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Abstract: Pyrolysis is a low-emission and sustainable thermochemical technique used in the pro-
duction of biofuels, which can be used as an alternative to fossil fuels. Understanding the kinetic
characterization of biomass pyrolysis is essential for process upscaling and optimization. There is
no accepted model that can predict pyrolysis kinetics over a wide range of pyrolysis conditions and
biomass types. This study investigates whether or not the classical lumped kinetic model with a
three-competitive reaction scheme can accurately predict the walnut shell pyrolysis product yields.
The experimental data were obtained from walnut shell pyrolysis experiments at different tempera-
tures (300–600 ◦C) using a fixed-bed reactor. The chosen reaction scheme was in good agreement with
our experimental data for low temperatures, where the primary degradation of biomass occurred
(300 and 400 ◦C). However, at higher temperatures, there was less agreement with the model, indi-
cating that some other reactions may occur at such temperatures. Hence, further studies are needed
to investigate the use of detailed reaction schemes to accurately predict the char, tar, and gas yields
for all types of biomass pyrolysis.

Keywords: biomass to fuel; pyrolysis; fixed-bed reactor; walnut shells; pyrolysis oil; model-based method;
competitive reaction scheme; lumped model

1. Introduction

Due to worldwide energy concerns, the depletion of fossil fuels, as well as envi-
ronmental problems associated with their use, renewable energy sources are receiving
increased attention. Biomass has been recognized as an alternative to fossil fuels due to its
global availability and environmental benefits, which provide the main motivation for the
conversion of biomass into fuels. This conversion can be achieved through biochemical
conversion (anaerobic digestion [1,2], fermentation [3]), and thermochemical conversion
(combustion [4], pyrolysis [5], and gasification [6,7]). Unlike biochemical transformation,
the thermochemical method can convert various types of biomass into fuels or chemicals
in an efficient, sustainable, and quick way [8]. However, the use of biomass in traditional
combustion processes is limited due to its low energy density and release of toxic organic
compounds, such as dioxins [9,10].

Pyrolysis is a low-emission and sustainable thermochemical technique that can be used
to thermally degrade biomass into a range of useful products, including bio-char (solid),
pyrolysis oil/tars, and fuel gas products (volatiles) [11]. In addition to being an independent
technology, biomass pyrolysis is the main sub-process in combustion and gasification
processes. As pyrolysis is an inevitable process in thermochemical biomass conversion,
understanding pyrolysis kinetics is important for process development, optimization, and
proper reactor design.

Kinetics plays an important role in understanding the complex pyrolysis process and
deriving mathematical models. Numerous studies have investigated the kinetics of pyrolysis
processes [12,13]. Pyrolysis of biomass involves a highly complex set of competitive and
concurrent reactions, and the exact mechanism remains unknown. There is no conventional
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model that can predict the pyrolysis rate or provide initial information about final conversion
yields over a varied range of biomass types, pyrolysis conditions, and reactors types [14].
Hence, simple models that can describe pyrolysis kinetics are very beneficial.

This paper investigates the use of a simple lumped model to mathematically simulate
the reaction kinetics of the slow pyrolysis of walnut shells. While lumped models do not
necessarily represent the complex physicochemical mechanism of the process, they are able
to predict the overall yields [15,16]. A lumped model is acceptable for determining the
kinetic parameters of reactions involving pyrolysis, combustion, and gasification [17]. In
such models, biomass components and their reaction products are categorized into three
product groups: solid (char), non-condensable volatiles (gas), and liquid (tar) [18].

There are two main mathematical approaches to experimentally determine the kinetic
parameters of biomass pyrolysis: iso-conversional (model-free) [19–21] and model-based
(model-fitting) [22] methods. Model-fitting methods can be categorized as one-component
or multi-component depending on the initial biomass characterization (biomass type or
its components) and as lumped or detailed reaction mechanisms according to how the
products are defined (by products or by species in each product) [23]. The present work
combines experimental and theoretical studies on walnut shell pyrolysis. Nutshells as
potential materials can be used as an alternative fuel. While studies have evaluated the
kinetics of nutshell thermal decomposition [24,25], many have used different reaction
mechanisms and kinetic models [26].

Sheth et al. [27] validated the model previously proposed by Koufopanos [28] to
optimize the kinetic parameters of the hazelnut shell pyrolysis experiments conducted by
Demirbas [29], which involved thermogravimetry experiments on hazelnut shells at heating
rates of 0.5, 2, 10, 25, and 40 K/s. Noszczyk et al. [26] conducted thermogravimetric analyses
at three different heating rates (5, 10, and 20 ◦C·min−1) on walnut, hazelnut, peanut, and
pistachio shells. The kinetic parameters were determined by Coats and Redfern [30] using
the isothermal model-fitting method. Their results showed that an increase in the heating
rate caused an increase in the activation energy of nut shell pyrolysis. They concluded that
there is a significant difference in the kinetic parameters of different feed materials, even
those from the waste classes (e.g., nutshell wastes). They recommended characterizing
specific nutshell residues to improve the modeling of thermal processes and reactor design
for thermal waste treatment [30].

So far, few studies have been conducted on the pyrolysis of walnut shells using a
fixed-bed reactor. To the best of our knowledge, no research has been performed on lumped
kinetic modeling of nut shells, especially walnut shells. Therefore, the aim of this work
was to apply the lumped kinetic model proposed by many authors [15,16,31] to accurately
determine the kinetic parameters of walnut shells pyrolysis. The objectives of this research
were as follows: (1) conduct slow pyrolysis experiments on walnut shells in a fixed-bed
reactor, (2) estimate the kinetic parameters of the walnut shell pyrolysis. Then, based on a
comparison of the modeling and experimental results, we will study whether the existing
three-reaction competitive scheme has sufficient prediction power for gas, tar, and char
yields across the temperature range of 300 to 600 ◦C.

2. Materials and Methods
2.1. Pyrolysis Experiment

Walnut shells were chosen as the pyrolysis material. The samples were chopped up
and sieved into small particles with sizes ranging from 1 to 2 mm, dried in an oven at 105 ◦C
for 48 h to remove any moisture, and then kept in a desiccator prior to the experiments to
ensure that they remained dry. Based on the proximate analysis of the samples, walnut
shells had 37.9% fixed carbon and 59.3% volatile matter on a dry and ash-free basis [32]. It
is assumed that any moisture uptake that might have occurred during the handling of the
samples prior to the experiments would have been eliminated due to the slow heating rate
of the process (0.25 ◦C·s−1), as thermal decomposition starts at around 180–200 ◦C.
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The pyrolysis experiments were carried out on a fixed-bed reactor, as shown in
Figure 1. The system consists of vertically positioned stainless steel tubes. A tube
(350 mm and 8 mm ID) was connected to the reactor tube (50 mm and 6 mm ID), where
the pyrolysis of the biomass occurs, and a U-style tar trap (6 mm ID) was connected to the
reactor. The tar trap was submerged in the cooling bath for the duration of the experiment
to condense and collect tar. Power was delivered via copper clamps attached to the outside
of the stainless steel tube body at the top and bottom of the tube. The tube body acted as a
resistance heater. The samples were held in place between two stainless steel wire meshes,
placed in the middle of the reactor tube, and kept constant for all the tests. A layer of quartz
wool was placed on top of the tar tube in order to separate the tar from other pyrolysis
gases. The controller, the power supply, and the K-type thermocouple were arranged in a
loop. The controller modulated the direct current onto the stainless steel tube, which was
resistively heated to regulate the heating rate and control the temperature. The required
experimental parameters, such as the heating rate, holding time, and temperature, were
entered in the control program. Holding temperatures of 300 ◦C, 400 ◦C, 500 ◦C, and 600 ◦C
were used in this study. A heating rate of 0.25 ◦C·s−1 and a holding time of 100 s were used
for all of the experiments. A K-type thermocouple was used to measure and control the
temperature. The thermocouple was introduced through a fitting connection at the top of
the tube. The cooling bath used for pyrolysis vapor condensation contained a mixture of
dry ice and ethylene glycol (the temperature of the bath was −60 ◦C). In order to achieve
the desired temperature, volume fractions of 0.4 and 0.6 of dry-ice and ethylene glycol
were used, respectively [33]. Another thermocouple was placed at the top of the tar trap to
measure the temperature during the experiment and to ensure the trap was cool enough to
capture tars. Argon (Ar) was used as a carrier gas, at a 3 L/min flow rate, from the top of
the stainless steel tube to sweep away pyrolysis products. Argon was selected as the carrier
gas, as it does not condense at a temperature of −60 ◦C.
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Product Yield Calculations

At the end of the run, the reactor was left to cool naturally to room temperature, and
products were collected to calculate char and tar yields. The tar collection method using
solvents and rotary evaporators was avoided due to concerns of losing some tars due to
the relatively high temperature of the rotary evaporators [34]. The difference in weight of
the reactor tube and tar trap before and after the experiments was calculated as the mass
of chars and tars, respectively. Gas yields were calculated by difference to close the mass
balance. The experiments were repeated two times for each condition and then the mean
values were obtained. The product yields were calculated using Equations (1)–(3):

Char yield (wt%) =
mchar

minitial sample
× 100 (1)

Tar yield (wt%) =
mtar

minitial sample
× 100 (2)

Gas yield (wt%) = 100 − Char yield − Tar yield (3)

2.2. Mathematical Modeling

Model-based methods are the most common methods used for evaluating solid-state
kinetics, especially in non-isothermal conditions. With these methods, a reaction scheme
must be proposed first (see Figure 2). This study used the competitive model, which is a
common reaction scheme for representing the components of pyrolysis by simply lumping
them into three groups of products (gas, tar, and char) [15,35].
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The rate of reaction of the solid phase under non-isothermal conditions (Equation (4))
is determined by multiplying k(T), a process rate constant that obeys the Arrhenius law,
and f (α), the conversion function depending on the reaction mechanism [36]. This study
used first-order reaction f (α) = 1 − α. i = 1, 2, 3.

dα
dt

= ki(T) f (α) (4)

The degree of conversion (α) represents the sample decomposition amount at time t
and is defined in terms of the sample’s mass change (Equation (5)), where m0 is the initial
mass, mt is the mass at an arbitrary time, and m∞ is the mass at the end of the process.

α =
m0 − mt

m0 − m∞
(5)

The rate constant is described by the Arrhenius equation (Equation (6)), where A is
the pre-exponential factor (s−1), E is the activation energy (kJ·mol−1), R is the universal gas
constant (kJ·K−1·mol−1), and T is the absolute temperature (K).

ki(T) = Ai exp
(
−Ei
RT

)
(6)
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The linear heating rate under non-isothermal conditions β is calculated using Equation
(7), where dT is a temperature change (K) and dt is a time change (s).

β =
dT
dt

(7)

Nonlinear least squares fitting is commonly employed to estimate Arrhenius param-
eters by fitting the experimental data. Differential measurements are suggested for this
method for better demonstration of solid de-volatilization [37]. We searched for values
of the unknown parameters (Ai, Ei) that minimized the sums of the squares of the experi-
mental data (final yields of gas, tar, and char at the final temperature) and determined the
corresponding points of functions calculated (at the final temperature) by the model (see
Equation (8)) [38]. n represents the total number of experimental data.

sum =
n

∑
i=1

(

(
dαi
dt

)
experiment

−
(

dαi
dt

)
model

)
2

(8)

A large number of estimated pyrolysis kinetic parameters have been reported in the
literature. Reported activation energies (kJ·mol−1) vary from 112.7 to 140 for E1, 84 to 133
for E2, 106.5 to 121 for E3, and pre-exponential factors from (s−1) 4.1 × 106 to 1.48 × 1010 A1,
1.43 × 104 to 2 × 108 for A2 and 7.4 × 105 to 2.66 × 1010 for A3 [31,39,40]. The kinetic
parameters (Ai, Ei, in total 6 parameters) in this study were fitted by minimizing the sum in
Equation (8) using nonlinear optimization with the generalized reduced gradient method,
subject to the constraints obtained from the literature mentioned above. The motivation for
using these constraints was to ensure that all the parameters remained within the physically
realistic range based on the existing literature. This variation in reported values is due to
the fact that the researchers used different models, feeds, operation conditions, and heating
profiles. [14]. Table 1 presents the primary kinetic parameters and other constants used in
the model. Primary kinetic parameters were obtained from a study using lumped model
for wood pyrolysis [39].

Table 1. Primary kinetic data and other constants that are used in the model.

Parameters Values

A1 (s−1) 1.30 × 108

A2 (s−1) 2.00 × 108

A3 (s−1) 1.08 × 107

E1 (kJ·mol−1) 140
E2 (kJ·mol−1) 133
E3 (kJ·mol−1) 121
R (kJ·mol−1) 8.314 × 10−3

Heating rate (◦C·s−1) 0.25

3. Results and Discussion
3.1. Pyrolysis Experiments

Pyrolysis of walnut shells was conducted using a fixed-bed reactor. The process was
performed at different temperatures (300–600 ◦C), with the heating rate of 0.25 ◦C·s−1 and
a holding time of 100 s.

3.1.1. Vapor-Condensing Temperature and Condensing Efficiency

Figure 3 shows the data collected from the thermocouples, including the pyrolysis
process and tar trap temperatures versus the time of the pyrolysis. The cooling bath exhibited
good heat preservation performance with the right volume fractions of dry ice and ethylene
glycol. During pyrolysis, the bath temperature gradually increased from −30 ◦C to the final
temperature of 2 ◦C, which is well below the tar trap limit (30 ◦C) temperature reported
in the literature [34]. Wang et al. found the optimum condensing temperature to be in the
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range of 67 to 77 ◦C, at which point the moisture in the pyrolysis oil decreased from 30% to
10% and the condensing efficiency was in the range of 0.4 to 0.2 [41].
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Figure 3. Pyrolysis process and tar trap temperatures versus time of pyrolysis.

Condensation efficiency in this study was calculated using Equation (9) [41], and the
result was around 0.25 for all the experiments, which is in the optimum range [41].

Condensing e f f iciency =
Liquid mass

Walnut shell mass − solid mass
(9)

where liquid mass denotes the mass of condensed tar in the tar trap, walnut shell mass
specifies the mass of raw materials prior to pyrolysis, and solid mass represents the mass
of char after pyrolysis.

3.1.2. Pyrolysis Products and the Effect of Temperature

The effect of temperature (in the range of 300–600 ◦C) on the quantity of pyrolysis
products formed from walnut shells has been studied, as it is the most significant factor
related to the pyrolytic product distribution and yield.

The tar and char yields were measured after each test, and the results are shown
in Figure 4. The gas yield was calculated as the percentage of the balance between the
original sample weight and the weights of tar and char formed. Volatile yields (volatile
yield is the sum of the gas and tar yields) increased as the temperature increased. The ideal
pyrolysis temperature for maximum tar yields is reported to be between 400–600 ◦C for
most types of woody biomass [42]. The tar yields doubled when pyrolysis was carried out
between 400–500 ◦C. There was a major increase in tar yields up to 500 ◦C, but by 600 ◦C
the yield reached a maximum value of 19%. Efeovbokhan et al. [43] observed that tar yields
increased by more than double when the temperature was in the range of 400–500 ◦C for
pyrolyzing yam peels. The gas yields were high, with approximately half of the feedstock
being converted to gas. The high char yields, measured at the low temperatures in the range
studied, decreased up to 23% of the total biomass feed. This indicates that the optimum
temperature range for char production from pyrolysis of walnut shells is up to 400 ◦C.
Temperature negatively affects char production yields [44]. Sarkar et al. [45] studied the
pyrolysis of coconut shells in the temperature range of 400–600 ◦C and reported the char
yield reduced while bio-oil yield was improved with the temperature increase.
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3.2. Pyrolysis Modeling

The simple lumped kinetic model was chosen to evaluate the accuracy of pyrolysis
reaction kinetics and product yield prediction. The kinetic parameters of each reaction
in the reaction scheme of the competitive model were determined with a least squares
method by fitting experimental data at different temperatures. The kinetic parameters
from Chan et al. [39] were employed as the primary values. The initial values for the fitting
were the kinetic parameters determined for the case of a first-order reaction. The best
values of the estimated kinetic parameters (3 activation energies and 3 pre-exponential
factors) are shown in Table 2. The subscripts 1, 2, and 3 are the kinetic parameters of the
reactions: solid to gas, solid to tar, and solid to char, respectively. The estimated kinetic
parameters are within the range of values reported in the literature. Sheth et al. [46]
conducted kinetic modeling on woody biomass decomposition to volatiles and char. Their
chosen reaction scheme used two competing reactions for each biomass component. Sheth
et al. then applied the least squares method to find the optimum kinetic parameters. They
described this approach to modelling biomass decomposition as a failure since the kinetic
parameters (Ai, Ei) they obtained with their model and methodology were not within the
predetermined physically realistic range.

Table 2. Kinetic data obtained by the model.

Parameters Values

A1 (s−1) 1.70 × 108

A2 (s−1) 3.35 × 109

A3 (s−1) 3.29 × 105

E1 (kJ·mol−1) 114.14
E2 (kJ·mol−1) 135.54
E3 (kJ·mol−1) 87.32

Figure 5 compares the model-predicted yields with the experimentally measured
yields. The model used the best-fit parameters in Table 2. The modeling data confirmed
that the solid yield dropped while the tar and gas yields enhanced during the experiments
in the temperature range of 300 to 400 ◦C. The fit of the model to the experimental data
for the pyrolysis temperatures of 300 and 400 ◦C was sufficiently good. At higher temper-
atures, there was less agreement with the model, which could indicate that some other
reactions dominate at such temperatures. The first-order Arrhenius kinetics focus on the
primary pyrolysis process; consequently, the kinetics scheme better represents the primary
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decomposition of biomass pyrolysis [47]. In pyrolysis processes, biomass moisture loss
occurs at temperatures below 100 ◦C; primary pyrolysis reactions occur at 200–600 ◦C,
where biomass decomposes into the primary char, primary tars, and non-condensable gas;
and secondary pyrolysis reactions occur at 300–800 ◦C [48]. This study found that the
one-component mechanism with three competing reactions is not a suitable scheme for the
slow pyrolysis of walnut shell at high temperatures. As one-component kinetic mechanisms
are mostly used for describing pyrolysis under fast heating rates or/and high temperatures,
the disagreement could be eliminated if a different reaction mechanism was chosen [49].
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Figure 5. Comparison between experimental data and yields predicted by the model during pyrolysis
as a function of maximum pyrolysis temperature.

The average percentage error from the experimental data was calculated using Equa-
tion (10) [50]. At low temperatures, the model and experimental results agreed well, with
an average percentage error of 3% for the low-temperature data. This indicates the model
performs well in the temperature range of 300 to 400 ◦C. Based on this result and the
studies on lumped kinetic modeling in the same temperature range, average percentage
error typically achieves results within 5%.

Average percentage error =
∑n

i=1

( dataexperiment−datamodel
dataexperiment

)
× 100

n
(10)

In Figure 6, we plot the temperature-dependent rate constants ki(T) over different
temperature ranges. We show these somewhat unconventional plots because the plots
reveal how reactions 1, 2, and 3, responsible for the formation of the three phases (gas,
liquid, solid), take over or dominate in different temperature ranges. For example, one
might expect that the solid formation (char) would dominate at the lowest temperatures,
liquid formation (tar) would dominate in the central (pyrolysis) range, and gas formation
would take over at the high end as it approaches gasification temperatures. This trend does
hold for char k3(T), but according to our model and data k2(T) is dominant up to 600 ◦C.
This suggests that k1(T) largely corresponds to volatilization. In a sense, we may have
averaged out or missed the effect of gasification reactions at higher temperatures.
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Figure 6. The reaction rate constants (s−1) versus temperature (K): (a) for the temperature range
100 ◦C to 300 ◦C; (b) for the temperature range 150 ◦C to 400 ◦C; (c) for the temperature of range
200 ◦C to 500 ◦C; and (d) for the temperature range 200 ◦C to 600 ◦C.

4. Conclusions

Pyrolysis experiments and mathematical modeling of walnut shells were conducted.
No previous studies have investigated the application of lumped-kinetic modeling to
simulate walnut shell pyrolysis product yields. The experimental work was conducted at
different temperatures (300–600 ◦C) in a fixed-bed reactor. According to the experiments,
char yields dropped from 37% to 23% with the temperature increase, while volatile yields
(tar and gas) increased from 64% to 77%, respectively. We used the nonlinear least squares
fitting method to determine the kinetic parameters of the reactions involved. The conven-
tional competitive reaction scheme with three reactions fit our experimental data well at low
temperatures, where the primary degradation of biomass occurred (300 and 400 ◦C), but
not at higher temperatures. The results here suggest that the competitive reaction model
with three reactions needs to be expanded to include the secondary decomposition of
pyrolysis products to accurately predict yields as gasification temperatures are approached.
This will be explored in a future work that will be published soon.
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