dominant land cover and presence of
major dams. Stefan and Preud’Homme [37] performed linear regression of Ts with Ta in the Upper
Mississippi River basin at 11 sites, with scales ranging from 137 km2 to 400,000 km2, and found that
regression coefficients and variances of coefficients differed across sites. Stefan and Preud’Homme [37]
explained differences in coefficients to be a result of local features in the river network, such as
impoundments, lakes, wetlands, industrial releases, and shading. Caissie et al. [38] found that
regression models relating Ta to Ts only worked on a weekly time scale and varied on a seasonal basis,
which seems to suggest the dominance of microclimate in driving Ts variation.

We conjecture that measuring differences in the relationship of Ts and Ta will help identify
factors most important to Ts variability at small scales. In this paper, we use Bayesian hierarchical
regression analyses to quantify variation in Ts and its relationship with Ta and then attempt to relate
it to site specific characteristics within the basin. The objectives were to (1) describe the variability
of Ts in a small urbanized watershed at a daily time scale; and (2) determine and compare posterior
distributions of estimated regression parameters for Ts and Ta at 10 sites within the basin at a daily
time scale using Bayesian regression techniques. Objective (2) will provide a measure of the variability
of Ts and the relationship between Ts and Ta in this small watershed.
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2. Methods

2.1. Site Location

Chestnut Branch is a tributary of Mantua Creek, which flows into the Delaware River across from
Philadelphia International Airport (Figure 1). Chestnut Branch bisects the Rowan University campus,
and the basin area is approximately 2 km2. It is a perennial first-order stream with a mean annual flow
of around 0.062 m3 s−1 and minimum flow of approximately 0.057 m3 s−1 at its outlet. Stream flow
(Q, m3 s−1) was measured by Rowan University undergraduate students as part of an engineering
clinic in Fall 2013 and Spring 2014. Rating curves were developed at two sites (Figure 2) and stream
flow was estimated at these sites over the period of record. The region has an average annual rainfall
of 1155 mm.

Figure 1. Location of Chestnut Branch. Dashed lines in representation of Chestnut Branch signifies
an underground conduit that drains into the stream.

Figure 2. Location of sites where stream temperature data were collected.
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2.2. Data

The 1.3 km reach of the Chestnut Branch was divided into 10 sites (Figure 2). Sites were chosen in
order to collect data from areas representing a range of riparian and watershed conditions (Table 1).
Stream temperature (◦C) was recorded using Onset R© HOBO R© Water Temperature Pro v2 Data Loggers
(Onset Computer Corporation, Bourne, MA, USA) from August 2013 to August 2014. The number of
daily temperature samples at each site are given in Table 1. The temperature loggers have an accuracy
of ± 0.21 ◦C, and the manufacturer calibrates all its data devices. Temperature loggers were checked
(cross-calibrated) over a 24 h period in air. Meteorological data were collected using an Onset R©

HOBO R© weather station located on the roof of Rowan Hall adjacent to Rowan Pond that flows into
site 2 (Figure 2). Data were collected for Ta (◦C), solar radiation (Rs, Wm−2), wind speed (V, ms−1),
relative humidity (RH), and precipition. (P, mm). Precipitation was recorded using a tipping-bucket
rain gage.

Table 1. Basin characteristics and description of site locations. Length, L, in meters of the location
of the site upstream from the stream outlet at site 1. NA indicates that is not a temperature logger
upstream of the site. Area, A, in hectares of drainage area for the basin delineated at the location of the
logger. Sample size, N, indicating number of days with temperature readings at each site.

Site L (m) A (ha) N Location/Description

1 0 64.4 316 Outlet of the basin, highly shaded reach with intermittent tributaries that
flow during rainfall events.

2 303 3.29 346 Confluence of surface inflow from Rowan Pond, which is shaded most of
the day and groundwater fed with a baseflow of approximately 25% of
flow in Chestnut Branch.

3 376 ∗ 7.17 343 Drainage conduit that runs under a parking lot and drains a constructed
wetland/detention area that primarily collects runoff from student
residences on campus. Baseflow in this conduit was estimated to be
<0.001 m3 s−1 with enough flow for the logger to be fully submerged.

4 417 9.35 244 Shaded area about midway between sites 2 and 5.
5 540 1.92 224 Incised shaded section of the stream about midway between sites 4 and 6.
6 675 8.34 275 Midway point of a relatively broad meandering section of the stream with

sparse riparian cover. The stream is incised in this area
7 794 2.28 299 Downstream site 8 in a sparsely shaded, slow flowing, relatively deep

reach that receives runoff directly from a large area of impervious surface.
8 852 79.1 302 Downstream of shaded riparian area with multiple storm drainage inlets

fed from off campus areas of Glassboro.
9 1090 7.93 330 Downstream of Abbott’s Pond, which is surface water fed and not

well shaded.
10 1246 18.75 330 Upstream most section of Chestnut Branch open to atmosphere.

∗ Not on the main stem of Chestnut Branch.

Mean daily flow at gage 1 (located at the watershed outlet, site 1) was 0.93 ± 0.05 m3 s−1

and at gage 2 (site 8) was 0.89 ± 0.05 m3 s−1. On average, flows were 0.004 ± 0.02 m3 s−1 greater
(not significant; p = 0.37) at gage 1 than gage 2 over the year, but on a daily basis differences in mean
flows were significantly greater (p < 0.05) at gage 1 than gage 2 by 0.15 ± 0.02 m3 s−1. Inflow between
stream gages 2 and 1 was primarily from Rowan pond, which is groundwater fed, and groundwater
inflow that occurs between sites 4 and 1.

2.3. Data Analysis

Fifteen minute increment Ts data were used to calculate daily mean Ts and find the daily maximum
Ts at each site. Fifteen minute increment meteorological data were used to calculate daily average Ta,
daily average RH, daily maximum incoming Rs, daily average V, and daily total P. Temperature data
were centered by subtracting the mean daily Ts or Ta (mean daily maximum Ts or Ta) for all sites
combined over the time period of analysis from the daily mean (daily maximum) Ts or Ta for each day.
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Centering allows for a direct interpretation of the regression intercept parameter as the temperature
difference, or anomaly, at a given site compared with all sites combined, and it allows for direct
comparison of the mean temperature between sites. Analyses were done using the entire period of
record, and on a seasonal basis.

Variations in relationships between Ts and Ta at sites across the watershed were assessed using
hierarchical Bayesian linear regression. Bayesian regression considers intercept and slope parameters
as random variables, and analyses were performed to estimate posterior distributions for these
parameters. Assessing posterior distributions for regression parameters allows the identification of
differences and variation in the strength of relationships between Ts and Ta, and provides estimates
of differences and variation in temperature. A varying-intercept, varying-slope model was used
to determine relationships of daily mean and maximum Ts with Ta at each site. In general form,
the regression was given by

yi ∼ N
(

αj[i] + β j[i]xi, σ2
y

)
for i = 1, . . . , I, (1)

where the the regression parameters are estimated from a normal distribution(
αj

β j

)
∼ N

[(
µα

µβ

)
,
(

σ2
α σασβ

σασβ σ2
β

)]
for j = 1, . . . , J,

and yi is the predictand (mean or maximum daily Ts) at site j, xi is the predictor (mean or maximum
Ta, mean Rs, etc.) at site j, I is the total number of observations at site j, J is the total number of
sites (10), αj is the intercept parameter at site j having an mean µα and variance σ2

α , and β j is the
slope parameter at site j having an mean µα and variance σ2

β. The notation N(, ) represents that
parameters αj and β j were from a Gaussian (Normal) distribution with a given mean and variance.
Non-informative prior distributions were given for hyper-parameters: σ2

y , µα, and µβ were given
by uniform distributions, and the covariance matrix for αj and β j was given by an inverse-Wishart
distribution. Bayesian regression analyses were done using R [39] and the R package R2OpenBUGS [40].
See Gelman and Hill [41] and Lunn et al. [42] for details on Bayesian regression and using
BUGS. Statistical tests comparing regression parameters were done using methods for normally
distributed data.

3. Results

Mean daily Ta over the time period of data collection was 12.2 ± 9.85 ◦C , and mean daily
maximum Ta was 17.6 ± 10.3 ◦C. Mean daily Ts over the time period of data collection was
14.4 ± 6.41 ◦C, and mean daily maximum Ts was 15.9± 6.33 ◦C. Mean daily and mean daily maximum
Ts showed significant variation within the watershed (Figure 3). Variation in daily mean Ts was similar
at all sites (Table 2) with sites 3 and 9 showing the greatest variation in daily mean and daily maximum
Ts. Site 1 had the lowest variance for daily mean and daily maximum Ts. While Ts at sites were highly
correlated (Table 2), there was no clear trend in correlation as a function of the distance between
sites. Site 10 showed the weakest relationship with other sites, but this did not seem to be a function
of distance since correlations for site 10 were stronger with site 1 (outlet) than with all other sites
in the reach.
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Figure 3. Daily mean (top) and maximum (bottom) stream temperature (◦C) at each recording site.
Mean daily stream temperature and mean daily maximum stream temperature over the data collection
period is represented by the dotted lines.

Table 2. Matrix for comparison of mean daily, daily maximum, and variance of stream temperature
(bold), and correlations between sites.

Site 1 2 3 4 5 6 7 8 9 10

Mean ◦C Variance/Correlation, Daily Mean Stream Temperature

1 15.1 23.4
2 14.7 0.97 44.0
3 15.2 0.96 0.97 52.9
4 12.8 0.98 0.99 0.96 31.8
5 12.3 0.97 0.99 0.96 0.99 39.0
6 15.5 0.98 0.99 0.97 0.99 0.99 42.8
7 14.4 0.98 0.99 0.97 0.99 0.99 1.00 41.7
8 14.4 0.98 0.99 0.97 0.99 0.99 0.99 0.99 40.5
9 15.1 0.96 0.99 0.95 0.97 0.98 0.98 0.98 0.98 55.9

10 13.4 0.948 0.918 0.898 0.90 0.89 0.92 0.91 0.91 0.90 29.6

Mean ◦C Variance/Correlation, Daily Maximum Stream Temperature

1 16.3 25.2
2 16.1 0.96 42.3
3 16.5 0.94 0.96 49.1
4 14.1 0.98 0.99 0.95 30.1
5 13.7 0.96 0.99 0.96 0.99 37.0
6 16.7 0.96 0.99 0.97 0.99 0.99 40.6
7 15.7 0.96 0.99 0.96 0.99 0.99 0.99 39.9
8 15.7 0.96 0.99 0.97 0.99 0.99 0.99 0.99 39.0
9 16.7 0.95 0.98 0.94 0.97 0.98 0.98 0.98 0.98 59.7

10 15.4 0.89 0.89 0.87 0.87 0.88 0.89 0.88 0.89 0.87 28.7

Daily mean Ts was strongly correlated with daily mean Ta at all sites, and daily maximum Ts

and maximum Ta were also strongly correlated at all sites (Table 3). The correlations were significant
for all basins for mean temperatures and all basins except basin 10 (where p < 0.10) for maximum
temperatures. Pearson’s correlation coefficients for mean Ts and mean Rs ranged from 0.0 to 0.50 over
the 10 basins, but none of the correlations were significant at the p < 0.05 level. Stream temperatures at
site 9 indicated the greatest correlation (0.48) with Rs, and this site was located at the outlet of Abbott’s
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Pond that is not shaded and is affected by solar radiation. A relatively high correlation existed at
site 7, ρ = 0.39, which is a slow flowing less shaded area of the stream. There were no significant
relationships between Ts with Q, RH, or V. There was no apparent relationship between P and Ts,
and there was no difference in the correlation between Ta and Ts on days with precipitation (ρ = 0.94)
and days without precipitation (ρ = 0.93).

Table 3. Pearson’s correlation coefficients (ρ) for relationships of daily mean stream temperature and
daily mean air temperature, daily maximum stream temperature and daily maximum air temperature,
and daily mean stream temperature and daily mean solar radiation.

Basin Daily Mean ◦C Daily Maximum ◦C Mean Radiation (Wm−2)

1 0.95 * 0.91 * 0.06
2 0.96 * 0.95 * 0.22
3 0.92 * 0.91 * 0.15
4 0.95 * 0.93 * 0.27
5 0.95 * 0.94 * 0.004
6 0.97 * 0.95 * 0.30 **
7 0.96 * 0.94 * 0.39 **
8 0.96 * 0.95 * 0.31 **
9 0.95 * 0.94 * 0.48 **

10 0.90 * 0.88 −0.07
All 0.94 * 0.92 * 0.18

* significant at p < 0.05; ** significant at p < 0.10.

Estimates of slope parameters (β j) for regressions on relationships between Ts and Ta for daily
mean and daily maximum showed variation within the watershed (Figure 4, Table 4). The average
slope for all sites combined was βave = 0.61 ± 0.11. The variation in slope parameter for all sites
combined was much greater than the slope parameter (β j) for each individual site (≈0.01 at all
sites). The slope parameters for both mean and maximum Ts with Ta were lowest at sites 1 and 10,
representing the outlet and the uppermost section of the watershed, respectively. Slope parameters
were largest at sites 3 and 9, which is discussed above. The data logger at site 3 was inside a drainage
conduit, which ran under a parking lot, fed from a small retention pond with some wetland vegetation
(Figure 2). The retention pond has some shading from low lying wetland vegetation and was lined
with large stones.imum) Ts for all sites combined. Differences in mean Ts between sites can be
compared in Table 5. Ts differences within ±0.4 ◦C are not considered to be physically significant
given the limits of accuracy of the data loggers. Sites 3 and 9 were warmer on average than other sites,
and sites 4 and 10 were cooler. The same trends were observed for daily maximum Ts for both slope
and intercept parameters.

Table 4. Estimated slope parameter (β j) at each site j standard deviation (italics), and estimated β j for
each site for the given season and standard deviation (italics).

Site All 1 2 3 4 5 6 7 8 9 10

Estimated Slope Parameter (βj)

βall 0.61 0.47 0.65 0.68 0.57 0.61 0.64 0.63 0.62 0.72 0.48
σβ 0.11 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01

βWinter 0.30 0.27 0.30 0.32 0.30 0.31 0.30 0.30 0.30 0.29 0.29
σβWinter 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
βSpring 0.51 0.43 0.53 0.52 0.50 0.52 0.53 0.52 0.50 0.56 0.46
σβSpring 0.05 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

βSummer 0.33 0.27 0.39 0.32 0.34 0.35 0.35 0.35 0.34 0.44 0.14
σβSummer 0.09 0.04 0.04 0.05 0.05 0.05 0.04 0.04 0.04 0.05 0.05
βAutumn 0.58 0.48 0.62 0.49 0.56 0.60 0.61 0.61 0.60 0.75 0.49
σβAutumn 0.10 0.02 0.02 0.02 0.03 0.02 0.02 0.02 0.02 0.02 0.02
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Figure 4. Regression parameters for the relationship between mean daily stream temperatures and
mean daily air temperatures (black) and maximum daily stream temperatures and maximum daily
air temperatures (greay) at each site. Parameters were estimated using Bayesian regression analyses.
Points indicate mean value of regression parameter (µβ and µα), solid lines indicate 67% confidence
level, and + indicates 95% confidence level (σβandσα). Intercept is ◦C where an intercept = 0 ◦C
(dark dotted line) indicates that the mean (maximum) daily Ts at a basin is the same as the mean
(maximum) stream temperature for all basins combined over the period of record. Mean daily and
maximum stream temperature was used as the baseline to calculate anomalies for mean daily and
mean daily maximum stream temperatures at each basin.

Table 5. Mean daily temperature anomaly (◦C) at each site. Diagonal of matrix (bold) is the temperature
anomaly for the site based on all sites combined. Other values are the difference of the mean daily
temperature anomaly between each site. Positive values indicate that the mean daily temperature
at the site listed in the column is greater than the site listed in the row (all sites combined for bold
values). All values were statistically significant (p < 0.001); however, differences within ±0.4 ◦C are
not considered physically significantly different due to the error in the data loggers.

Site 1 2 3 4 5 6 7 8 9 10

Difference in Mean Daily Stream Temperature ◦C

1 −0.06
2 0.12 −0.18
3 −0.32 −0.44 0.26
4 0.29 0.17 0.61 −0.34
5 0.20 0.09 0.52 −0.08 −0.26
6 −0.22 −0.34 0.10 −0.51 −0.43 0.16
7 −0.25 −0.36 0.07 −0.53 −0.45 −0.02 0.19
8 −0.16 −0.28 0.16 −0.44 −0.36 0.06 0.09 0.10
9 −0.40 −0.52 −0.08 −0.69 −0.61 −0.18 −0.15 −0.24 0.34

10 1.09 0.97 1.41 0.80 0.88 1.31 1.33 1.24 1.49 −1.15
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Differences in daily mean temperature between some sites were > 4 ◦C in the summer and > 3 ◦C
in the winter (Table 6). There were large temperature differences between sites 9 and 10, which were
only 150 m apart, because of the heating that occurred in Abbott’s pond just upstream from site 9.
Estimated intercept parameters indicated that mean Ts had its greatest variation between sites in
the summer within the watershed for both daily mean and daily maximum temperatures (Figure 5),
while seasonal mean daily Ts and mean daily Ta had the least amount of variation in the summer
(Table 7). Seasonal mean Ts was significantly different (p < 0.05) at several sites within the watershed
from mean Ts for all sites over the entire watershed (Table 6). Mean and maximum daily Ts was greater
at sites 1 and 10 in the winter, but cooler at these sites in the summer. Site 10 was cooler in spring
and autumn as well. Site 9 was warmer in the spring and summer and cooler in the winter compared
to other sites. Site 3 was cooler in the winter and spring, but warmer in the summer and autumn.
Variation in daily mean and daily maximum Ts was greatest in winter and spring overall within sites
(width of distributions in Figure 5), and greatest in winter and summer between sites. Daily mean
and maximum Ts varied more uniformly over the watershed in the spring when Ts was more uniform
throughout the watershed. Site 10 had the least variation in daily maximum Ts in all seasons, and the
least variation in daily mean in all seasons except winter compared to all other sites.

Figure 5. Posterior probability density functions of estimated intercept temperature (◦C) from
daily mean (left) and maximum (right) stream temperature Bayesian hierarchical regression with
daily mean and maximum air temperature, respectively, for each season at each recording site.
Mean daily and maximum stream temperature for each season was used as the baseline to calculate
anomalies for seasonal mean daily and season mean daily maximum stream temperatures at each
basin. An intercept = 0 ◦C (dark vertical line) indicates that the mean daily Ts at a basin is the same as
the mean stream temperature for all basins combined for that season. Winter = DJF, Spring = MAM,
Summer = JJA, Autumn = SON.
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Table 6. Mean daily temperature anomaly (◦C) at each site for each season. Diagonal of matrix (bold)
is the temperature anomaly for the site based on all sites combined. Other values are the difference
of the mean daily temperature anomaly between each site. Positive values indicate that the mean
daily temperature at the site listed in the column is greater than the site listed in the row (all sites
combined for bold values). All values were statistically significant (p < 0.001); however, differences
within ±0.4 ◦C are not considered physically significantly different due to the error in the data loggers.

Site 1 2 3 4 5 6 7 8 9 10

Difference in Mean Daily Stream Temperature ◦C

Winter

1 2.00
2 2.48 −0.48
3 2.93 0.46 −0.94
4 1.95 −0.53 −0.98 0.04
5 1.93 −0.55 −1.00 −0.02 0.06
6 2.12 −0.35 −0.81 0.17 0.20 −0.13
7 1.84 −0.64 −1.09 −0.11 −0.09 −0.28 0.15
8 1.82 −0.66 −1.12 −0.14 −0.11 −0.31 −0.02 0.18
9 2.78 0.30 −0.16 0.82 0.85 0.65 0.94 0.96 −0.78

10 1.04 −1.43 −1.89 −0.91 −0.88 −1.08 −0.80 −0.77 −1.73 0.95

Spring

1 −0.02
2 0.01 −0.03
3 0.71 0.69 −0.73
4 0.04 0.02 −0.67 −0.06
5 −0.04 −0.06 −0.75 −0.08 0.03
6 −0.05 −0.06 −0.75 −0.08 −0.00 0.03
7 −0.27 −0.28 −0.98 −0.31 −0.23 −0.22 0.25
8 −0.18 −0.20 −0.89 −0.22 −0.14 −0.14 0.08 0.17
9 −0.81 −0.82 −1.52 −0.85 −0.77 −0.76 −0.54 −0.63 0.79

10 1.09 1.08 0.38 1.05 1.13 1.14 1.36 1.28 1.90 −1.11

Summer

1 −2.29
2 −2.33 0.04
3 -3.15 −0.82 0.86
4 −1.73 0.60 1.42 −0.55
5 −2.15 0.18 1.00 −0.42 −0.13
6 −2.29 0.05 0.86 −0.56 −0.13 −0.00
7 −2.60 −0.26 0.55 −0.87 −0.44 −0.31 0.31
8 −2.35 −0.02 0.80 −0.62 −0.20 −0.07 0.24 0.06
9 −4.15 −1.81 −1.00 −2.42 −1.99 −1.86 −1..55 −1.79 1.86

10 1.25 3.58 4.40 2.98 3.40 3.53 3.84 3.60 5.39 −3.54

Autumn

1 −0.29
2 −0.18 −0.11
3 −2.09 −1.90 1.80
4 −0.26 −0.08 1.82 −0.03
5 −0.15 0.03 1.93 0.11 −0.14
6 −0.43 −0.25 1.65 −0.17 −0.28 0.14
7 −0.58 −0.39 1.51 −0.31 −0.42 −0.14 0.29
8 −0.51 −0.33 1.57 −0.25 −0.36 −0.08 0.06 0.22
9 −0.21 −0.02 1.88 0.05 −0.05 0.23 0.37 0.31 −0.08

10 0.94 1.13 3.03 1.20 1.10 1.38 1.52 1.46 1.15 −1.23
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Posterior distributions for slope parameters (β j) for regressions varied significantly by season
(Figure 6). The strongest relationships between Ta and Ts occurred in the autumn and spring.
Relationships were weakest in the winter and summer but showed the greatest variation in summer
both within and between sites, contrary to the variation in measured Ts. Between site variance was
greater than within site variance at all sites in spring, summer and autumn (Figure 6). Sites 1 and 10
showed the weakest relationships with air temperature, and site 9 showed the strongest relationship
between daily mean (max) Ts and daily mean (max) Ta with β = 0.74 ± 0.02 (β = 0.71 ± 0.02) for all
seasons combined. The weakest relationship with daily mean (max) Ta was at site 1 in the summer
where β = 0.25 ± 0.03 (β = 0.19 ± 0.04).

Figure 6. Posterior pdfs (probability density functions) of regression slope parameters (β) for the
relationship between mean daily stream temperatures and mean daily air temperatures and between
daily maximum stream temperature and daily maximum air temperature at each site for each season
of the year. Parameters were estimated using Bayesian regression analyses. Relationships of stream
temperature with air temperature are relatively uniform between basins in the winter. Posterior pdfs
are different at sites 1, 9, and 10 in the summer than for the other sites, and posterior pdfs are more
variable in autumn. Winter = DJF, Spring = MAM, Summer = JJA, Autumn = SON.
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Table 7. Mean and variance of the mean daily air temperature and mean daily maximum air
temperature over the period of data collection.

Daily T ◦C SD Maximum T ◦C SD

Winter

Air 0.61 6.20 5.49 6.67
Water 6.56 2.62 8.07 2.67

Spring

Air 10.5 7.32 16.0 7.77
Water 12.4 4.10 14.3 4.07

Summer

Air 23.3 1.85 29.0 2.41
Water 21.9 1.92 23.2 2.28

Autumn

Air 14.7 6.69 20.3 7.12
Water 16.8 4.25 18.0 4.25

4. Discussion

The significant variation in daily mean and daily maximum Ts within the 1.2 km reach of Chestnut
Branch is consistent with results from other small stream networks [35]. Over the entire year, mean daily
temperature was similar at all sites except site 10, where mean temperature was just over 1 ◦C cooler.
Mean daily temperature was cooler at site 10 compared each of the other sites as well. The slope of the
regression line of Ts and Ta at site 10, β10, was significantly lower than at other sites except for site 1
over the entire year. Sites 1 and 10 had the least variation in Ts compared with other sites. Furthermore,
sites 1 and 10 showed less variation and the greatest temperature differences compared to other sites
in winter and summer. These two sites were heavily shaded in the summer and received a greater
proportion of flow from groundwater relative to other sites. Site 1 receives inflow from Rowan pond,
which is groundwater fed and flows into Chestnut Branch, except at times of high flow. Site 10 was just
downstream from where perennial flow begins. These factors help explain the lower variance observed
at these sites. For example, Constantz [23] found that variation in Ts was 11% in gaining reaches
and 30% in losing reaches. Riparian cover tends to moderate diurnal variations and keep maximum
temperatures lower than unshaded areas [43,44]. It is not likely that the small differences in flow, apart
from the contribution of groundwater, impacted the observed differences in Ts. MacDonald et al. [45]
found that discharge was important in explaining inter-annual Ts variation in a headwater streams,
in particular moisture conditions at the watershed scale (10 km2). However, there were no observed
relationships between stream flow and Ts, and it is not likely that Q impacts Ts in Chestnut Branch
(2 km2). This is likely due in part to the small size of the watershed, but there is evidence that the
duration of temperature exceedance is impacted by stream flow more than daily mean Ts [13].

Stream temperature at sites 1 and 10 also showed the weakest relationship (low β) with Ta based
on regressions compared with other sites over the entire year and in spring and summer. While lower
variance in daily mean Ts may indicate the influence of groundwater and/or riparian cover, the weaker
relationship with Ta indicates that factors other than those that affect Ta are controlling Ts at these
sites. It is likely that interactions with groundwater influx and shading in these reaches impacted the
relationship with Ta, particularly in the summer. Groundwater temperatures are relatively constant
and are close to the average annual air temperature in a region. Stream temperature has been shown to
be less responsive to Ta in colder tributaries [35], and it seems likely that this is the case within segments
of the same stream. Additionally, these sites have dense riparian cover, which leads to a microclimate
different that average bulk meteorological conditions. These effects seemed less apparent for maximum
temperatures where the means of the slope parameter tended to converge, i.e., less between site
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variation, for maximum temperature. It seems that relationship of maximum Ts with maximum Ta is
more uniform.

The site with the warmest mean daily temperatures (site 9) had the strongest relationship (β9) with
air temperature, and this site had the greatest variation in daily mean Ts. Site 9 was located downstream
of the outlet of Abbott’s pond, with little cover, and is most likely to have conditions throughout the
year similar to bulk meteorological conditions measured at the weather station. The lack of riparian
cover over the pond allows the loss of heat at night to be a function primarily of the temperature
gradient between the water and air [46], thus a stronger relationship of Ts with Ta.

The greatest differences in daily mean Ts between sites occurred in the summer. Spatial Ts

variability between sites was greatest in the summer, and spatial variability of Ts was most uniform
in winter and spring. Relationships between Ta and Ts were strongest in spring and autumn and
weakest in summer at all sites, but there was greater variability in slope parameters in summer
between sites for relationship with Ta. These results support the conclusion that micro-climate was
more important in the summer when shading can have a larger impact on heat fluxes. For example,
Rutherford et al. [47] indicated that differential heating due to absorption of solar radiation by riparian
vegetation affects stream temperature. Results indicated a correlation between solar radiation and
Ts, but correlations were not significant (p < 0.10) at all sites. Correlations between Ts and Rs were
greatest at sites 7 and 9. Site 9 was near the outlet of Abbott’s pond, which is clearly impacted by
solar radiation, but the correlation at site 7, which was <100 m downstream from site 8 does was not
likely physically significant. Micro-climate factors, such as wind speed, relative humidity, and solar
radiation, at sites are likely to have effects at these sites, especially in smaller basins and at sheltered
sites [48,49]. Bulk measurements for these meteorological variables from a single weather station are
less likely to show consistent relationships with Ts between sites.

The stronger relationship with Ta and higher between site variance in slope parameters in autumn
can possibly be explained in part by the major changes in riparian cover that occur during the autumn
season. The autumn months were September, October, and November, and leaves are fully shed from
trees by mid- to late-October in southern New Jersey. Therefore, autumn represents a time period with
both significant cover in some areas and with little cover after leaf fall. Additionally, leaf fall occurs
non-uniformly along the stream, which likely impacts heat flux, and the accumulation of leaf litter
in the stream varies within the basin. While leaf litter decomposition is an important component for
stream metabolism [50] and impacts heat flux in terrestrial systems [51], it is not clear how it impacts
stream temperature. Woody debris and small scale morphological features have been shown to increase
temperature variability [52], though these factors are not highly variable in Chestnut Branch.

Relative values and variation on slope parameters for relationships of Ts and Ta provided
an indication of the potential that different processes were affecting stream temperature between
sites. The 10 sites chosen represented a variety of known conditions along the stream, and the variance
in βave for regressions using data from all sites within the basin was relatively high compared to
variance in β j for each site.

The solar radiation and groundwater inflow were found to have the most significant impact on
heat budget in a 116 km2 watershed in Indiana [53]. Differences at this temporal scale, regressions of
Ts with Ta are able to distinguish stream temperature variations, but, at a season scale, regressions
provide more info.

A detailed spatial analysis as described by Isaak et al. [54] was beyond the scope of this study.
However, it is likely that differing characteristics between sites were more important in the summer
when microclimate is, this is different. Kanno et al. [35] found that Ts variability primarily occurred
between stream segments as opposed to within a stream segment, i.e., after tributary confluences.

5. Conclusions

The Bayesian hierarchical analysis as applied to the Chestnut Branch watershed provides
a straightforward method for identifying local scale variability in the relationship between stream
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temperature and air temperature. This approach can be applied at relatively small scales to identify
areas where different local scale processes may be contributing to the response of stream temperature
to different drivers in daily to seasonal time frames. Application of such information can be important
for management and conservation of local scale habitat with regard to the potential impacts of land-use
and climate change.

Steam temperature variation was lowest at sites with a greater amount of riparian cover that
also had a relatively large proportion of flow from groundwater. These sites also showed the weakest
relationship between Ts and Ta, suggesting a significant influence of groundwater influx and shading
on the relationship. Stream temperature variation was greatest in the spring and autumn, and lowest
in the summer. The relationship between Ts and Ta varied significantly by season both within and
between sites. Relationships were strongest in spring and autumn and weakest in summer at all sites,
but greater variability in slope parameters was found between sites in summer. Greater variability
in slope parameters and weaker relationships between Ts and Ta indicate that micro-climate and/or
local characteristics of the basin impact Ts most in the summer. In general, these results support the
conclusion that riparian shading impacts the effect of Ta on Ts, and that open areas without cover are
more likely to have meteorologic conditions similar to bulk conditions. Therefore, Ts shows a stronger
relationship with measured Ta at these sites, though these impacts could not be fully quantified at the
daily time scale. Additionally, at the daily scale, the impacts of watershed characteristics and rainfall
on Ts were not clear. However, this does not imply that these are not important factors affecting Ts.
Analysis at a finer time resolution is required to quantify these effects, and the posterior distributions
for slope parameters will help to locate areas where site-specific factors are more likely to impact Ts.
The one-minute Ts collected and used in this study will be used for further analysis of relationships
between Ts and other factors, such as land-use/land cover and rainfall, at these sites.

Supplementary Materials: Supplementary material are available online at www.mdpi.com/2306-5338/4/3/44/s1,
including R source code for all data analyses.
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