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Abstract: Fault detection is crucial in maintaining reliability, safety, and consistent product quality in
chemical engineering processes. Accurate fault detection allows for identifying anomalies, signaling
deviations from the system’s nominal behavior, ensuring the system operates within desired perfor-
mance parameters, and minimizing potential losses. This paper presents a novel semi-supervised
data-based monitoring technique for fault detection in multivariate processes. To this end, the pro-
posed approach merges the capabilities of Principal Component Analysis (PCA) for dimensionality
reduction and feature extraction with the Kolmogorov–Smirnov (KS)-based scheme for fault detection.
The KS indicator is computed between the two distributions in a moving window of fixed length,
allowing it to capture sensitive details that enhance the detection of faults. Moreover, no labeling is
required when using this fault detection approach, making it flexible in practice. The performance
of the proposed PCA–KS strategy is assessed for different sensor faults on benchmark processes,
specifically the Plug Flow Reactor (PFR) process and the benchmark Tennessee Eastman (TE) process.
Different sensor faults, including bias, intermittent, and aging faults, are considered in this study to
evaluate the proposed fault detection scheme. The results demonstrate that the proposed approach
surpasses traditional PCA-based methods. Specifically, when applied to PFR data, it achieves a high
average detection rate of 98.31% and a low false alarm rate of 0.25%. Similarly, when applied to the
TE process, it provides a good average detection rate of 97.27% and a false alarm rate of 6.32%. These
results underscore the efficacy of the proposed PCA–KS approach in enhancing the fault detection of
high-dimensional processes.

Keywords: fault detection; data driven; dimensionality reduction; Kolmogorov–Smirnov indicator;
Plug-Flow Reactor; Tennessee Eastman process; process monitoring

1. Introduction

Efficient and continuous monitoring of key process variables is crucial for optimizing
complex chemical and petrochemical processes [1,2]. The primary objective is not only to
enhance productivity but also to prevent catastrophic incidents in the event of a failure [3,4].
Several severe accidents have underscored the importance of timely fault detection in
chemical and petrochemical plants globally over the past few decades. Examples include
the tragic Union Carbide accident in Bhopal, India, in 1984, where a massive toxic gas
leak resulted in over 3000 deaths and severe injuries to 400,000 residents [5,6]. Another
notable incident is the Piper Alpha accident in 1988 involving a North Sea oil production
platform, where an explosion resulted in the deaths of 167 individuals [7]. In 2000, the Mina
Al-Ahmedi accident in Kuwait, caused by a condensate line failure in a refinery plant,
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resulted in 5 deaths and 50 injuries [8]. Hence, fault detection in chemical engineering
processes is essential for maintaining safety, product quality, and operational efficiency
while preventing costly accidents and environmental harm [9].

The evolution of process automation has transformed the industry, enabling the
systematic conversion of natural resources into final products without constant human
oversight. The integration of smart sensor networks and distributed control systems has
further complicated the dynamics of chemical industries, introducing new challenges.
This complexity has given rise to frequent hazards, such as emission discharges and
explosions in processing plants, posing serious threats to both human health and the
environment. Manual errors, inadequate maintenance, and sensor malfunctions are among
the primary causes of these faults. Timely identification and mitigation of faults are critical
for ensuring regulatory compliance and cost-effective operations [10]. Over the last few
decades, numerous fault detection methods have been developed and can be categorized
into two primary categories: model-based and data-based approaches [11,12].

Model-based methods are based on prior knowledge of the system or process being
monitored. These techniques involve constructing mathematical models that encapsulate
the anticipated behavior of the system under normal operating conditions. Any deviation
from these model predictions serves as an indicator of a fault or anomaly. Model-based ap-
proaches are renowned for their precision but necessitate an in-depth comprehension of the
system and its dynamics, often making their development and maintenance challenging [8].
Numerous model-based methods have been developed in the literature, including observer-
based [13], parity-based [14], and interval-based approaches [15]. Of course, the accuracy
of these model-based monitoring methods relies on the precision of the models employed.
In contrast, data-based methods for fault detection do not rely on explicit models, but
instead leverage historical or real-time data for detecting anomalies or deviations from
desired performance [16]. These methods are inherently data driven and excel in detecting
faults in intricate systems where developing precise models is difficult [17]. Data-based
techniques, including statistical methods and machine-learning algorithms, are gaining
prominence due to their adaptability to shifting process conditions and ability to detect
faults without prior system knowledge [18,19]. The choice between model-based and
data-based fault detection methods is contingent on various factors, including the system’s
characteristics, data availability, and the level of system understanding. In practical appli-
cations, a combination of these methods is often employed to enhance the reliability and
accuracy of fault detection across a spectrum of industrial and engineering contexts [17].

In data-driven fault detection methods, there are univariate statistical techniques
and multivariate statistical monitoring methods. Univariate methods are primarily de-
signed to monitor individual variables independently. They are useful when monitoring
the behavior of a single process variable over time [20]. Prominent examples of univari-
ate methods include the Cumulative Sum (CUSUM) [21,22] and Exponentially Weighted
Moving Average (EWMA) [23] control charts. These methods are simple and effective
for identifying deviations from expected values or trends in a single variable. However,
they do not consider interactions or correlations between variables, which can lead to
missed detections when dealing with multivariate processes. Multivariate methods, on the
other hand, are specifically designed for monitoring systems with multiple interrelated
variables [24]. These methods consider the relationships and dependencies between differ-
ent variables in the system. They are well-suited for detecting faults that affect multiple
variables simultaneously [18]. Multivariate techniques are invaluable in industries with
intricate, interdependent processes, such as chemical manufacturing and petrochemicals,
where a fault in one part of the system can propagate through multiple variables, leading to
significant consequences [25]. Over the past few decades, various multivariate monitoring
techniques have been extensively utilized in fault detection and diagnosis. These include
Principal Component Analysis (PCA), Partial Least Squares (PLS), Fisher Discriminant
Analysis (FDR), and Principal Component Regression (PCR) [12].
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Specifically, PCA-based monitoring strategies have been instrumental in addressing
various fault detection challenges over the past two decades [26–28]. The PCA model
selectively retains a few key Principal Components (PCs) that encapsulate systematic data
variations. This model is further enhanced with two fault indicators: T2 for monitoring the
modeled subspace and Squared Prediction Error (SPE) or Q for monitoring the residual
subspace [3]. Numerous extensions of the conventional PCA approach have emerged to
accommodate the dynamic and evolving nature of industrial processes. Notably, a recursive
PCA method has been developed, which leverages the PCA model to compute a recursive
model, considering the time-varying nature of the industrial process [29,30]. Dynamic PCA
(DPCA) has been introduced to consider process dynamics by incorporating information
from lagged data in the model [31]. Additionally, the Multi-Scale PCA (MSPCA) approach
combines PCA with wavelet analysis to enable multiscale de-noising, enhancing fault
detection capabilities [32]. For capturing non-linearities in process data, an improved
non-linear variant known as the kernel PCA strategy has been widely used [33]. Once
constructed, the multivariate model plays a pivotal role in fault detection when applied to
new processes, with the support of fault indicators.

However, conventional PCA-based monitoring indices such as T2 and Q statistics
prove relatively inefficient at detecting small changes [11]. Their decision making relies
solely on the latest observation, limiting their ability to detect faults with small magni-
tudes [34]. Enhancing the capability to detect these faults can be achieved by employing a
monitoring chart that leverages information spanning the entire process history. Over the
years, various parametric and non-parametric tests have been explored to enhance the
detection of incipient faults. Parametric tests assume that samples are drawn from a popu-
lation following a probability distribution [35]. Within the parametric framework, several
commonly applied tests include the Generalized Likelihood Ratio [36], Kullback–Leibler
Divergence [37], Continuous Rank Probability Score [10], Jensen–Shannon Divergence [38],
and Hellinger’s Distance [39]. However, it is important to note that these tests may fail
when the underlying assumptions do not accurately represent the data. Non-parametric
statistical tests, in contrast, operate without making any assumptions about the data being
drawn from a specific distribution [40]. Their strength lies in their ability to adapt to a
broader range of data scenarios, making them inherently more robust [41].

This work introduces an effective monitoring approach that improves fault detection in
multivariate correlated data. The approach combines PCA for dimensionality reduction and
the Kolmogorov–Smirnov (KS) non-parametric test. PCA extracts relevant information from
the data, while the KS test contributes to fault detection with its sensitivity to deviations.
The major contributions of the paper include the following:

• A novel fault detection strategy, termed PCA–KS, is developed by merging the
Kolmogorov–Smirnov (KS) test with Principal Component Analysis (PCA). PCA
serves a dual purpose in dimensionality reduction and residual generation. Under nor-
mal operating conditions, residuals cluster around zero, reflecting the influence of
measurement noise and uncertainties. However, when faults are present, residuals
deviate considerably from zero. The Kolmogorov–Smirnov test is subsequently em-
ployed to evaluate these residuals for fault detection. Notably, this semi-supervised
approach does not require prior knowledge of the system, enhancing its practicality
and adaptability across various industrial and engineering applications.

• The proposed PCA–KS approach is validated using both a simulated Plug-Flow Reac-
tor (PFR) process and the Tennessee Eastman (TE) process. The evaluation involves
various types of faults, including sustained bias faults, intermittent faults, and drift
faults. Additionally, the performance of PCA–KS is compared with established tech-
niques, such as PCA-T2, PCA-SPE, and PCA-CUSUM, ensuring a fair and accurate
assessment. To quantitatively evaluate the performance of the investigated methods,
five statistical evaluation metrics are employed. The results demonstrate the promis-
ing capability of the PCA–KS approach, characterized by a high detection rate and
reduced false alarms.
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The remainder of the paper is presented as follows: Section 2 provides a formulation
of one-sample and two-sample KS tests, the change point detection capability of the KS test,
the conventional PCA FD strategy, and the block diagram representation of the PCA–KS FD
strategy. Section 3 assesses the effectiveness of the proposed PCA–KS FD strategy through
a simulated PFR process and the benchmark Tennessee Eastman process. Finally, Section 4
concludes the paper with a summary of the findings and also discusses the potential future
research directions.

2. Methodology

This section briefly overviews conventional PCA, the basic idea of Kolmogorov–
Smirnov (KS), and the proposed PCA–KS fault detection approach.

2.1. Fault Detection Based on PCA

PCA is a dimensionality reduction technique that reduces the high-dimensionality
of multivariate data while preserving its essential information. Its ability to transform
complex data into a reduced-dimensional space and evaluate fault indicators has made it
a cornerstone in anomaly detection across various industrial sectors [36]. In this section,
the concept of PCA-based fault detection is presented, providing an in-depth understanding
of its key components and operational principles.

Consider a dataset, X∈ Rn×m, where n represents the number of observations and m
signifies the variables collected from a process plant. Each observation is stored as a vector,
xi in ℜm, and the dataset, X, can be structured as X = [x1

T , . . . , xn
T ]. Before applying

PCA, the dataset is typically normalized to ensure that all variables have the same scale.
After normalization, PCA is implemented to model the data, transforming it into a new
space, Xsc, represented as

Xsc = TVT, (1)

where T = [t1, t2, . . . , tm] are the score vectors and V = [v1, v2, . . . , vm] are the loading
vectors.

Following PCA modeling, a subset of Principal Components (PCs) is selected to
capture the most significant variance in the data. This selection is often guided by the
Cumulative Percentage Variance (CPV) method [42]. The PCA model is then expressed as
the sum of an approximated matrix, X̂sc, and a residual matrix, F:

Xsc = T̂V̂T + T̃ṼT = X̂sc + F. (2)

The matrices X̂sc and F contain vital information about the process, and fault detection
relies on evaluating these components. This evaluation is facilitated through two key fault
indicators: the T2 statistic and the Squared Prediction Error (SPE) statistic. The T2 statistic
measures variations within the first p PCs of the PCA model and is defined for new data,
Xnew, as

T2 = Xnew
TV̂Λ̂−1V̂TXnew. (3)

The SPE statistic quantifies variations in the remaining m-p PCs and is expressed as

SPE = Xnew
T(I − V̂V̂T)Xnew. (4)

In the context of fault detection, if both the T2 and SPE fault indicators exceed prede-
fined threshold limits, it indicates the presence of a fault [43]. This dual-indicator approach
is highly effective in detecting anomalies and deviations from normal operating conditions.

The calculation of detection thresholds for T2 and SPE is based on the assumption that
data are Gaussian distributed [43]. However, this may not always hold true in practice,
especially in complex system, such as chemical engineering processes [44]. To address this
limitation, alternative methods and robust statistical techniques may be employed. It is
important to consider the specific characteristics of the data and the nature of the process
when choosing an appropriate statistical model or distribution for threshold calculations.
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Additionally, non-parametric methods, such as the Kolmogorov–Smirnov test, which does
not assume a particular distribution, can be valuable when the data distribution is uncertain
or non-Gaussian.

2.2. Kolmogorov–Smirnov-Based Fault Indicator

The Kolmogorov–Smirnov test, often termed the KS test, is a powerful non-parametric
statistical method used to assess the similarity between two distributions. It is particularly
valuable when there is a need to determine if a set of data points conforms to a specified
reference distribution. Unlike some parametric tests that assume specific distribution
characteristics, the KS test does not make such assumptions. This non-parametric nature
makes it versatile and robust, as it can be applied to a wide range of data distribution types.

The task of fault detection involves making a binary decision based on the comparison
between current measurements and previous fault-free data. It requires a straightforward
Yes or No determination regarding the presence of faults in a monitored process. To en-
hance this fault detection process, the potential of employing the non-parametric KS test is
explored. The KS test is a member of the non-parametric statistical tests that do not rely
on any specific assumptions about the data’s underlying distribution [45]. It is utilized
to determine if the elements of a given probability distribution belong to a reference dis-
tribution. This non-parametric characteristic makes KS tests more robust and adaptable
to a wide range of data distributions. The comparison is made by considering the Cumu-
lative Distribution Function (CDF) of the two distributions or populations, leading to an
appropriate conclusion.

When dealing with a dataset, the goal is often to determine the likelihood that the
data sample follows a predefined distribution. In other cases, there might be two different
data samples, and the aim is to assess the probability that they originate from the same
distribution. For a Probability Distribution Function (PDF) denoted as F and applicable
on the real number axis, R, the distribution function of a random variable, Y, is defined
as F(y) = Pr(Y ≤ y). Given real numbers y1, y2 . . . yn, where n represents the number
of observations within F(y), the Empirical Cumulative Distribution Function (ECDF) is
formulated as follows [46]:

Fn(y) = Pr
n
(Y ≤ y) =

1
n

n

∑
i=1

I(Y ≤ y), (5)

where function I serves as an indicator. When the dataset values are arranged in ascending
order of magnitude, the empirical distribution function can be represented as

Fn(y) =


0 Y < y1
1
n yi ≤ Y ≤ yi+1

1 Y ≥ y1

(6)

Now, consider the problem of assessing whether y1, y2 . . . yn of Fn(y) conform to a
predetermined distribution function, F(y). This scenario is formulated as a hypothesis test:

H0 : Fn(y) = F(y)

H1 : Fn(y) ̸= F(y)
(7)

In this context, the null hypothesis, H0, posits that the samples from the distribution,
Fn(y), are derived from the distribution, F(y), while the alternative hypothesis, H1, suggests
otherwise. According to the law of large numbers in statistics, for any fixed point, y ∈ R:

Fn(y) =
1
n

n

∑
i=1

I(Y ≤ y) −→ EI(Y ≤ y) =

Pr(Y ≤ y) = F(y)

(8)
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The proportion of the sample within the set, (−∞, y], approximates the probability of
the set. Importantly, this approximation holds true across all values of x ∈ R, as demon-
strated by Equation (9):

sup
y∈R

(Fn(y)− F(y)) −→ 0 (9)

This expression signifies that the largest difference between Fn(y) and F(y) converges
to 0. It is noteworthy that when F(y) represents a continuous distribution, the distribution
defined in Equation (9) becomes independent of the specific distribution, F. This property
further solidifies the robustness of the KS test. An essential step in the KS test involves
defining the inverse of F(y) as [47]

F−1(z) = min{y : F(y) ≥ z} (10)

This definition can be alternatively expressed as

Pr(sup
y∈R

|(Fn(y)− F(y))| ≤ t) = Pr( sup
0≤z≤1

|Fn(F−1(z))− z| ≤ t) (11)

Utilizing the definition of the empirical CDF, Fn, the relationship between Fn(F−1(z))
and Fn(y) can be established as follows [48]:

Fn(F−1(z)) =
1
n

n

∑
i=1

I(Yi ≤ F−1(z)) =
1
n

n

∑
i=1

I(F(Yi) ≤ z) (12)

This equivalence shows how the empirical CDF is constructed using the indicator
function, effectively capturing the distribution characteristics. The next step is to relate
the probability of the supremum of |Fn(F−1(z))− z| to the probability of the supremum of
| 1

n ∑n
i=1 I(F(Yi) ≤ z)− z|, as indicated below [48]:

Pr( sup
0≤z≤1

|Fn(F−1(z))− z| ≤ t) = Pr( sup
0≤z≤1

| 1
n

n

∑
i=1

I(F(Yi) ≤ z)− z| ≤ t) (13)

It is worth noting that the distribution of F(Yi) follows a uniform distribution on the
interval [0, 1], supported by the property that the CDF of F(Y1) is expressed as [49]

Pr(F(Y1) ≤ t) = Pr(F(Y1) ≤ F−1(t)) = F(F−1(t)) = t (14)

As a result, the random variables in F(Yi) for i ≤ n are independent and exhibit a
uniform distribution on the interval [0, 1]. This independence from the specific distribution,
F, emphasizes the universality and robustness of the Kolmogorov–Smirnov test. From this
comprehensive analysis, the Kolmogorov–Smirnov statistic is formally defined as [50]

Dn = max−∞<x<∞ | Fn(y)− F(y) | . (15)

The Glivenko–Cantelli theorem is crucial in interpreting the Kolmogorov–Smirnov
statistic, denoted as Dn. According to this theorem, as the sample size, n, approaches
infinity (n → ∞), Dn tends to zero, signifying the convergence of the empirical distribution,
Fn(y), towards the known distribution, F(y) [51]. In essence, when the number of data
points is sufficiently large, the empirical distribution of the sample closely aligns with the
distribution function of the known distribution. The Kolmogorov–Smirnov test demon-
strates remarkable consistency in accepting the null hypothesis, H0, which postulates that
the elements in Fn(y) originate from the distribution, F(y). This test’s consistency against
various alternatives underlines its robustness and reliability [52]. In Equation (15), a devia-
tion of the Kolmogorov–Smirnov statistic, Dn from zero, resulting in a larger value, implies
the rejection of the null hypothesis. This rejection indicates that the samples comprising
Fn(y) do not conform to the distribution represented by F(y). The ECDF of Fn(y) closely
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mirrors the ECDF of F(y) when Dn equals zero. Conversely, when Dn deviates from zero, it
introduces a noticeable discrepancy between the ECDF of Fn(y) and that of F(y), as depicted
in Figure 1 to illustrate this distinction between similar and dissimilar distributions.

Figure 1. Illustration of (a) similar ECDFs representing consistent data patterns and (b) dissimilar
ECDFs depicting divergent data distributions.

Expanding on the Kolmogorov–Smirnov test, the test can be extended into a two-
sample KS test, which is especially useful in fault detection applications where the goal is
to compare data from normal and faulty conditions. This scenario often arises in industrial
processes or system monitoring. In such cases, the interest lies in evaluating whether the
observations ya1, ya2, . . . , yna from distribution G(y) match those of yb1, yb2, . . . , ynb from
distribution H(y). To quantify the disparity between the ECDFs of these two distributions,
the KS statistic is employed, denoted as Dstat, which is defined as the maximum absolute
difference between Gna(y) and Hnb(y) [46].

Dstat = max−∞<y<∞ | Gna(y)− Hnb(y) | (16)

To facilitate direct probability calculations, the KS statistic, KSstat, is computed and
defined as

KSstat = Pr(Dstat) = 1 − QKS(λ). (17)

Here, λ is determined as

λ =

(√
ED + 0.12 +

0.11√
ED

)
, (18)

where ED is the effective sample size, calculated as

ED =
nanb

na + nb
, (19)

where na and nb represent the number of observations in G(y) and H(y), respectively.
The expression in Equation (17) provides a reliable approximation, particularly for small to
medium values of ED. In scenarios where ya1, ya2, . . . , yna are independent and identically
distributed with continuous empirical CDF G(y), and yb1, yb2, . . . , ynb are independent and
identically distributed with continuous empirical CDF H(y), the KS distribution function,
QKS(λ), can be expressed as [50]

QKS(λ) = 2
∞

∑
i=1

(−1)i−1 exp−2i2λ2
. (20)
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The expression in Equation (20) represents a monotonic function with limiting values, 1
as λ approaches 0 and 0 as λ tends towards infinity, allowing us to evaluate the significance
of the test result.

δ =

{
1 : λ → 0
0 : λ → ∞

Figure 2 visually represents the computation of the KS statistic between two distribu-
tions within a moving window. The probability, QKS, obtained from the KS statistic is a
useful indicator of the similarity between two distributions. If the distributions are similar,
then the probability, QKS, approaches 1. Contrarily, if the distributions are dissimilar, QKS
tends to be closer to 0. In industrial process monitoring and fault detection, statistical
indicators are often compared to predefined threshold values to make decisions regarding
potential faults. This is typically done at a significance level, often set to α = 0.95 or
α = 0.99. If the calculated KSstat is less than α, it signifies that the null hypothesis, H0, is
accepted, suggesting that the empirical CDFs of both distributions are equal. Conversely,
if KSstat is greater than α, the alternative hypothesis, H1, is accepted, indicating that the
empirical CDFs of the two distributions are not equal [53]. In this study, the KS test is
employed for fault detection applications. Since fault detection often involves comparing
two datasets (fault-free and faulty data) to determine the presence or absence of a fault,
the KS test presents a robust and efficient tool for enhancing fault detection performance.
Leveraging the KS test enables robust evaluation of deviations between datasets, contribut-
ing to improved reliability and accuracy in fault detection. This approach is particularly
valuable in industrial and engineering settings where the consequences of missed faults
can be significant.

Figure 2. Schematic representation of the KS statistic computation between two distributions within
a moving window, demonstrating the continuous assessment of differences in data distributions
over time.

In summary, the main steps of the KS-based fault detection approach are summa-
rized as follows:

1. Data Collection: Gather data from the system or process that you want to monitor
and detect faults in.

2. Data Preprocessing: Prepare the collected data for analysis. This step may involve
data cleaning, normalization, and transformation to ensure that it is suitable for the
KS-based fault detection approach.

3. Select Reference Data: Choose a dataset or set of observations representing normal
or fault-free operation. This reference dataset will serve as a baseline for comparison.
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4. Calculate Empirical CDFs: Compute the Empirical Cumulative Distribution Func-
tions (ECDFs) for both the reference data and the incoming data stream. These ECDFs
represent the distribution of the data in both cases.

5. Apply the KS Test: Use the Kolmogorov–Smirnov (KS) test to compare the two
ECDFs. The KS test will quantify the maximum difference (KS statistic) between the
two distributions.

6. Threshold Setting: Define a threshold value or critical value for the KS statistic. This
threshold will determine when a fault is detected. If the KS statistic exceeds this
threshold, it indicates a significant difference between the two distributions.

7. Monitoring in a Moving Window: Implement a moving window approach to contin-
uously monitor the incoming data stream. The window moves over time, and at each
step the KS statistic is computed for the data within the window.

8. Fault Detection: Compare the computed KS statistic with the predefined threshold in
the moving window. If the KS statistic exceeds the threshold, it suggests a fault or
anomaly in the data.

2.3. The PCA–KS-Based Fault Detection Strategy

In this section, the proposed fault detection strategy is introduced, combining PCA,
a multivariate method, with the Kolmogorov–Smirnov non-parametric test. This fusion
leads to an efficient PCA–KS-based FD strategy aimed at effectively and efficiently detecting
faults in multivariate processes. The strategy revolves around the computation of the
KS statistic using residuals generated from normal operating data and new online data,
focusing on using a moving window to enhance detection capabilities. The foundation of
the PCA–KS strategy lies in constructing a reference PCA model using normal operating
data, denoted as X. This model captures the underlying patterns and behaviors of the
system under normal conditions. The first step in this strategy involves generating residuals,
represented as E, according to the following expression [36]:

E = X − X̂ = X − XVVT. (21)

where X̂ is the approximation of the original data, V, and contains the loading vectors.
It is crucial to note that the KS test compares two distributions or signals, which are
represented in vector form (either as a row or column vector). Consequently, once residuals
are generated for both datasets, their norm values are computed to create the respective
column vectors for the KS test, enabling the accurate detection of deviations from normal
operating conditions. The proposed PCA–KS-based fault detection strategy is illustrated in
Figure 3.

The main steps of the proposed PCA–KS strategy are outlined in Algorithm 1.

Algorithm 1: PCA–KS-based Fault Detection Strategy
Offline Stage:

1. Obtain data at normal operating conditions—Xtrain.
2. Scale Xtrain to mean of zero and unity variance.
3. Construct a reference PCA model using Xtrain and generate the residuals—RC.
4. Take the norm of RC to generate C ∈ ℜn×1.

Online Stage:
1. Obtain online data—Xtest.
2. Scale Xtest to have a mean of zero and unity variance.
3. From the reference PCA model parameters, generate the residuals—RD.
4. Take the norm of RD to generate D ∈ ℜn×1.
5. Compute the KS statistic between C and D using the computation

presented in Figure 2.
6. If the KS statistic is greater than the significance level α, declare a fault.
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Figure 3. Block diagram illustrating the key components and workflow of the proposed fault
detection strategy.

The performance of the PCA–KS-based FD strategy is closely linked to the choice
of the moving window size. By employing a moving window, the non-parametric test
demonstrates enhanced precision and robustness in the presence of smaller datasets. The se-
lection of an appropriate moving window size, denoted as j, is adaptable based on the
characteristics of the process data. It is crucial to note that the KS test is conducted by
comparing two distributions or signals, which are represented in vector form (either as
a row or a column vector). Consequently, once residuals are generated for both datasets,
their norm values are computed to create the respective column vectors for the KS test,
enabling the accurate detection of deviations from normal operating conditions.

The fault detection methods considered in this study will be evaluated using several
statistical metrics: the Fault Detection Rate (FDR), False Alarm Rate (FAR), precision, recall,
and F1-score. For a binary detection task, the evaluation metrics are computed using
the number of True Positives (TP), False Positives (FP), False Negatives (FN), and True
Negatives (TN) and are presented as follows. They are especially useful for binary detection
tasks where a clear distinction between normal and fault conditions is essential.

• Recall (Sensitivity): Recall, often referred to as sensitivity, measures the ability of an
FD strategy to correctly identify true positive cases [54].

Recall =
TP

TP + FN
(22)

Recall provides insights into the strategy’s ability to detect actual faults when they
occur, minimizing the chances of missing any real issues.

• Precision: Precision evaluates the precision and accuracy of an FD strategy in correctly
detecting true positive cases [54].

Precision =
TP

TP + FP
(23)

Precision is valuable for assessing the strategy’s reliability in avoiding false alarms,
ensuring that when it signals a fault, it is highly likely to be a real issue.
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• F1-Score: The F1-score is a harmonic mean of precision and recall. It balances these two
metrics, making it a useful overall performance indicator. The F1-score is calculated
as follows [54]:

F1-Score =
2 · Precision · Recall
Precision + Recall

=
2TP

2TP + FP + FN
(24)

The F1-score takes both false alarms and missed faults into account, providing a
holistic view of the strategy’s performance. It helps in achieving a balance between
precision and recall, ensuring that the FD strategy is effective in both detecting true
faults and avoiding false alarms.

3. Results and Discussion

This section will focus on evaluating the performance of the proposed PCA–KS-based
fault detection strategy using data from two multivariate processes, the PFR process and the
TE process. The proposed strategy will be compared against PCA-T2, PCA-SPE, and PCA-
CUSUM-based fault strategies.

3.1. Plug Flow Reactor

In this section, the performance of the proposed fault detection strategy is assessed by
its ability to identify different faults in the Plug Flow Reactor process.

3.1.1. Modeling and Data Description

In chemical engineering, the Plug Flow Reactor (PFR) is a fundamental device used
in various chemical processes, especially in gas–liquid phase reactions, both exothermic
and endothermic. Its performance significantly influences the yield of the desired product.
The PFR forms a hollow cylindrical tube or pipe through which reactants flow as they
undergo a chemical transformation. Its significance is prominent in numerous chemical
processing industries where controlled reactions are crucial for producing desired products.
One of the key characteristics of the PFR is its unique flow pattern. Unlike other reactor
types, the PFR is designed to minimize axial mixing, resulting in a flow pattern with a
nearly constant velocity profile. This means that, as reactants move through the reactor, they
experience minimal cross-mixing along its length. Instead, the concentration of reactants
changes primarily along the axial direction of flow. Figure 4 illustrates a schematic of a
typical Plug Flow Reactor. In this representation, the PFR is depicted as a cylindrical tube,
typically wrapped around an acrylic mold, and encased in a tank. This configuration helps
maintain temperature control within the reactor, a critical factor in many chemical processes.

Figure 4. A schematic diagram illustrating the components and operational aspects of a Plug Flow
Reactor, a crucial element in chemical engineering processes.

In the PFR system, a coolant is circulated through the annular space of the reactor
to control its temperature. The chosen reaction system involves two first-order reactions
occurring in series. Reactant A produces product B, which decomposes to form product C.
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The desired product from this reaction system is B. Several temperature sensors are strategi-
cally placed within the reactor to monitor temperatures at different locations. The following
reactions describe the dynamic PFR model [11]:

A → B → C (25)

The mathematical representation of the Partial Differential Equations (PDEs) govern-
ing the PFR process is as follows:

∂CA
∂t

= −v1
∂CA
∂x

− k10e−E1/RTr CA (26)

∂CB
∂t

= −v1
∂CB
∂x

+ k10e−E1/RTr CA − k20e−E2/RTr CB (27)

∂Tr

∂t
= −v1

∂Tr

∂x
+

∆Hr1

ρmcpm
k10e−E1/RTr CA+

∆Hr2

ρmcpm
k20e−E2/RTr CB +

Uw

ρmcpmVr
[Tj − Tr]

(28)

∂Tj

∂t
= −u

∂Tj

∂x
+

Uwj

ρmjcpmjVj
[Tr − Tj] (29)

In these equations, various parameters and variables are defined as follows: u rep-
resents the flow rate of the heating fluid in the jacket, CA and CB are the concentrations
of reactants A and B, Tr and Tj are the temperatures of the fluid in the reactor and jacket,
∆Hr1 and ∆Hr2 represent the enthalpies of the reactions in Equation (25), ρm is the density
of the fluid in the reactor, ρmj is the density of the fluid in the jacket, cpm and cpmj are the
heat capacities of the fluid in the reactor and jacket, vr and vj are the volumes of the reactor
and jacket, Uw and Uwj are the heat transfer coefficients of the reactor and jacket, k10 and
k20 are Arrhenius constants, and E1 and E2 are the activation energies of the reactions.

The data are generated by perturbing the input flow rate of the reaction feed around
the steady-state nominal values presented in Table 1. The flow input is perturbed around
the nominal operating point with a Pseudo-Random Binary Signal (PRBS) in the frequency
range of [0, 0.05 ωn], where ωn = π/T represents the Nyquist frequency. The dataset con-
sists of 1000 measurements and includes 11 variables: the input flow rate, nine temperatures
from different locations in the reactor, and the product concentration. The data generated
from the simulation are noise free. To replicate real industrial data measurements, noise
with a Signal-to-Noise Ratio (SNR) of 20 is introduced into the data. The measurements are
divided into two halves: 500 observations as training data and 500 observations as testing
data. The 500 training observations are used to develop the PCA model. The PCA model
is developed for the training data, with five optimal Principal Components (PCs) being
selected. This developed model is then used to detect any possible faults in the testing data.
In the case of the KS computation part, a moving window of size 30 is adopted.

One of the crucial parameters to monitor in the PFR is the temperature profile along its
length. Several factors, such as the reaction conditions, heat transfer to the coolant, and feed
flow rate, contribute to the dynamic nature of the temperature within the reactor. Maintain-
ing an optimal temperature profile is paramount to achieving the desired product yield.
Deviations from the ideal temperature can result in undesirable outcomes. Lower tempera-
tures than required might lead to a lower product yield, affecting the overall production
efficiency. Conversely, higher temperatures can create hot spots within the reactor, leading
to catalyst deactivation and reactor shutdown, ultimately causing production and economic
losses. In the context of temperature and concentration monitoring, the reliability of sensors
becomes crucial. Accurate and reliable temperature readings, especially from sensors such
as T5 and T6, play a pivotal role in timely adjustments to maintain the optimal conditions
within the reactor. Any malfunction or discrepancy in sensor readings must be promptly
detected, reported, and rectified to prevent process inefficiencies and potential economic
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losses. In addition to temperature, monitoring the concentration of the product, often mea-
sured as CB, is equally significant. Product quality directly depends on the concentration
levels, making accurate and consistent product concentration measurements crucial for
ensuring the production of high-quality, desirable end products. In this study, temperature
sensor faults are simulated to evaluate the performance of the investigated fault detection
methods. In addition, concentration measurement plays a very important role in deciding
the product’s quality, and malfunction in the product sensor results in heavy economic loss.
Further, the detection of product concentration (CB) sensor faults has been assessed in this
study. This is important for both product quality and economic considerations.

Table 1. Model parameters of the Plug Flow Reactor process.

Process Variable Description Value/Unit

vl Flow rate of reactant 1 m/min
u Flow rate of heating fluid in jacket 0.5 m/min
CA Concentrations of reactant A 4 mol/L
CB Concentrations of reactant B 0 mol/L
Tr Temperature of fluid in reactor 320 K
Tj Temperature of fluid in jacket 375 K
∆Hr1 Enthalpy of dynamic reaction in Equation (25) 0.5480 kcal/kmol
∆Hr2 Enthalpy of dynamic reaction in Equation (25) 0.9860 kcal/kmol
ρm Density of fluid in the reactor 0.09 kg/L
ρmj Density of fluid in the jacket 0.10 kg/L
cpm Heat capacity of fluid in the reactor 0.231 kcal/(kg K)
cpmj Heat capacity of fluid in the jacket 0.80 kcal/(kg K)
Vr Volume of the reactor 10 lt
Vj Volume of the jacket 8 lt
Uw Heat transfer coefficient of the reactor 0.20 kcal/(min K)
R Gas constant 1.987 kcal/(min K)
k10 Arrhenius constant 5.0 × 1012 min−1

k20 Arrhenius constant 5.0 × 102 min−1

E1 Activation enegy of reaction in Equation (25) 20,000 kcal/kmol
E2 Activation enegy of reaction in Equation (25) 50,000 kcal/kmol

3.1.2. Different Fault Scenarios

In this study, the proposed PCA–KS-based strategy is evaluated by introducing various
simulated sensor faults. These faults include bias, drift, and intermittent types, providing a
comprehensive assessment of the strategy’s performance.

1. Bias Fault: A bias fault is a sudden and significant deviation in a variable’s behavior
from its normal range. It can be mathematically expressed as

S(t) = SN(t) + b, (30)

where SN(t) is the variable’s normal range and b represents the bias introduced at time,
t. Bias faults are characterized by a pronounced and persistent shift in sensor readings.

2. Drift Fault: Sensor drift is characterized by a gradual and exponential change in
sensor readings over time. This phenomenon is attributed to the aging of the sensing
element and can be mathematically defined as

S(t) = SN(t) + M(t − t f ), (31)

where M denotes the slope of the drift and t f represents the time at which the fault begins.
Drift faults are a consistent departure from normal behavior, growing progressively.

3. Intermittent Fault: Intermittent sensor faults are marked by irregular intervals of
appearance and disappearance. These faults are characterized by short instances of
variation in sensor readings, typically in the form of small variations in the bias term,
followed by a return to normal behavior.
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Table 2 provides an overview of the various simulated fault scenarios employed to
evaluate the performance of the fault detection strategy. Specifically, these scenarios include
different faults introduced in the PFR process. In the case of the bias fault, the study has
considered three distinct magnitudes of fault: a large step change, a medium step change,
and a small step change. These fault scenarios have been applied to the temperature
variable, T5, beginning from the 200th sampling instant and continuing until the end of
the testing data. Notably, the simulated large step change (F1) manifests as a significant
deviation from the normal behavior, accounting for 3.5% of the total variation. During this
fault period, the statistical indicators employed by the fault detection strategy perform
significantly well, with all indicators surpassing the established confidence threshold within
the fault region. Notably, the T2 and SPE-based indicators exhibit minimal false alarms,
while the CUSUM and KS indicators effectively detect the fault without triggering any false
alarms. Furthermore, the fault scenarios denoted as F2 and F3 represent medium and small
step changes, constituting 2% and 0.9% of the total variation, respectively.

Table 2. Simulated fault scenarios in Plug Flow Reactor process.

Fault Number Description Variable Type of Fault

F1 Large step (3.5% of total variation) Temperature T5 Bias
F2 Medium step (2% of total variation) Temperature T5 Bias
F3 Small step (0.9% of total variation) Temperature T5 Bias
F4 Multiple step (2% of total variation) Temperature T6 Intermittent
F5 Ramp (Slope of 0.002) Product concentration CB Drift

3.1.3. Monitoring Results

This section provides the results of the proposed FD strategy in monitoring different
faults in the PFR process. First, the results of the four different fault detection approaches
in identifying fault F2 are illustrated in Figure 5a–d. In the case of the T2 indicator, it
exhibits a robust and accurate fault detection performance with minimal instances of missed
detections and false alarms, as depicted in Figure 5a. However, when considering the SPE
indicator of PCA, it displays a comparatively higher number of missed detections and
false alarms, as visualized in Figure 5b. Moving on to the CUSUM indicator, it showcases
a relatively smooth fault detection profile, but a slight detection delay can be observed,
as illustrated in Figure 5c. In contrast, the KS indicator surpasses the others by consistently
remaining above the confidence limit within the fault region, achieving fault detection
without any missed detections or significant detection delays. This is evident in Figure 5d,
highlighting the distinct advantage of the KS indicator as a reliable fault detection method
in this scenario.

The results of the four monitoring techniques in the presence of a sensor temperature
fault (F3) with a small magnitude are presented in Figure 6a–d. Results reveal distinct
differences in fault detection capabilities among the methods. In Figure 6a,b, both the T2

and SPE statistics exhibit limited effectiveness in clearly detecting the fault. The responses
from these indicators are somewhat unclear, failing to provide a robust detection of the
fault’s onset and progression. This could be due to their decision statistics being solely
based on the actual observations, making them insensitive to small changes in the system.
These methods might require more significant deviations from the normal state to trigger a
reliable alarm. The CUSUM fault indicator, as shown in Figure 6c, offers better performance
compared to the T2 and SPE statistics. This improved performance is due to its decision
statistic considering all historical data, making it sensitive to small changes in the system.
However, there is still a small delay in detecting the fault, suggesting that it may not
be as timely in identifying such small-magnitude faults. Despite this delay, the CUSUM
method demonstrates its capability to eventually detect the fault effectively. However,
the KS indicator, displayed in Figure 6d, offers a highly accurate and timely fault detection,
demonstrating a significant advantage in small-magnitude fault detection. The KS indicator
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detects the fault starting from the 205th sampling time instant with minimal delay. These
results underscore the superiority of the PCA–KS FD strategy in detecting small-magnitude
faults within a noisy process environment, with the KS indicator proving to be particularly
adept in this regard.

Figure 5. Detection results of (a) PCA-based T2 indicator, (b) SPE indicator, (c) CUSUM indicator,
and (d) KS indicator in the presence of Fault F2 in the PFR process.

The effectiveness of the PCA–KS-based FD strategy in monitoring fault F4, an inter-
mittent fault, is presented in the following analysis (Figure 7a–d). This fault is introduced
in temperature variable T9 during specific sampling time intervals, which include [50, 110],
[200, 260], and [380, 450]. Figure 7a,b displays the response of the T2 and SPE-based fault
indicators in monitoring intermittent faults. Both the PCA-T2 and PCA-SPE strategies
fail to detect this abnormality effectively, as is evident from the monitoring plots. These
indicators show limitations in their ability to accurately capture and identify the inter-
mittent fault’s occurrences. In contrast, Figure 7c,d shows the response of the CUSUM
and KS-based fault indicators in monitoring the intermittent fault. Both of these indica-
tors demonstrate the capability to detect the fault. However, it is worth noting that the
T2 and SPE fault indicators have some missed detections, while the CUSUM indicator
exhibits occasional false alarms. These characteristics are not indicative of a robust fault
detection strategy. Conversely, the proposed PCA–KS method exhibits precise and sharp
fault detection for fault F4, even in the presence of noise. This capability highlights the
effectiveness of the PCA–KS-based strategy in detecting intermittent faults. The superiority
of the PCA–KS-based fault strategy in detecting intermittent fault F4 is evident from its
precise fault detection capability, even in the presence of noise. Intermittent faults, which
can appear and disappear at irregular intervals, are often challenging to identify accurately,
but the PCA–KS strategy excels. It effectively leverages the non-parametric nature of the KS
statistic, sensitivity to distribution differences, and the moving window approach to detect
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faults promptly. This robust performance underscores the potential of the PCA–KS-based
strategy to enhance fault detection in real-world processes and demonstrates its reliability
even in noisy and dynamic industrial environments.

Figure 6. Detection results of (a) PCA-based T2 indicator, (b) SPE indicator, (c) CUSUM indicator,
and (d) KS indicator in the presence of Fault F3 in the PFR process.

The monitoring results presented in Figure 8a–d reflect the performance of different
fault indicators in detecting sensor aging fault F5, which exhibits a gradual drift. The sensor
aging fault F5 is inserted at sampling time instant 200 in variable CB. These results are
crucial for understanding the capabilities of each fault detection strategy, especially in
dealing with such drift-type faults, which can be particularly challenging in industrial
processes. The T2-, SPE-, and CUSUM-based fault indicators exhibit partial detection
of the drift fault, and their responses indicate a delay in recognizing the abnormality.
The T2 indicator detects the fault at time instant 320, the SPE indicator at 285, and the
CUSUM indicator at 375. This delay in detection for the T2 and SPE schemes could be
attributed to the fact that these indicators rely solely on the observed data, making them
less sensitive to gradual changes. On the other hand, the proposed PCA–KS-based strategy
stands out with its good performance, as shown in Figure 8d. It detects the drift fault
with remarkable precision, offering an early warning by identifying the fault at instant 220,
a mere 20 samples after its onset. The effectiveness of the PCA–KS method in promptly
and accurately detecting drift-type faults can be attributed to its ability to consider the
underlying statistical properties of the data. The KS test is a non-parametric method
that excels in comparing two distributions, which makes it highly suitable for identifying
gradual deviations in data distributions, such as those caused by drift faults. In practical
industrial scenarios, the early detection of drift faults is of paramount importance. Timely
recognition of such deviations can prevent further deterioration, maintain product quality,
and reduce potential economic losses. The PCA–KS-based strategy, as demonstrated in this
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study, provides a robust solution for effectively handling drift-type faults and offers clear
advantages over traditional fault detection methods.

Figure 7. Detection results of (a) PCA-based T2 indicator, (b) SPE indicator, (c) CUSUM indicator,
and (d) KS indicator in the presence of Fault F4 in the PFR process.

The performance of various fault detection strategies is quantitatively evaluated
using key indicators, including FDR, FAR, Precision, Recall, and F1-score. The results are
presented in Table 3 for the five different faulty scenarios in the PFR process, providing
insights into the capabilities of each strategy in detecting these faults. Analyzing the
results reveals several significant observations. For fault F1, characterized by a large step
change, all monitoring strategies exhibit excellent detection performance, with high FDR,
Precision, and F1-score values. However, the PCA–KS strategy stands out by achieving a
perfect FDR of 100% and zero FAR, showcasing its robustness in detecting this type of fault.
While the other strategies offer satisfactory performance, the PCA–KS strategy outperforms
them with its precision and reliability. In the case of fault F2, associated with a medium
step change, the PCA–KS strategy again demonstrates exceptional performance, with a
high FDR and F1-score of 100%, ensuring precise and timely fault detection. The other
strategies exhibit slightly lower performance but are still capable of detecting the fault
with reasonable accuracy. For the challenging scenario of fault F3, which represents a
small step change, the PCA–KS strategy substantially outperforms the other methods. It
provides a high FDR of 98.87%, significantly better than the other strategies, demonstrating
its effectiveness in capturing subtle deviations. This fault is particularly challenging due
to its small magnitude, and the PCA–KS strategy’s ability to handle such faults with
satisfactory precision is evident. Analyzing fault F4, which is characterized by intermittent
variations, the PCA–KS strategy maintains a superior performance, with a high FDR of
98.34% and a low FAR of 1.26%. It offers precise detection, even in the presence of noise,
ensuring minimal missed detections and false alarms. The PCA–KS strategy proves to
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be highly effective in detecting intermittent faults. Finally, in the case of drift fault F5,
the PCA–KS strategy excels in achieving a high FDR of 94.34% and F1-score of 97.08%
while maintaining a low FAR. It stands out as a valuable tool for detecting drift-type
faults with early recognition, which is essential for preventing further deterioration and
economic losses.

Figure 8. Detection results of (a) PCA-based T2 indicator, (b) SPE indicator, (c) CUSUM indicator,
and (d) KS indicator in the presence of Fault F5 in the PFR process.

The monitoring results of the KS indicator using empirical CDF and D-stat are also
provided. The KS test serves as a valuable tool for comparing the residuals of training
and testing data. In the absence of any fault, the Empirical Cumulative Distribution
Functions (ECDFs) of both residuals should closely align or overlap. However, when
a fault is introduced, the ECDFs of training and testing data residuals deviate from the
reference distribution. Figure 9a,b shows the ECDFs for the PFR case study in two distinct
scenarios: one without any fault and the other with a fault. Specifically, Figure 9a illustrates
a scenario where no fault is present in the testing data. In this case, the ECDFs of both the
residuals for variable 6 exhibit minimal deviation, indicating their close similarity. On the
other hand, Figure 9b presents the ECDFs of training and testing data residuals for fault
scenario F2. Here, it is evident that the ECDF of testing data residuals deviates significantly
from that of the training data residuals, signaling the presence of a fault. The plot clearly
demonstrates that the gap between the two ECDFs is more pronounced in the presence of a
fault, providing a visual indication of fault occurrence.
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Table 3. Comparative analysis of the four monitoring methods for detecting five faulty scenarios in
the PFR process.

Fault Index PCA-T2 PCA-SPE PCA-CUSUM PAC-KS

F1 FDR 99.00 99.00 99.00 100.00
FAR 1.00 0.80 0.00 0.00
Precision 99.33 99.49 100.00 100.00
Recall 99.00 99.00 99.00 100.00
F1-score 99.10 99.20 99.50 100.00

F2 FDR 98.26 92.75 95.75 100.00
FAR 1.75 3.15 0.00 0.00
Precision 98.80 97.70 100.00 100.00
Recall 98.26 92.75 95.75 100.00
F1-score 98.50 95.20 97.80 100.00

F3 FDR 44.00 63.25 77.45 98.87
FAR 3.50 1.21 0.00 0.00
Precision 95.00 98.80 100.00 100.00
Recall 44.00 63.25 77.45 98.87
F1-score 60.10 77.11 87.29 99.43

F4 FDR 72.89 73.33 87.23 98.34
FAR 2.19 1.13 5.43 1.26
Precision 95.10 92.50 90.65 98.00
Recall 72.89 73.33 87.23 98.34
F1-score 82.52 79.80 89.34 98.16

F5 FDR 64.67 77.87 41.67 94.34
FAR 5.75 4.00 0.00 0.00
Precision 94.40 96.68 100.00 100.00
Recall 64.67 77.87 41.67 94.34
F1-score 76.79 86.00 58.82 97.08

Figure 9. Visual inspection of ECDFs under fault-free and faulty conditions: (a) Empirical CDF
of training data residuals (blue line) and testing data residuals (red line) for variable 6 with no
fault. (b) Empirical CDF of training data residuals (blue line) and testing data residuals (red line) for
variable 6 with fault F2.
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The results of the KS test for both the fault-free scenario and five distinct faulty
scenarios are presented in Table 4. The evaluation uses the KS statistic, referred to as D-stat,
as defined by Equation (16). This D-stat provides a quantifiable measure of the discrepancy
between the ECDFs of the training and testing data residuals. In Table 4, it is evident that
the D-stat value is minimized in the absence of any fault, registering a value of 0.2875. This
indicates that the ECDFs of training and testing data residuals align well when no fault
is present. However, as various faults are introduced (F1, F2, F3, F4, and F5), the D-stat
value increases significantly. These larger D-stat values for the faulty scenarios signify a
noticeable deviation between the ECDFs of training and testing data residuals, highlighting
the effectiveness of the KS-based monitoring strategy in detecting faults with precision.
This quantitative analysis of the D-stat values provides a clear representation of the KS
test’s capability in distinguishing between fault-free and faulty conditions, making it a
robust tool for fault detection in the chemical engineering process. It is also worth noting
that the D-stat values for different faults reflect the magnitude of the discrepancies between
the ECDFs, allowing for differentiation between fault types and their severity.

Table 4. KS test results for PFR process fault detection: D-Stat values for fault-free and different fault
scenarios in the PFR process.

No. Fault D-Stat Value

1 No fault 0.2875
2 Fault F1 0.9900
3 Fault F2 0.9074
4 Fault F3 0.8198
5 Fault F4 0.8588
6 Fault F5 0.9425

3.2. Tennessee Eastman Process

In this section, the performance of the proposed PCA-based KS- strategy is assessed
by its ability to identify different faults in the benchmark Tennessee Eastman process.

3.2.1. Overview of TE Benchmark Process

The Tennessee Eastman (TE) benchmark is widely recognized as a fundamental ref-
erence in the domain of process monitoring, often serving as a pivotal benchmark for
validating novel abnormal event detection strategies [55]. Researchers commonly turn to
the TE process to assess the effectiveness of their proposed anomaly detection methodolo-
gies. The schematic of the TE benchmark process is depicted in Figure 10, and it offers
a diverse range of faulty scenarios, including bias, drift, intermittent, random variations,
and valve-related abnormalities. These scenarios, detailed in the TE process data sheet,
involve the introduction of faults after sampling time instant 160 in the testing data. For
the validation process, a total of 22 process measurements (XMEAS 1 to XMEAS 22) and
12 manipulated variables (XMV 42 to XMV 52) are considered [56]. The proposed PCA–KS
fault detection strategy’s effectiveness is put to the test by assessing its performance on
specific faulty scenarios, namely IDV(1), IDV(2), IDV(4), IDV(5), IDV(6), IDV(7), IDV(8),
IDV(10), IDV(11), IDV(12), IDV(13), and IDV(14). Please note that certain fault scenarios,
including IDV(3), IDV(9), and IDV(15), have been excluded from this evaluation due to
their consistently low False Discovery Rate (FDR) values [56].
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Figure 10. A comprehensive schematic representation depicting the key components of the Tennessee
Eastman process, a complex and widely studied chemical engineering system [57].

Utilizing the fault-free dataset of the TE process, a reference PCA model is constructed
using the 500 sampling instances of training fault-free data. To optimize the model, the Cu-
mulative Percentage Variance (CPV) technique is employed, ultimately retaining 19 Princi-
pal Components (PCs) from the developed model. This optimized model is then applied
to identify various faults within the TE process. For clarity and in-depth evaluation, this
study provides a detailed analysis of the proposed PCA–KS strategy’s performance in
two specific faulty scenarios—Anomalies IDV(5) and IDV(11) of the TE process. This fo-
cused assessment allows us to thoroughly examine the strategy’s effectiveness in detecting
anomalies in this complex industrial process.

3.2.2. Monitoring Results

For a visual illustration, the performance of the considered fault detection methods
in two fault scenarios, namely IDV(5) and IDV(11), will be presented. The IDV(5) fault
simulates a step fault in the Condenser cooling water inlet temperature of the TE process.
Figure 11a–d displays the monitoring results of the investigated PCA-T2, PCA-SPE, PCA-
CUSUM, and PCA–KS-based strategies, respectively. It is noteworthy that both the PCA-T2

and PCA-SPE schemes detect the step fault only within the time frame of sampling instants
160 to 360, with no detection capability beyond sampling instant 360. On the other hand,
the PCA-CUSUM scheme outperforms the conventional indicators as it detects this fault
within the sampling instants 160 to 460. This extended coverage indicates its improved
sensitivity to abnormalities and a better ability to capture the evolving nature of the step
fault over time. The proposed PCA–KS strategy stands out with its superior performance.
It accurately detects the fault within the defined region, demonstrating the strength of the
Kolmogorov–Smirnov test in identifying step faults. By carefully evaluating the statistical
properties of the residuals and leveraging the non-parametric approach, PCA–KS excels
in detecting anomalies across the entire affected period. This effectiveness is critical in
industrial processes where timely detection of faults is essential for preventing costly
production losses and ensuring process safety. Therefore, the PCA–KS approach offers a
promising solution for accurate and timely fault detection in complex chemical engineering
systems such as the TE process.
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Figure 11. Monitoring results for (a) PCA-T2, (b) PCA-SPE, (c) PCA-CUSUM, and (d) PCA–KS in
detecting fault IDV(5).

In the context of the TE process, the IDV(12) scenario simulates random variations in
the Reactor cooling water inlet temperature. Monitoring this specific fault is crucial for
maintaining process stability and product quality. Figure 12a–d provides a comprehen-
sive view of how different fault detection methods perform in this challenging scenario.
The traditional PCA-based fault indicators (i.e., PCA-T2 and PCA-SPE) prove inadequate
in precisely detecting this fault. Their performance is compromised, and they are unable
to consistently identify the random variations in the Reactor cooling water temperature.
Moreover, even the PCA-CUSUM indicators (Figure 12c), which exhibit improved perfor-
mance in certain fault scenarios, fail to detect this fault effectively, leading to numerous
missed detections. These missed detections can be problematic in real industrial settings,
potentially causing production disruptions and quality issues. In contrast, the proposed
PCA–KS strategy outperforms the traditional indicators. It excels in capturing the subtle
and random variations introduced by the IDV(12) fault, resulting in enhanced detection
accuracy and minimal missed detections. This capability is vital in industrial applications,
where process conditions can change unpredictably, and even minor abnormalities must be
identified promptly to avoid operational disruptions.

The performance of different fault detection methods, including PCA-T2, PCA-SPE,
PCA-CUSUM, and PCA–KS, in detecting various faults in the TE process is evaluated
and summarized in Table 5. The results clearly demonstrate the superiority of the pro-
posed PCA–KS approach. It consistently outperforms the other methods, achieving higher
F1-scores, which are a key indicator of overall detection performance. The PCA–KS strategy
exhibits an advantage in most fault scenarios, reflecting its ability to detect a wide range of
abnormalities effectively. These results emphasize the potential of the PCA–KS strategy for
enhancing fault detection in the complex and dynamic TE process. Its ability to strike a
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balance between FDR and FAR while achieving high F1-scores positions it as a valuable
tool for improving the reliability and stability of chemical engineering operations.

Figure 12. Monitoring results for (a) PCA-T2, (b) PCA-SPE, (c) PCA-CUSUM, and (d) PCA–KS in
detecting fault IDV(11).

Table 5. Comparative analysis of the four monitoring methods for detecting five faulty scenarios in
the TE process.

Fault Index PCA-T2 PCA-SPE PCA-CUSUM PCA–KS

IDV1 FDR 97.95 99.10 94.33 99.65
FAR 1.63 3.77 0.00 5.00

Precision 99.10 97.95 100.00 98.02
Recall 97.95 99.10 94.33 99.65

F1-score 98.48 98.40 97.08 98.70

IDV2 FDR 94.59 98.52 75.00 98.81
FAR 1.75 1.75 0.00 9.75

Precision 99.13 99.16 100.00 95.89
Recall 94.59 98.52 75.00 98.81

F1-score 96.67 98.68 85.71 97.77

IDV4 ADR 72.43 97.25 98.00 98.41
FAR 1.26 1.89 0.00 1.20

Precision 99.23 99.01 100.00 99.46
Recall 72.43 97.25 98.00 98.41

F1-score 83.57 98.25 98.98 98.87
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Table 5. Cont.

Fault Index PCA-T2 PCA-SPE PCA-CUSUM PCA–KS

IDV5 ADR 62.16 62.67 93.67 97.94
FAR 1.18 1.87 0.00 1.50

Precision 99.12 98.80 100.00 99.25
Recall 62.16 62.67 93.67 97.94

F1-score 76.50 76.90 96.71 98.68

IDV6 ADR 98.53 98.63 68.33 99.50
FAR 0.63 0.78 0.00 7.25

Precision 99.70 99.71 100.00 97.12
Recall 98.53 98.63 68.33 99.50

F1-score 99.22 99.67 81.18 97.93

IDV7 FDR 99.35 99.51 99.51 100.00
FAR 1.89 3.71 0.00 15.63

Precision 99.33 98.38 100.00 94.15
Recall 99.35 99.51 99.51 100.00

F1-score 99.34 98.90 99.74 97.00

IDV8 FDR 92.43 92.96 92.00 97.94
FAR 0.63 1.89 0.00 6.88

Precision 99.76 99.07 100.00 97.09
Recall 92.43 92.96 92.00 97.94

F1-score 95.83 95.92 95.83 97.66

IDV10 ADR 33.14 59.82 84.00 95.59
FAR 1.89 4.50 0.00 10.62

Precision 97.97 96.85 100.00 95.02
Recall 33.14 59.82 84.00 95.59

F1-score 49.57 73.95 90.81 95.61

IDV11 ADR 63.17 73.61 55.00 92.35
FAR 0.63 5.03 0.00 2.50

Precision 99.66 92.50 100.00 98.74
Recall 63.17 73.61 55.00 92.35

F1-score 77.32 83.67 70.96 95.44

IDV12 ADR 93.67 90.91 79.50 99.51
FAR 1.89 3.14 0.00 14.37

Precision 99.17 98.43 100.00 93.59
Recall 93.67 94.52 79.50 99.01

F1-score 96.38 86.00 88.57 96.29

IDV13 ADR 87.68 90.62 86.67 89.35
FAR 0.00 0.00 0.00 0.00

Precision 100.00 100.00 100.00 100.00
Recall 87.68 90.62 86.67 89.35

F1-score 93.43 95.07 93.00 94.24

IDV14 ADR 98.21 94.43 68.50 98.24
FAR 1.89 1.26 0.00 1.23

Precision 99.20 99.40 100.00 99.45
Recall 98.21 94.43 68.50 98.24

F1-score 98.37 96.85 81.30 98.79

Table 6 provides an overview of the results obtained from the KS test applied to
both the fault-free scenario and various faulty scenarios within the TE process. The D-
stat values are employed as a key indicator of performance, and their significance is
highlighted. The table clearly illustrates the trend, with the D-stat values being lowest
for the fault-free scenario, and progressively increasing for each of the different faulty
scenarios. This pattern emphasizes the effectiveness of D-stat as a diagnostic tool for
identifying anomalies within the TE process. It is important to note that D-stat values



ChemEngineering 2024, 8, 1 25 of 28

near 1 indicate a higher degree of separation between the ECDFs, making them a valuable
indicator for distinguishing normal and faulty conditions. This approach helps in effectively
characterizing and diagnosing various types of faults in the TE process, thereby contributing
to robust anomaly detection strategies.

Table 6. KS test results for TE process fault detection: D-Stat values for fault-free and different fault
scenarios in the TE process.

No. Fault D-Stat Value

1 No fault 0.2250
2 IDV(1) 0.9894
3 IDV(2) 0.9393
4 IDV(4) 0.9994
5 IDV(5) 0.9825
6 IDV(6) 0.9950
7 IDV(7) 0.8282
8 IDV(8) 0.9195
9 IDV(10) 0.8183
10 IDV(11) 0.8028
11 IDV(12) 0.8995
12 IDV(13) 0.9060
13 IDV(14) 0.9027

In summary, the results obtained from the fault detection and monitoring experiments
conducted on the PFR and TE processes provide valuable insights into the performance of
the proposed PCA–KS method and its comparison with conventional PCA-based indicators
such as PCA-T2, PCA-SPE, and PCA-CUSUM. These results collectively underscore the
robustness and efficacy of the PCA–KS method for process fault detection in both the PFR
and TE processes, along with its ability to consistently outperform conventional PCA-based
methods in various fault scenarios. The PCA–KS-based fault detection strategy stands
out as a robust and reliable approach, owing to several key advantages. The PCA–KS
approach is well-suited to a wide range of data distributions and fault patterns, even
when the characteristics of the data are not explicitly known or predictable. Furthermore,
the KS statistic is specifically designed to detect differences in the CDFs of two datasets.
This inherent capability makes it exceptionally proficient at identifying deviations in data
distribution, which often serve as indicators of potential faults. Its sensitivity to distribution
changes is a valuable asset when it comes to identifying various types of faults, making
it adaptable to diverse industrial scenarios. Moreover, the PCA–KS strategy employs a
moving window approach during the computation of the KS statistic. This feature proves
to be highly advantageous when working with noisy data or data streams, where the
precise location of a fault may not be readily identifiable. The method’s adaptability to
changing data patterns over time enhances its applicability in dynamic industrial processes.
The KS-based strategy also exhibits a remarkable attribute of maintaining a low false alarm
rate while effectively detecting faults. This feature is highly desirable in industrial settings,
where erroneous fault alarms can be disruptive and costly. The sensitivity of the KS statistic
to even subtle distribution differences enables it to identify small-magnitude faults that
might go unnoticed by other methods. This capability is particularly crucial for proactive
maintenance and minimizing production disruptions. Finally, the combination of PCA and
the KS-based fault detection leverages the strengths of both techniques. PCA streamlines
the data by reducing its dimensionality, making it more manageable and interpretable.
Meanwhile, the KS statistic zeroes in on the residual errors, enhancing the accuracy of fault
detection. This symbiotic relationship between dimensionality reduction and distribution-
based anomaly detection underpins the effectiveness of the PCA–KS approach in industrial
process monitoring and fault detection.
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4. Conclusions

Accurate fault detection is imperative for ensuring the productivity, profitability,
and safety of industrial processes. This study introduced an innovative data-based ap-
proach that combines the KS indicator with the PCA modeling framework to enhance
fault detection in multivariate data. The non-parametric nature of the KS test proved
advantageous, as it does not rely on specific assumptions about data distribution, making
it versatile across various scenarios. The proposed method effectively identified anomalies
in diverse data distributions by computing the distance between normal and online data
residuals in a moving window. Significant changes in this distance indicated the presence
of faults, with minimal distance in fault-free scenarios and increased distance during faults.
Testing the proposed PCA–KS strategy on case studies involving a Plug Flow Reactor (PFR)
and the Tennessee Eastman (TE) process demonstrated its robust performance. For the PFR
case study, the PCA–KS approach detected various faults with high precision, including
bias, intermittent, and sensor-drift faults. It excelled in noisy environments, outperforming
conventional methods and achieving high detection performance for the five faulty scenar-
ios in the PFR process. The F1-score values for different faulty scenarios of the PFR process
were found to be 100%, 100%, 99.43%, 98.16%, and 97.08%. In the TE process, the PCA–KS
strategy precisely detected various faulty scenarios, with F1-scores ranging from 94.24% to
98.87%. The moving window approach employed in the computation of the KS statistic
proved advantageous in capturing sensitive details, especially in noisy data or data streams,
enhancing the detection of sensor faults. The combination of PCA and the KS statistic offers
a powerful solution for industrial process monitoring, reducing data dimensionality while
focusing on distribution-based anomaly detection.

5. Future Work: Exploring New Frontiers

Despite the promising performance of the PCA–KS strategy, occasional false alarms
were observed in certain Tennessee Eastman process fault scenarios, and while the FAR re-
mains manageable, potential improvements lie ahead. The study concludes by identifying
numerous avenues for future research in fault detection in chemical processes. One promis-
ing direction is the exploration of adaptive detection thresholds, dynamically adjusting
to changing conditions or process variations. The incorporation of an adaptive thresh-
old could enhance the fault detection system’s ability to handle fluctuations effectively,
potentially reducing false alarms. Another area of interest involves the integration of a
wavelet-based multiscale version of PCA with the KS-based indicator, creating a multi-scale
PCA–KS fault detection strategy. This not only accommodates noisy measurements but
also improves detection quality by minimizing false alarms. Additionally, investigating
the combination of the KS-based monitoring chart with other data-driven methods such as
Partial Least Squares (PLS), Canonical Variate Analysis (CVA), or Independent Component
Analysis (ICA) presents a valuable avenue for enhancing fault detection capabilities. Fur-
thermore, leveraging the benefits of the KS-based chart in conjunction with deep-learning
models, such as long short-term memory and variational autoencoders, could provide
robust fault detection for large time-series data. While this study has concentrated on fault
detection, future research endeavors should explore fault isolation techniques to pinpoint
the root causes of faults in chemical processes. The pursuit of these avenues promises to
further advance the field of fault detection and contribute to the reliability and safety of
industrial processes.
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