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Abstract: Hydrological simulation, based on weather inputs and the physical 

characterization of the watershed, is a suitable approach to predict the corresponding 

streamflow. This work, carried out on four different watersheds, analyzed the impacts of 

using three different meteorological data inputs in the same model to compare the model’s 

accuracy when simulated and observed streamflow are compared. Meteorological data 

from the Daily Global Historical Climatology Network (GHCN-D), National Land Data 

Assimilation Systems (NLDAS) and the National Operation Hydrological Remote Sensing 

Center’s Interactive Snow Information (NOHRSC-ISI) were used as an input into the Soil 

and Water Assessment Tool (SWAT) hydrological model and compared as three different 

scenarios on each watershed. The results showed that meteorological data from an 

assimilation system like NLDAS achieved better results than simulations performed with 

ground-based meteorological data, such as GHCN-D. However, further work needs to be 

done to improve both the datasets and model capabilities, in order to better 

predict streamflow. 
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1. Introduction 

Streamflow simulation is widely implemented for environmental risk assessment, contaminant fate 

analysis, soil degradation and erosion and flood forecasting systems all around the world [1,2]. 

Estimated hydrological constants, meteorological data or weather inputs and a physical 

characterization of the watershed are currently the basis of most streamflow simulation models. 

Based on these three input components, the corresponding streamflow of a given watershed or basin 

can be predicted and, thus, the possible flooding that could occur. These input components can be 

predicted or measured. Therefore, the streamflow can be simulated within a certain degree of 

uncertainty. However, there is uncertainty associated with each one of these components [3–6]. The 

total relative uncertainty will be the sum of uncertainty through each of these components and could 

have values from 0% to over 100% for a particular event [7,8]. 

Meteorological data for a hydrological model is perhaps the most critical parameter to predict 

streamflow or any other water movement in the internal water cycle of the basin. Examples of these 

are temperature and precipitation. Temperature is the main driving force of evapotranspiration. On the 

other hand, precipitation drives infiltration, soil saturation and runoff, subsequently recharging the 

aquifer and modifying the baseflow volume. 

Classical hydrologic simulations [9–11] are usually based on historical ground-based measurements 

that may not be available for a specific area due to the low density of stations, or there might be 

missing values due to the malfunctioning of the equipment installed in the area. An example of this is 

the many financial constraints to install, operate, and maintain reliable networks in developing 

countries or very difficult places for natural reasons, like northern Canada. In order to solve this 

problem, there are two alternatives that can be considered, namely satellite remote sensing and data 

assimilation systems. Remote sensing based on satellite retrievals is a very promising technique to 

retrieve meteorological parameters necessary to run hydrological models [12–14]. On the other hand, 

data assimilation systems (DASs) are a combination of remote sensing products (airborne and satellite 

observations), ground-based measurements and estimations based on interpolation methods, models 

and stochastic approximations [15,16]. DASs offer the advantage of always providing the best 

available data, even in places where one or more of the sources are missing. 

The Soil and Water Assessment Tool (SWAT), developed by the United States Department of 

Agriculture (USDA) Agricultural Research Service [17], was initially created to predict water quality 

changes as a consequence of watershed anthropogenic practices, with the driving force of the model 

being the hydrological cycle. Several authors have studied the effects of distributed weather data when 

implemented in distributed hydrological models, like SWAT, in different watersheds [18–22]. 

However, the simultaneous study of three or more datasets together, analyzing the effects on the 

calibration process and the final water balance results, has never been attempted before. 
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The goal of this study is to determine the suitability of available meteorological data for the 

prediction of streamflow using the SWAT model and discuss the impacts that the use of different 

available datasets can have in the calibration-validation process. Streamflow simulations using three 

different weather datasets are compared and analyzed with a baseline scenario defined as the United 

States Geological Survey (USGS) streamflow from measurement gauges. 

2. Study Area 

Four watersheds were selected for this study: West Branch Delaware or Cannonsville, West Branch 

Neversink, Upper Hudson River at Hadley and Aroostook River at Washburn. Figure 1 shows the 

location of the four watersheds, and Figure 2 shows the sub-basins distribution within each watershed, 

the shapes of the watersheds, station locations and USGS observed streamflow gauges located at the 

outlet of each delineated watershed. For the delineation of the watershed, a 30-meter resolution digital 

elevation model was used, and 1% of the total area was used as the threshold for delineating the  

sub-basins within each watershed. Table 1 shows the name and location of each USGS gauge along 

with some of the main characteristics of the selected watersheds. 

Figure 1. Location of watersheds. 01, West Delaware or Cannonsville; 02, West 

Neversink; 03, Upper Hudson; 04, Aroostook River. 
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Figure 2. Watersheds shapes and locations of meteorological stations and USGS 

streamflow gauges. 

 

Table 1. Names of the USGS gauges at watersheds outlet, the 8-digit Hydrologic Unit 

Code (HUC08 code), and summary of watersheds characteristics: area; maximum and 

minimum elevation; average (Avg.) slope; hydrologic length in kilometers; elongation 

factor; average (Avg.) observed flow and flow standard deviation (SD); number of sub-

basins considered in simulation; and number of weather stations considered in the 

simulation for each scenario. 

Watersheds’ Properties 

Name 
HUC08 

No. 

Area Elevation (m) Slope Length Elongation  

Factor 

Flow (mm/d) 
Sub-Basins 

Number of Stations 

(km2) Max Min Avg. (km) Avg. SD GHCN NLDAS NOHRSC 

W. Branch 

Delaware 
02040101 849.9 1018 358 32.8% 57.64 0.256 2.25 2.93 117 2 9 10 

W. Branch 

Neversink 
02040104 86.5 1120 624 42.6% 18.13 0.263 3.71 5.39 48 1 3 6 

Hudson at 

Hadley 
02020001 4260 913 186 31.7% 94.69 0.475 2.06 2.04 75 3 34 7 

Aroostook at 

Washburn 
01010004 4234 674 160 10.7% 92.70 0.493 1.98 2.72 74 2 37 6 



Hydrology 2014, 1 93 

 

These watersheds were selected because they represent a wide range of hydrological behavior in 

which the integrated effect of watershed shape, size, slope, land use and storage characteristics could 

be analyzed in relation to the hydrological response to a given precipitation event. Watershed selection 

covered average slopes from 10% to 40%, a watershed size from 80 to 4000 km2 and shapes that vary 

from elongated to concentrated.  

3. Datasets 

The digital elevation model (DEM) was downloaded from the National Elevation Dataset. A mosaic 

from multiple raster datasets was created and merged into a single raster dataset. Land cover/use is 

described by the National Land Cover Dataset Version 2006, an interpretation of Landsat remote 

sensing imagery to define a set of distinct land cover types. Soil data was obtained from United States 

Department of Agriculture (USDA) Soil Data Mart, from which the Soil Survey Geographic 

(SSURGO) database was used, because it provides the most detailed level of soil information. 

This study makes use of three different climate datasets as weather inputs into the SWAT model in 

order to identify differences between the results obtained from the simulations with specific 

meteorological data. In the first place, the National Climatic Data Center’s Global Historical 

Climatology Network (GHCN-D) is a dependency from the National Oceanic Atmospheric 

Administration (NOAA) and compiles one of the largest ground stations global datasets, including 

most of the United States’ network. 

The National Land Data Assimilation System (NLDAS) is a consistent global mosaic over land of 

meteorological forcing weather parameters, such as solar radiation, wind, temperature, precipitation 

and humidity. These data are the result of processing, quality controlling and spatial and temporal 

downscaling products from remote sensing, ground-based measurements and simulated data. The 

National Land Data Assimilation System (NLDAS) has coverage over the continental United States. 

The spatial resolution of this gridded dataset is 1/8th degree, and the temporal resolution is hourly [23]. 

The National Operational Hydrological Remote Sensing Center’s Interactive Snow Information 

(NOHRSC-ISI) is a product similar to NLDAS, as it ingests daily ground-based, airborne and satellite 

observations. Even though NOHRSC-ISI’s priority is snow observation and snowpack characteristics 

estimation, forcing weather data is also collected and publicly available on NOHRSC-ISI’s website. 

NOHRSC-ISI output products are distributed in a variety of interactive maps, time-series and gridded 

formats [24]. NOHRSC-ISI reports around 125,000 observation points for snow depth and/or snow 

water equivalent, and for each of these points, meteorological data is derived from the 13-km 

resolution rapid refresh numeric weather model. All weather datasets along with the watershed’s 

physical description datasets are referenced in Table 2. 

Table 2. Datasets references and description. 

No. Data Type Source/Authors Name 
Version/Release 

Date 

Web 

Access 

Date 

Accessed 

1 Weather Data 1 
National Climatic Data Center from 

NESDIS. 
GHCN-D dataset Ver. 02/2006 [25] May 2013 
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Table 2. Cont. 

No. Data Type Source/Authors Name 
Version/Release 

Date 

Web 

Access 

Date 

Accessed 

2 Weather Data 2 

Hydrological Sciences Laboratory at 

NASA/Goddard Space Flight Center 

(GSFC/HSL) 

NLDAS Forcing Data L4 

Hourly 0.125 x 0.125 degree 
Ver. 01/2009 [26] May 2013 

3 Weather Data 3 

National Operational Hydrologic 

Remote Sensing Center’s Interactive 

Snow Information 

NOHRSC-ISI weather data No Ver./2004 [27] Jun 2013 

4 Soil data 

Soil Survey Staff, Natural Resources 

Conservation Service, United States 

Department of Agriculture 

Soil Survey Geographic 

(SSURGO) Database 
No Ver./2004 [28] Feb 2013 

5 Elevation Data 
Gesch, Dean, 2007, The National 

Elevation Dataset 

1-ArcSec Resolution Digital 

Elevation Model 

1-ArcSec 

Resolution 

DEM/1997 

[29] Feb 2013 

6 Land Cover/Use 

Joyce Fry, George Xian, Suming Jin, 

Jon Dewitz, Collin Homer, Limin 

Yang, Christopher Barnes, Nathaniel 

Herold, James D. Wickham. 

National Land Cover Database 

(NLCD) 
2006/2009 [30] Feb 2013 

7 Streamflow United States Geological Survey 
The USGS National Water 

Information System (NWIS) 
2001 [31] May 2013 

4. Methodology  

In order to predict the streamflow using SWAT, it is necessary to collect a large number of input 

parameters and datasets. The SWAT model requires three components: (1) the physical description of 

the watershed; (2) weather data to force the hydrological cycle components inside the basin; and 

(3) hydrological parameters. 

The physical description of the basin is achieved by incorporating the soil, land use/cover and 

elevation data at a pixel base to each sub-basin of the watershed. This process (described below) is 

helped by ArcSWAT 2012 (an ArcMap10 GIS interface). It consists basically of the spatial processing 

of shape, vector and raster files to describe the variability of land use/cover, elevation, slope and soil 

properties. The meteorological data input is what defined the three simulations scenarios. Three 

different sources of meteorological data were used as inputs to the model to produce simulated 

streamflow and later compared to observed streamflow data for performance assessment. 

The most complicated step or component is the right selection and adjustment of the parameters that 

controls the hydrological response of the watershed or hydrological parameters. Using the 

ArcSWAT 2012 interface, an approximation can be obtained. However, a manual local sensitivity 

analysis of hydrological parameters was performed in order to identify which of them should be 

selected for the calibration process. Local sensitivity analysis has the main disadvantage of missing the 

synergic effect that two or more parameters can have when changed simultaneously. Yet, this 

methodology can still provide a very good idea of which parameters should be assessed to improve the 

model performance in a particular basin [32]. After the local manual sensitivity analysis, calibration 

was performed. This process implies a large number for the model’s executions, and the objective is to 



Hydrology 2014, 1 95 

 

minimize the error between the simulated and the observed streamflow without compromising the 

realistic value of the parameters being calibrated. The specifics of the calibration process are explained 

in Section 4.2. 

4.1. SWAT Model Description and Setup 

The SWAT model was first published in 1993 as a comprehensive hydrological model, is GIS 

based and capable of simulating runoff and contaminant movement through a watershed [33]. This 

model considers the spatial distribution of the watershed characteristics by implementing the 

hydrological response unit (HRU) into the calculations [34]. The driving force of the contamination 

movement in the model is the water cycle throughout the basin. The model’s hydrology has been 

improved considerably during its historical upgrades and versions [32,35]. The SWAT model has great 

potential, because it is computationally efficient, capable of continuous simulations over long time 

periods and a very comprehensive model capable of simulating several hydrologic processes, such as 

surface runoff, infiltration, evapotranspiration, lateral flow, return flow and recharge by seepage [17,32]. 

There are three basic ways for the SWAT model to convert precipitation or snowmelt into river 

discharge: surface runoff, lateral flow and shallow aquifer return flow (baseflow). The land phase of 

the SWAT model is based on the water balance. The technical report TR-406 [36] from the USDA has 

a very detailed description of how all of the components of the water balance equation are calculated 

for each time step. SWAT allows weather inputs in a daily time step, and specifically, for precipitation, 

it allows hourly, too. Depending on the time step of the precipitation input, the infiltration and, thus, the 

surface runoff for each hydrological response unit is calculated by either the Green and Ampt method 

(1911) for hourly calculations or a modified Soil Conservation Service Curve Number (SCS-CN) 

procedure (1972) for daily calculations. This experiment used the SCS Curve number method and, 

thus, a daily time step calculation, because GHCN-D is daily data, and it was decided to keep the same 

time step for all scenarios to use the same infiltration method. 

Instead of assuming a soil moisture condition, the SWAT model estimates soil moisture on each time 

step based on calculations that depend on the soil profile water content (variable curve number (CN) 

method) [37]. Thus, a CN value for each sub-basin and time step (day) is calculated. The peak of the 

hydrograph for any given event is calculated based on the modified rational method, and the lag of the 

peak or the rising time of the hydrograph is calculated using an exponential decay based on available 

water in each time step. There are several algorithms that can be used for the calculation of the 

potential evapotranspiration integrated in the SWAT model, and the algorithm used in these 

simulations was the Penman/Monteith method.  

The groundwater movement of the model is also governed by the shallow aquifer mass balance. 

Additionally, optionally, the SWAT model allows input files that describe the operation of reservoirs 

(if any exist); the file contains the daily, monthly, yearly or targeted release flow information. The 

Hudson River watershed contains three main reservoirs, namely Schroon, Brant and Lewey. For all 

three of them, daily outflow data were used as the inputs to describe the routing behavior of the lakes. 

The velocity of the water on the river channel is controlled by Manning’s roughness coefficient 

CH_N2, and the losses associated with river bed infiltration (tloss) are assumed proportional to the wet 
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perimeter of the channel’s section, the travel time and the channel bed transmissibility 

coefficient (CH_K2). 

4.2. Watershed Characterization and Model Calibration 

In the United States, it is possible to access very accurate and up-to-date physical characterization 

databases for almost the entire territory. On the contrary, in the rest of the world, it can be difficult to 

find these databases for a particular area. However, in situ or remote surveys can always be used to 

reduce the absence of information about watershed characterization parameters.  

In the SWAT model, the physical characterization of the watershed is achieved by describing the 

soil types, elevation, slope, and land use/cover of the basin’s area. The land and water management 

description, such as agriculture and irrigation practices can be optionally used as an input, but it was 

not considered in this study. The ArcSWAT 2012 (a GIS interface for the SWAT model) can be used 

to generate the input files that physically describe the basin in the model. This interface reads the 

information on the USGS’ digital elevation model (DEM) raster data, USGS’ land use/cover raster 

data and USDA’s SSURGO soil data shape file. 

The DEM is used to delineate the basin, reaches and sub-basins and to account for slope variability. 

Land use/cover and soil variability is extracted from their corresponding files by sub-basin. This 

information is finally used to describe the sub-basin’s variability in slope, land use and soils using an 

approach based on the proportionality of hydrologic response units (HRUs) within each sub-basin.  

From the HRU analysis, ArcSWAT’s interface produces a parameterization of the model. A 

systematic process can be used for a better estimation of hydrological parameters, such as the curve 

number (CN2), baseflow alpha factor (ALPHA_BF), baseflow alpha factor for bank storage 

(ALPHA_BNK), groundwater delay factor (GW_DELAY), groundwater minimum depth for baseflow 

to occur (GWQMN), ground water capillarity factor (GW_REVAP), soil evaporation factor (ESCO), 

Manning’s coefficient for the main channel (CH_N2), hydraulic conductivity for main channel 

(CH_K2) and plant evaporation coefficient (EPCO) [10,38]. This estimation can be first approximated 

by experience (expert knowledge) or obtained from the ArcSWAT interface, with subsequent 

calibration performed for further adjustments. 

The sensitivity analysis and calibration procedures are iterative and can be long and tedious. 

However, this is the best way to describe the spatially variable process of runoff through a variable 

medium, such as soil. Although the results from these processes might not be strictly a physical 

representation of the watershed hydrology, it has been demonstrated that these procedures are powerful 

tools to improve and adjust the simulation results [32,39]. 

After the initial model setup and execution, calibration was implemented to adjust the hydrological 

parameters described above. To facilitate the calibration procedures, the SWAT-Calibration and 

Uncertainty Procedures (SWAT-CUP calibration tool) was implemented. SWAT-CUP is a freeware 

available for this purpose, and it has been demonstrated to be practical and efficient. The calibration 

was performed using this tool under the parameter solution calibration scheme (Parasol method) to 

calibrate the 10 selected hydrological parameters simultaneously. The USGS’ observed streamflow 

data (for the same period) located at the outlet of each watershed was used as the observed variable or 

ground truth. Different arrangements were used to optimize the time of calibration. It was observed 
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that the number of iterations required for achieving the best possible simulation oscillated between 300 

and 500 (Figure 3). Consequently, the number of trials for each scenario was set to 800 in order to 

consider as many combinations as possible. 

Figure 3. Convergence plot of the calibration process for all four watersheds. 

 

The meteorological parameters were downloaded from the three different sources (NOHRSC-ISI, 

NLDAS and GHCN-D) for the same time period. The time period selected was from January 2007, to 

August 2011, for calibration and September 2011, to December 2012, for the validation period. This 

was considered a relevant time frame, because complete and reliable data were available from all of 

the different data sources and the selected basins. Furthermore, it is important to analyze the short-term 

hydrologic response of the watershed, which can be accomplished using the information of a specific 

rainfall event.  

4.3. Multi-Annual Validation 

The objective of this research is to study the capabilities of the model in the short term (e.g., 1 year 

performance). However, it is also of great importance to study the efficiency of the model throughout a 

multi-annual time frame, because it is understood that the results for a 1-year validation period could 

be a coincidence of the hydro-climatology of that specific year.  

In order to measure the multi-annual efficiency, a timeframe larger than one year is needed. To 

obtain this multi-annual timeframe, the same calibration scheme described above was used. However, 

the warmup period was set to 2003–2004, the calibration period was set to 2005–2008 and the 
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validation period was set to 2009–2012. The rest of the calibration parameters and setup remained as 

explained before. This calibration scheme is commonly known as split-sample calibration [39,40]. 

This was considered necessary because of several reasons. Increasing the size of the sample can 

provide more reliable statistics (e.g., percentage of peaks detected). For multi-seasonal analysis and 

multi-annual analysis, as implied by the name, more than one year of validation data is needed. Lastly, 

the use of a multi-annual validation period will strengthen the conclusions of this manuscript, because 

the statistical analysis will not be biased by the hydro-climatic conditions of a single year.  

4.4. Statistical Analysis 

The R2 value is a commonly used statistical measure of how close the observed data (USGS 

streamflow measurement or baseline) are to the simulated data (SWAT simulated streamflow). This 

test is also known as the coefficient of determination [41,42].  

The root mean square error (RMSE) is an index used to measure the error in models results [42,43]. 

It can immediately tell how large the difference is between the measured and the simulated values over 

the studied period (theoretically, the larger the RMSE, the larger the uncertainty). 

For daily streamflow, big variations could be expected between two consecutives observations or a 

relatively large standard deviation. Thus, the use of the RMSE-observations standard deviation ratio 

(RSR) is recommended by some authors [42,44]. The RSR is a standardized RMSE by using the 

standard deviation of the observed streamflow hydrograph. 

The main objective of this work is to assess the models capabilities of simulating the hydrological 

response and water balance of the watershed for the given scenarios. Consequently, two measurements 

were implemented, namely the total volume difference percentage between the observed and the 

simulated streamflow and the percentage of peaks detected by the model. 

For peak detection assessment, an event was defined as any streamflow measurement that was above 

a threshold. The threshold was defined as three times the average flow for the two smallest watersheds 

and two times the average flow for the two biggest watersheds. Finally, the number of events during the 

validation period for both observed and simulated streamflow was manually counted. If the observed and 

simulated peak flow were observed on the same day, it was considered a timely detection. 

Since all water movement inside a watershed is mostly driven by precipitation, to avoid the possible 

bias that could generate these differences between scenarios, two ratios were used for comparison 

purposes: total water yield over precipitation ratio (TWY/PCP) [45] and the shallow aquifer flow 

(return flow) over total water yield (TWY/SAF) [46]. Total water yield is the total amount of water 

that comes out of the basin as streamflow, and the shallow aquifer flow is the part of the streamflow 

that is due to return flow or groundwater returning to the main channel as baseflow. The SWAT model 

includes these values as output, and for the reference or observed values, the USGS’s ratio [45] and the 

baseflow ratio from the separation algorithm proposed by Arnold and Allen 1999 [46] were used. 

These ratios allow assessing the general water balance of the simulations without being biased by the 

input differences of each scenario. Finally, the statistic t-test was used to assess if the difference 

between each scenario and the USGS measurement was significant or not. 

A satisfactory simulation or good fit is considered for [42]: correlation coefficient values above 

0.60 for daily values and over 0.70 for monthly observations. The RMSE should be less than half of 
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standard deviation or the RSR less than 0.50 for monthly values. The total relative volume differences 

should be less than 10%. Finally, the t-stat critical value for a monthly time step is ±2.18 and for a 

daily time step is ±1.97. 

Equations (1)–(6) are used for the statistical analysis performed in this experiment, where Yn,obs is 
the observed variable, Yn,obs is the average observed variable, Yn,sim is the simulated variable, Yn,sim is the 

average simulated variable, n is the number of observations, StdDev is the standard deviation, R2 is the 

correlational coefficient, RMSE is the root mean square error, RSR is the standardized RMSE, 

%Vol.Dif. is the difference in the percentage of total yielded volume of water, Volobs is the observed 

volume of yielded water for a given day and Volsim is the simulated volume of yielded water for a 

given day. N is the total number of observations/simulations, and n is the sum counter. 

StdDevobs= ඨ
∑ (Yn,obs – Yഥn,obs)

2N
n=1

N –1
 (1)

R2 = 
൛∑ ൣ(Yn,obs – Yഥn,obs)·(Yn,sim – Yഥn,sim)൧N

n=1 ൟ
2

∑ (Yn,obs – Yഥn,obs)
2
·∑ (Yn,sim – Yഥn,sim)

2N
n=1

N
n=1

 (2)

RMSE = ඨ
∑ (Yn,obs – Yഥn,sim)

2N
n=1

N –1
 (3)

RSR = 
RMSE

StdDev
 (4)

t = 
Yഥobs – Yഥsim

ටStdDevobs
2

N  + 
StdDevobs

2

N

 
(5)

%Vol.Dif. = 
∑ Voln,obs – ∑ Voln,sim

N
n=1

N
n=1

∑ Voln,obs
N
n=1

 (6)

5. Results and Discussion 

Each model’s run, based on the three meteorological data used, was called the scenario. The 

streamflow hydrograph that resulted from each modeling scenario was compared with the observed 

streamflow obtained from USGS’s station installed at the outlet of the watershed and shown for 

monthly and daily time scales. The streamflow hydrograph is the basis for the hydrologic analysis of 

high intensity rainfall events that are able to generate flooding conditions in a given watershed. This 

information is also essential in the understanding and evaluation of the hydrologic regime and response 

of a watershed during an extreme event.  

5.1. Monthly Scale Results Analysis 

A good fit for the streamflow simulation is observed using the three different meteorological 

datasets (NOHRSC-ISI, GHCN-D and NLDAS) at monthly scale (See Figures 4 and 5). Generally, 

NOHRSC-ISI scenario overestimated streamflow, while GHCN and NLDAS were both closer to each 

other and to the observed monthly means. 
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Figure 4. Monthly flow from the three scenarios compared with the USGS measured at 

West Branch Delaware (Cannonsville) and West Branch Neversink. Calibration and 

Validation (Valid.) Periods. 

 

Figure 5. Monthly flow from the three scenarios compared with the USGS measured at 

Hudson River and Aroostook River. Calibration and Validation (Valid.) Periods. 
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Figure 5. Cont. 

 

The statistics in Table 3 shows that the variability of the streamflow at a monthly time scale is better 

explained by the NLDAS scenario (better R2 values obtained), which implies that the model’s hydrological 

response is improved by using NLDAS meteorological data. The RMSE and RSR values also showed that 

the NLDAS scenario is closer to the observed monthly streamflow, implying that the approach for 

hydrological simulation using NLDAS meteorological data is plausible. Finally, the t-test values showed 

that the difference of the means between the observed and simulated streamflow was not significant in any 

of the scenarios, meaning that all of the simulations were reasonably good at this time scale. 

Table 3. Single-year validation period statistics for monthly and daily simulated 

streamflow for each scenario and watershed. Shaded values are the best for each efficiency 

measure. S1 is the scenario with GHCN-D data; S2 is the scenario with NLDAS data; and 

S3 is the scenario with NOHRSC-ISI data. RSR, RMSE-observations standard deviation 

ratio; %Vol.Dif., the difference in the percentage of total yielded volume of water. 

Time Step 

and Period 
Stats 

West Branch Delaware West Branch Neversink Upper Hudson Aroostook River 

S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3

MONTHLY 

Validation 

Period 

R2 0.77 0.80 0.38 0.54 0.79 0.31 0.52 0.58 0.49 0.60 0.77 0.56

RMSE 3.81 3.80 12.19 1.37 1.27 1.91 32.22 31.01 57.58 46.19 33.62 90.25

RSR 0.48 0.48 1.53 0.83 0.77 1.15 1.01 0.97 1.80 0.66 0.48 1.29

t-test 0.09 0.53 −3.07 1.36 1.56 −1.54 1.90 0.86 −1.99 −0.64 −0.20 −3.43

DAILY 

Validation 

Period 

R2 0.58 0.64 0.39 0.15 0.67 0.55 0.49 0.51 0.45 0.39 0.42 0.23

RMSE 7.94 7.69 15.21 4.55 3.09 3.26 45.95 44.40 71.01 73.41 70.68 110.59

RSR 0.65 0.63 1.24 1.00 0.68 0.72 0.85 0.82 1.31 0.80 0.77 1.21

t-test 0.33 1.84 −10.56 2.87 3.16 −3.50 7.59 3.41 −8.34 −2.03 −2.14 12.02

%Vol.Dif. −2% −12% 75% −19% −11% 35% −27% −1.5% 39% 18% 13% 98%

5.2. Annual Water Balance and Flow Partition 

A direct method to see the impact of each scenario in the performance of the model is to analyze the 

water balance of the watershed annually. The simple observation of the annual average of precipitation, 

evaporation, runoff and infiltration can offer a very good idea of the impact of each scenario on the 
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model. In most cases, all values were close to each other, meaning that all three scenarios’ setup 

achieved similar results (Table 4). However, there are some exceptions that should be further analyzed. 

Table 4. Before double line: average annual water balance for each watershed and scenario 

over the validation period. After double line: Simulated and Observed (Obs.) total water 

yield over precipitation ratio and shallow aquifer flow over total water yield ratio for the 

same period. S1 is the scenario with GHCN-D data; S2 is the scenario with NLDAS data; 

and S3 is the scenario with NOHRSC-ISI data. 

Watershed’s Summary  

for the Validation Period 

(Values in mm/y and °C) 

West Branch  

Delaware 

West Branch  

Neversink 
Upper Hudson Aroostook River 

S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 

Precipitation (PCP) 1,133.0 1,073.6 1,492.2 1,352.7 1,312.2 1,905.5 1,015.9 1,006.4 1,362.1 978.7 1,022.4 1,470.8 

Temperature 8.5 9.2 9.1 6.3 10.2 8.6 6.3 8.3 8.3 6.1 6.3 5.8 

Snow fall 164.6 137.0 212.8 192.1 158.0 294.7 232.6 207.9 299.3 239.7 258.2 427.7 

Snow melt 126.2 112.0 170.2 171.1 148.5 240.7 176.5 155.0 264.2 255.5 230.0 335.8 

Surface Runoff 479.0 293.8 692.4 682.0 756.4 1,457.7 262.1 282.4 406.4 614.4 464.9 1,048.4 

Shall. aquifer flow (SAF) 53.5 192.3 211.5 100.6 32.0 11.8 148.0 133.1 318.0 6.9 64.6 1.1 

Deep aquifer recharge 6.3 12.2 15.8 5.3 4.1 0.7 9.3 10.4 20.5 0.4 5.5 0.2 

Total aquifer recharge 126.3 243.8 316.4 106.8 82.8 13.7 185.2 207.2 409.0 7.5 109.3 3.3 

Total water yield (TWY) 532.5 486.1 903.8 782.6 788.4 1,469.6 410.1 415.6 724.4 621.2 529.5 1,049.4 

Evapotranspiration 533.6 521.2 467.8 557.8 497.6 390.4 536.9 529.0 502.1 368.0 445.2 325.8 

Potential Evapotranspiration 793.5 752.4 577.6 1,016.0 957.3 698.4 892.1 843.4 701.5 911.0 803.9 692.4 

Simulated TWY/PCP = 0.47 0.45 0.61 0.58 0.60 0.77 0.40 0.41 0.53 0.63 0.52 0.71 

Obs. TWY/PCP (2012) = 0.44 0.82 0.55 0.55 

Simulated SAF / TWY = 0.10 0.40 0.23 0.13 0.04 0.01 0.36 0.32 0.44 0.01 0.12 0.00 

Obs. SAF/TWY (2012) = 0.47–0.69 0.44–0.65 0.58–0.78 0.46–0.69 

The NOHRSC-ISI precipitation values were greater in all four watersheds, which explains the 

larger water yield and snow fall/melt values and, consequently, the volume difference (%Vol.Dif.) 

result for that scenario (Table 3). This overestimation can be also observed at monthly and daily scales. 

The total water yield over precipitation ratio in the simulations was generally in agreement for the 

West Branch Neversink and Aroostook watersheds. On the other hand, the Upper Hudson and the 

West Delaware basins were in the low side of the observed range. In the case of the Upper Hudson, 

this could be explained by the effect of reservoir operation. Because this effect was taken into account, 

it was not considered as a problem in the simulation results. However, there are no reservoirs in the 

West Branch Delaware. Therefore, the difference could be explained by higher evapotranspiration 

values, but since no observed values were available for comparison, further studies should be made to 

assess this discrepancy. 

The partition of the flow (surface runoff and groundwater) is one of the most important parts of the 

simulation; the reason why is that it is important to assess the behavior of the model in this matter. The 

shallow aquifer flow over total water yield ratio was only within the observed range for the NLDAS 

scenario of the West Delaware and the NOHRSC scenario of the Hudson River. The other scenarios 

and watersheds were completely out of the observed range, indicating that further adjustments have to 

be made to the parameters controlling the flow partition in the model.  
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In the West Delaware watershed, the final values of the calibration parameters (Table 5) show that 

the curve number (CN2) value directly influences the amount of runoff, along with the groundwater 

delay (GW_DELAY). Both parameters affect the amount of water leaving the shallow aquifer, as they 

control the infiltration rate and the detention time. The NLDAS scenario showed lower values for the 

two same parameters compared to the other two scenarios (NOHRSC and GHCN) of the West 

Delaware basin. This setup will give a different flow partition (producing more return flow and less 

direct runoff) without altering the total water yield (Table 4). 

Table 5. Final parameter solution after calibration. The calibration method (Calib. Method) 

is the name as the calibration method used in the SWAT-CUP tool. The parameters are 

described in Section 4.2. Min and Max refer to the maximum and minimum value of the 

parameter for calibration. In the type column, “RC” means that the parameter was changed 

proportionally to the original value and “Subst.” means that the parameter was substituted 

by a value in the selected range in the next step of calibration. Curve number (CN2), 

baseflow alpha factor (ALPHA_BF), baseflow alpha factor for bank storage 

(ALPHA_BNK), groundwater delay factor (GW_DELAY), groundwater minimum depth 

for baseflow to occur (GWQMN), ground water capillarity factor (GW_REVAP), soil 

evaporation factor (ESCO), plant evaporation coefficient (EPCO), Manning’s coefficient 

for the main channel (CH_N2) and hydraulic conductivity for main channel (CH_K2). 

Parameters for Calibration 
West Branch Delaware West Branch Neversink 

Calib. Method: Parameter Solution 

Name Min Max Units Type GHCN NLDAS NOHRSC GHCN NLDAS NOHRSC 

CN2 −0.4 0.4 - RC 0.10 −0.15 0.06 −0.01 0.11 0.30 

ALPHA_BF 0.0 1.0 days S 0.09 0.07 0.07 0.04 0.05 0.03 

GW_DELAY 10.0 450.0 days S 179 12 124 322 421 220 

GWQMN 0.0 2.0 mm S 1.41 1.20 1.05 0.15 1.34 0.76 

GW_REVAP 0.0 0.2 - S 0.14 0.07 0.17 0.01 0.13 0.09 

ESCO 0.8 1.0 - S 0.90 0.89 0.87 0.93 1.00 0.89 

EPCO 0.8 1.0 - S 0.89 0.89 0.91 0.81 0.87 0.87 

CH_N2 0.0 0.3 - S 0.06 0.06 0.05 0.12 0.09 0.12 

CH_K2 5.0 130.0 mm/h S 130 127 114 59 124 105 

ALPHA_BNK 0.0 1.0 days S 0.51 0.84 0.33 0.22 0.28 0.16 

Upper Hudson Caribou 

Name Min Max Unds. Type GHCN NLDAS NOHRSC GHCN NLDAS NOHRSC 

CN2 −0.4 0.4 - RC −0.26 −0.22 0.40 0.23 0.11 0.40 

ALPHA_BF 0.0 1.0 days S 0.04 0.06 0.05 0.04 0.02 0.04 

GW_DELAY 10.0 450.0 days S 10 95 10 263 148 107 

GWQMN 0.0 2.0 mm S 0.89 0.28 2.00 0.63 0.95 1.16 

GW_REVAP 0.0 0.2 - S 0.10 0.06 0.16 0.08 0.10 0.08 

ESCO 0.8 1.0 - S 0.98 0.89 0.86 0.85 0.87 0.90 

EPCO 0.8 1.0 - S 0.95 0.80 0.88 0.89 0.87 0.83 

CH_N2 0.0 0.3 - S 0.12 0.15 0.24 0.21 0.28 0.30 

CH_K2 5.0 130.0 mm/h S 93 78 130 114 130 128 

ALPHA_BNK 0.0 1.0 days S 0.57 0.38 0.71 0.24 0.00 0.18 
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5.3. Daily Scale Results Analysis 

Figures 6 and 7 show the daily streamflow hydrograph for each watershed and scenario. Both figures 

show that all cases have good agreement with USGS observed streamflow. Some overestimation by the 

NOHRSC scenario can be seen in all of the watersheds with more noticeable instances for the Aroostook 

and Hudson rivers (Figure 7). Like the monthly scale, the NLDAS scenario had the highest correlation 

coefficient, thus showing the best representation of the variability of daily streamflow, too. The RSR 

values also showed better agreement for the NLDAS scenario, making it the closest fit for these two 

statistical measures (Table 3). However, when comparing the t-stat test, only the West Delaware 

(Cannonsville) watershed showed non-significant mean differences for the same NLDAS scenario. Even 

though, based on the other statistics, NLDAS was the best scenario, further improvements should be 

made to achieve better streamflow simulation at the daily scale. 

Figure 6. Daily streamflow from the three scenarios compared with the USGS measured at 

West Branch Delaware and West Branch Neversink for the validation period. 

  

 

Based on the complete daily statistics of Table 3, the only scenario that captured the optimum 

parameter solution was the NLDAS scenario in the West Delaware watershed. Still, information from all 

other scenarios could be obtained to find the optimal solution in the other watersheds: in the West 

Delaware basin, the GHCN scenario had the minimum %Vol.Dif., and thus, NLDAS precipitation could 

be adjusted based on GHCN’s to see if further improvements could be made locally; the parameter solution 

for the NOHRSC scenario on the Hudson River Basin was the best approach, because this scenario 

obtained a TWY/PCP ratio closer to the observed; thus, it should be the reference for further parameter 
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value refinement; lastly, the NLDAS scenarios for calibration generally showed more sensitivity for 

groundwater parameters than the NOHRSC scenarios, and this last one more than the GHCN scenarios, 

demonstrating that the distributed data is a better approach for groundwater parameter calibration. 

Figure 7. Daily streamflow from the three scenarios compared with the USGS measured at 

the Hudson River and Aroostook River for the validation period. 

 

5.4. Multi-Annual Validation 

It was explained before that the objective of this research is to study a short-term simulation period 

(e.g., one year). However, it was also explained that single-year validation period results could be the 

consequence of the specific climatology of that year. As a consequence, a multi-annual validation 

period was considered necessary to avoid this possible bias in the findings of this manuscript.  

A split-sample calibration scheme was implemented to generate a multi-annual validation period. The 

parameter solution obtained from this calibration was very similar to the one in the forward calibration 

scheme. Some differences were observed for the optimum value of the calibrated parameters, but all of 

them were within the values shown in Table 5, ±15% around them. The results from this calibration were 

used to analyze discrete event detection, multi-seasonal statistics and multi-annual statistics.  

5.4.1. Discrete Events Analysis 

The most responsive simulation in terms of peak detection was obtained for the NLDAS scenario, 

followed by NOHRSC-ISI. Table 6 shows the fraction of observed hydrograph peaks that were also 

hydrograph peaks in the simulated streamflow and the fraction of peaks that were detected on the day 
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they occurred. NLDAS was considered to be the meteorological data source that provided the most 

accurate streamflow hydrograph firstly, because the statistical analysis shown before, and, secondly, 

because the main hydrograph portions (rising limb, crest segment which includes peak flow rate and 

recession limb) turned out to be very similar to those found in the observed streamflow hydrograph. 

This is crucial, since coincidence in these inflection points of the streamflow hydrograph means that, 

using the SWAT model combined with distributed weather data, it is possible to better understand 

changes in the streamflow contributions. 

Table 6. Statistics for the detection of peak events over the validation period (2009–2012) 

from the split-sample scheme. A detection is when peaks are in both (simulated and 

observed streamflow); a timely detected peak is when observed and simulated streamflow 

peak are in the same day; flow threshold is the threshold over which a peak is considered.  

Event Accuracy 
West Branch Delaware West Branch Neversink 

Obs. GHCN NLDAS NOHRSC Obs. GHCN NLDAS NOHRSC 

Detection 
22 

23% 32% 27% 
28 

20% 16% 28% 

Timely Detected Peaks 18% 14% 14% 16% 16% 28% 

Flow (Q) Threshold Q > 70 m3/s Q > 15 m3/s 

Event Accuracy 
Upper Hudson Aroostook River 

Obs. GHCN NLDAS NOHRSC Obs. GHCN NLDAS NOHRSC 

Detection 
19 

74% 89% 89% 
22 

23% 32% 27% 

Timely Detected Peaks 21% 21% 32% 18% 14% 14% 

Flow (Q) Threshold Q > 200 m3/s Q > 200 m3/s 

Note: “Obs.” is number of observed events. 

5.4.2. Seasonal Analysis 

The SWAT model runoff production, like several other hydrological models, is based on two 

processes, namely precipitation and snow melt. Thus, it is also of interest to see how good is the 

performance of the model in both periods, under snow presence and without snow presence, on the 

watershed (Table 7). The RSR values for the simulated daily streamflow for all watersheds and 

scenarios improved in most of the cases from snow periods to no-snow periods. The root mean square 

error (RMSE) for all scenarios was relatively higher for the months of March and April. The relative 

error for each scenario was large in some cases and not constant throughout the simulation period, 

showing relative error values from 1% up to 97%. Several reasons could be the cause of this, like 

errors in the snowmelt amount calculations or bad timing of the snowmelt/accumulation process, but 

this issue will be addressed in future studies. 

5.4.3. Multi-Annual Statistical Analysis 

Extending the validation period to four years (e.g., 2009–2012) can confirm that the observations 

and analysis made before are still valid for different climatological conditions and not only for the ones 

observed in that specific year (2012).  

Table 8 shows the daily statistics for the four-year validation period (2009–2012) obtained from the 

split-sample calibration scheme. The results were very similar to those obtained with the forward 
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calibration scheme. The NLDAS dataset was the best approach for calibration and achieved the best 

results for streamflow simulation. This scenario explained the variability of streamflow (higher R2 

values), the magnitude of the events (lower RMSE and RSR values) and the watersheds water yield 

(lower %Vol.Dif. values) better.  

Table 7. RMSE and RSR comparison for the snow-influenced streamflow (December to 

April) and no snow-influenced streamflow (May to October) periods. All tested watersheds 

and over the validation period (2009–2012) from the split-sample scheme. 

 

West Branch Delaware West Branch Neversink Upper Hudson Aroostook River 

Dec–Apr May–Oct Dec–Apr May–Oct Dec–Apr May–Oct Dec–Apr May–Oct 

GHCN 21.64 11.65 1.32 1.35 65.57 40.06 97.65 60.23 

RMSE NLDAS 18.66 10.60 1.86 1.02 77.61 44.22 99.42 99.42 

NOHRSC 22.93 22.93 1.53 0.23 107.13 63.88 95.79 106.47 

GHCN 0.73 0.35 0.19 0.18 0.64 0.52 0.66 0.75 

RSR NLDAS 0.63 0.32 0.27 0.14 0.76 0.57 0.68 0.55 

NOHRSC 0.77 0.47 0.22 0.03 1.05 0.83 0.65 1.33 

Table 8. Multi-annual daily statistics for streamflow for each scenario and watershed for 

the split-sample scheme validation period (2009–2012). Notes: critical value for the t-test 

for a daily time step is ±1.67. Shaded values are the best for each efficiency measure. S1 is 

the scenario with GHCN-D data; S2 is the scenario with NLDAS data; and S3 is the 

scenario with NOHRSC-ISI data. 

Time Step Stats 
West Branch Delaware West Branch Neversink Upper Hudson Aroostook River 

S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3 

DAILY 

Validation 

Period 

R2 0.58 0.59 0.47 0.52 0.66 0.58 0.58 0.58 0.44 0.49 0.54 0.48 

RMSE 19.3 19.3 22.1 4.4 3.7 4.1 65.7 65.6 97.7 82.3 77.9 105.7 

RSR 0.65 0.65 0.74 0.71 0.61 0.66 0.67 0.67 1.00 0.72 0.68 0.93 

t-test 0.30 1.40 −2.98 4.58 3.04 −3.98 4.77 1.25 −7.59 −1.86 −0.56 −16.7 

%Vol.Dif. −1.2% −6.1% 12.3% −27% −18% 24% −17% −4.8% 34% 7.2% 2.2% 69% 

It is also of great importance to notice that the results did not show any correlation between the 

characteristics of the watersheds (slope, elongation and length) used in this experiment and the 

performance of the model. Even though different watershed characteristics were used (Table 2), none 

of them seemed to affect the performance of the model. However, based on the t-test and %Vol.Dif., 

better efficiency of the model was observed using the NLDAS dataset on larger watersheds (Upper 

Hudson and Aroostook River) than in smaller watersheds (W Branch Neversink). The first observation 

can be explained because the watershed characteristics are taken into account within the model’s 

inputs. The second observation can be explained because NLDAS is a distributed dataset, and thus, it 

can better represent the weather spatial variability within a larger watershed. However, it fails to have 

enough precision at smaller scales. Future work will also concentrate on studying these two 

observations further and their explanations. 
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6. Conclusions 

Three different meteorological data sources were used as the inputs into the SWAT hydrological 

model to simulate four different watersheds’ streamflow. Each watershed was calibrated from 2007 to 

2011 and validated on 2012. It was demonstrated that different meteorological datasets can produce 

different hydrological responses for a given watershed. Consequently, the use of different 

meteorological datasets for calibration and validation of the model could be recommended to improve 

the simulation. 

Simulations with NLDAS and NOHRSC-ISI data were shown to be the more responsive when 

compared to the other scenarios. This was expected, because both meteorological datasets had better 

coverage of the watersheds’ area. Therefore, the representation of the spatial variability of 

precipitation and temperature over the watershed was better in these two scenarios. Based on the R2, 

RMSE and RSR values, the simulation scenario with the NLDAS dataset can achieve an overall better 

agreement with the measured streamflow, but some issues should be further assessed: the performance 

differences from snow season to no-snow season and the results derived from the t-test at a daily time 

scale. Uncertainty associated with the snow sub-routines for accumulation and melting processes could 

be the reason for the discrepancies in the snow-influenced periods and should be studied further. The 

calibration process can be improved further based on the results of each watershed’s scenario; NLDAS 

in some cases presented lower precipitation values than the other two datasets, and most of the time, 

NOHRSC presented higher precipitation and temperature values; subsequently, one dataset can be 

statistically corrected with the aid of the other dataset (if necessary). 

Based on the findings, there is no relationship between the characteristics of the watershed and the 

results obtained from the model’s output. The streamflow simulation results are more impacted by the 

weather inputs and the calibration parameters than by the physical characteristics of the watersheds. 

The reason for this is that the watershed characteristics, such as land cover, soil properties, slope and 

elevation differences, are already taken into account by the model as input data. 

The scenarios fail to capture, for the different watersheds, either the spatial variability (GHCN-D) 

or the events’ magnitudes (NLDAS and NOHRSC-ISI). As a consequence, the merging of datasets can 

help minimize the uncertainty. Using two calibration scenarios (e.g., NLDAS and GHCN) and 

comparing the optimum parameter solutions from each scenario can give a better idea of which 

parameter set is the best. 

Improvement of the model’s results can be accomplished by taking into account more stations. 

Analyzing the R2 values for each scenario, the NOHRSC-ISI and NLDAS spatially distributed forcing 

weather datasets showed more consistency over time and seasons than the GHCN-D weather dataset. 

Gridded data from assimilation systems or remote sensing datasets should be used whenever possible, 

but should be analyzed for bias and accuracy on each site. 
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