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Abstract: Photocatalytic hydrogen production was studied with a formic acid solution with titanium
dioxide (TiO2) with the aid of simultaneous Rh deposition. The optimum conditions were as follows:
Rh loading, 0.1 wt%; formic acid concentration, 1.0%; solution, pH 2.2; temperature, 50 ◦C. Under
the optimum conditions, the photocatalytic hydrogen production with TiO2 by the simultaneous
deposition of Rh was 5.0 mmol g−1, 12.2 mmol g−1 and 16.0 mmol g−1 after 1 h, 3 h and 5 h of
irradiation time for black light, respectively. Rh/TiO2 photocatalysts were characterized by XRD,
SEM, photoluminescence spectra, diffuse reflectance spectra and the BET surface area. The reaction
mechanism of photocatalytic hydrogen production from formic acid by Rh/TiO2 was also proposed.

Keywords: hydrogen production; formic acid; photocatalyst; simultaneous metal deposition; Rh/TiO2

1. Introduction

In recent years, the excessive depletion of fossil fuel resources, global warming, en-
vironmental pollution and high energy demand have become serious concerns in the
world [1,2]. Hence, environmentally friendly renewable energy resources, such as solar
power, wind, tide, heat, biomass, geothermal, ocean, hydropower, nuclear and hydrogen
energy, are needed to replace fossil fuels [3]. Hydrogen plays an important role as a re-
newable energy resource as a result of its unique energy storage, cleanliness, longevity,
sustainability and renovation properties [3,4]. Various methods such as steam reforming,
partial oxidation and the self-thermal reforming of hydrocarbons as well as fossil resources,
the electrolysis of water (alkaline water electrolysis, high temperature steam electrolysis,
electrolysis with a steam polymer), the pyrolysis of water, the gasification of biomass and
photocatalytic water splitting have been used to produce hydrogen [3,5,6]. Steam reforming,
the pyrolysis of water, the electrolysis of water and the gasification of biomass are expensive
and produce carbon dioxide (CO2) gas. Furthermore, high thermal energy is also required
for these reactions. Therefore, these reactions are not appropriate for sustainable hydrogen
production [3]. In contrast, only sunlight and photocatalysts are required for photocatalytic
reaction. Furthermore, it can occur under ambient conditions. Hence, photocatalytic water
splitting for hydrogen production has recently been the most attractive option due to its
cost effective, environmentally friendly and pollution-free nature [3,6]. Several types of
semiconductors as photocatalysts have been used in photocatalytic hydrogen production
reaction under the irradiation of ultraviolet and visible light [3,7]. For instance, metal oxides
(TiO2, ZnO, CuO, ZrO2, Fe2O3, VO2, WO3), chlacogenides (ZnS, CdS, CdSe), halides (AgX),
carbides (SiC) and carbonaceous materials (g-C3N4) have been widely used for hydrogen
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production by photocatalytic water splitting [2,8–17]. TiO2 is most favorable material; it is
widely used in photocatalytic hydrogen production because it is nontoxic, stable in a wide
range of pH values, ecofriendly, highly photo stable and commercially available [2,5,7].
However, the main limitation of the application of TiO2 is its lower photo activity. The
recombination of charge carriers during irradiation, the occurrence of backward reaction
and the fact that it is only active under UV light (4–8% of the total solar spectrum) are
responsible for its lower energy conversion efficiency [2,7]. The metal/TiO2 heterojunction
decreases the charge carrier recombination and reduces the band gap energy. Hence, the
heterojunction of TiO2 and metal has been prepared by coupling the TiO2 with metal,
and it has been used as a stable and high performance photocatalyst [5,18]. The Pt, Au,
Ag, Rh, Pd, Ni and Cu noble metals are coupled with TiO2 for the enhancement of the
photocatalysis reaction [1,19–23]. The photocatalytic reforming of an organic sacrificial
agent solution was also used as an alternative to the photocatalysis splitting of water to
increase hydrogen production. Many organic species, such as methanol, ethanol, glycerol,
formic acid and ammonia borane, were used as sacrificial agents for the photocatalytic
production of hydrogen [20,21,24–26]. Although Rh/TiO2 and the sacrificial agent formic
acid were individually applied to H2 production [1,26], there is very little information on
the photocatalytic hydrogen production on TiO2 from a formic acid solution with the simul-
taneous photo-deposition of Rh. The present work has dealt mainly with photocatalytic H2
production from a formic acid solution by TiO2 with the simultaneous photo-deposition
of Rh.

2. Materials and Methods
2.1. Chemicals and Materials

Photocatalyst Titanium oxide (P-25 TiO2) was purchased from Degussa Co., Ltd.,
Germany (anatase 75%, rutile 25%, surface area 53 m2 g−1, particle size 25 nm). A stan-
dard stock solution of Rh3+ (1000 ppm) was prepared by the dissolution of RhCl3 (Kanto
Chemical Co., Inc., Tokyo, Japan). Sodium chloride (99.5%), formic acid (98%), sodium
formate (98.0%) and ammonium formate (97.0%) were purchased from Nacalai Tesque
Inc., Japan. Lithium formate (98.0%) and potassium formate (95.0%) were purchased from
Wako Co., Ltd., Japan and Kanto Chemical Co., Inc., Japan, respectively. All of the chemicals
were used without further purification. Pure water was obtained from an ultrapure water
system (Advantec MFS Inc., Tokyo, Japan).

2.2. Photocalytic Hydrogen Production

Hydrogen generation experiments with TiO2 powder were carried out by using si-
multaneous Rh deposition. The pyrex column vessel reactor (inner volume, 123 mL) was
used for the photocatalytic hydrogen production from formic acid. Normally, 50 mg of the
TiO2 photocatalysts was added to 40 mL of the formic acid solution. Then, the solution
containing Rh3+ was added to the reactor, and the concentration of Rh3+ was 1.25 ppm.
A 15 W black lamp with an emission of about 352 nm (Toshiba Lighting & Technology
Corp., Tokyo, Japan) was placed to the side of the pyrex vessel reactor as a light source.
The light intensity was measured by a UV radio meter (UIT-201, Ushio Inc., Tokyo, Japan),
and the value was 0.25 mW/cm2. The TiO2 photocatalyst was continuously stirred in the
formic acid solution by a magnetic stirrer during the irradiation of light. Using a hot stirrer,
the reactor temperature was kept constant at 50 ◦C. The reactor was sealed with a silicon
septum. The irradiation time was 3 h. The generated gas was extracted from the upper
part of the reactor with a microsyringe (ITO, Co., Ltd., Tokyo, Japan) and measured by gas
chromatography (GL Sciences, GC-3200, Japan) with a thermal conductivity detector. The
stainless column (4 m long, 2.17 mm i.d.) packed with a Molecular Sieve 5A (mesh, 60–80)
was used for the separation. The carrier gas was 99.9% argon gas (Kawase Sangyo Co., Ltd.,
Mie, Japan). The temperature conditions of the GC were 50 ◦C for the injection, column
and detector. The flow rate of the carrier gas was 7.0 mL/min. The analysis time and
analysis sample amount were 10 min and 250 µL, respectively. The reproducibility of the
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photocatalytic H2 production test (relative standard deviation) was within an RSD of 10%
for more than three of the run numbers.

2.3. Characterization of Photocatalysts

After the photocatalytic hydrogen generation experiment, the TiO2 solution was
centrifuged. Then, the supernatant and the precipitate of the Rh-deposited TiO2 were
separated, and the precipitate (Rh/TiO2) was dried. The dried photocatalyst was crushed
in an agate mortar for 15 min to obtain a photocatalyst powder. Finally, the obtained
Rh-deposited TiO2 and the pure TiO2 were analyzed by SEM imaging, BET surface area
measurement, X-ray diffraction, photoluminescence spectrum measurement and diffuse
reflection spectrum measurement. X-ray powder diffraction (XRD) measurements were
performed using a Rigaku RINT Ultima-IV diffractometer by Cu radiation at a scan rate
of 0.04◦/s in a scan range of 10–80◦. The nitrogen adsorption and desorption isotherm
and the Brunaure Emmett Teller (BET) specific surface area were measured by using a
BEL PREP-vacIIBET surface area measuring device (MicrotracBEL Corp., Osaka, Japan).
To determine the particle size of the photocatalysts, scanning electron microscope (SEM)
observations were performed using a Hitachi S-4000 SEM with an accelerating voltage
of 25 kV. The photoluminescence (PL) spectra of photocatalysts were observed using an
RF-5300PC spectrofluorophotometer (SHIMADZU, Kyoto, Japan). The diffuse reflectance
spectra of the photocatalysts were measured with a UV2450 UV-vis system (SHIMADZU,
Kyoto, Japan). BaSO4 was kept as a reference material in the diffuse reflectance spectra
measurement.

3. Results and Discussion
3.1. Photocatalytic Hydrogen Production
3.1.1. Effect of Rh Ion Concentration

The effect of Rh ion concentration using TiO2 with simultaneous deposition on the
photocatalytic hydrogen production was investigated. The results are shown in Figure 1. It
was observed that the amount of hydrogen production increased sharply with the increase
in Rh3+ ion concentration. However, there is no dramatic change in the increase in hydrogen
production after the addition of an Rh3+ ion concentration of 1.25 ppm. If we assume that
all Rh3+ ions of a 1.25 ppm solution were deposited after the reaction, the Rh content on the
TiO2 photocatalyst would be 0.1 wt%. Since the trace amount of hydrogen was produced in
the absence of the Rh3+ ions, the amount of hydrogen production was increased by about
250 times in addition to the 0.1 wt% Rh in TiO2 with the aid of simultaneous deposition.
The light filtration by the photo-deposited metal on the TiO2 surface, the fractional blockage
of the surface active site for TiO2 in the oxidative branch at the photoreaction period and
the decline in catalytic activity of the Rh/TiO2 nanoparticle by its enlargement could be
responsible for the almost constant amount of hydrogen generation at higher concentrations
of Rh [20,21].

3.1.2. Effect of the Simultaneous Deposition of Rh in TiO2

The effect of the simultaneous deposition of Rh in TiO2 was investigated by using
previously prepared Rh/TiO2 and by simultaneously photo-depositing Rh3+ on TiO2 on the
photocatalytic hydrogen production from the formic acid solution. The results are shown in
Figure 2. It was observed in every case that the hydrogen production from the formic acid
solution by the simultaneous addition of Rh3+ in TiO2 was significantly larger compared
with that obtained by the prepared Rh/TiO2 photocatalyst. The freshly deposited Rh metal
on the TiO2 surface enhanced the photocatalytic hydrogen production activity.
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Figure 1. Effect of Rh3+ ion concentration. TiO2, 50 mg; reaction time, 3 h; reaction temperature,
50 ◦C; formic acid concentration, 1 wt%.
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Figure 2. Comparison of the activity for the simultaneous photo-deposition of Rh in TiO2 (blue) with
the prepared Rh/TiO2 (red). TiO2, 50 mg; Rh, 1.25 ppm; reaction time, 3 h; reaction temperature,
50 ◦C; formic acid concentration, 1 wt%.

3.1.3. Effect of Formic Acid Concentration

The effect of formic acid concentration on hydrogen generation using TiO2 with the
aid of simultaneous Rh photo-deposition was investigated. The results are shown in
Figure 3. It was observed that little hydrogen production occurred from the pure water.
However, the photocatalytic hydrogen production increased with the increasing formic
acid concentration, and the amount of hydrogen production remained almost constant in
the case of using more than 1.0 wt% of formic acid. The active sites of the TiO2 surface were
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saturated with increasing formic acid concentrations, which might result in a decrease in
hydrogen generation. Similar results were reported for photocatalytic hydrogen production
by CuO@NiO from glycerol [27].
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Figure 3. Effect of formic acid concentration. TiO2, 50 mg; Rh, 1.25 ppm; reaction time, 3 h; reaction
temperature, 50 ◦C.

3.1.4. Effect of the pH of the Reaction Solution

The effect of pH on hydrogen generation using TiO2 with the aid of simultaneous
Rh photo-deposition from a formic acid solution was investigated. The results are shown
in Figure 4. It was observed that the maximum amount of hydrogen was produced
(12.2 mmol g−1) at pH 2.2. Moreover, the initial pH of the reaction solution containing
1.0 wt% formic acid solution was 2.2. Hence, the adjustment of the pH of the reaction
solution in the subsequent experiments was unnecessary. This is because at lower pH
values, more H+ ions would be adsorbed on the surface of the TiO2 photocatalyst, and the
results were reasonable. Therefore, the reduction of the H+ ion to H2 was also preferred
at a lower pH [28]. However, it may be partially difficult to photocatalytically deposit the
Rh3+ ion on the TiO2 surface at pH 1, although the chemical stability of TiO2 could remain
at pH 1.

3.1.5. Effect of Temperature

The effect of temperature on hydrogen generation using TiO2 with the aid of simulta-
neous Rh photo-deposition from a formic acid solution was investigated. The results are
shown in Figure 5. It was observed that the amount of hydrogen production increased with
the increase in the reaction temperature. Similar results were reported for photocatalytic
hydrogen production using Pt/TiO2 at different temperatures [29]. However, 50 ◦C was
selected as the optimum temperature, since this temperature was possible owing to the
waste heat.

3.1.6. Effect of NaCl Concentration

Seawater contains sodium chloride of about 3.0 wt%. Therefore, the effect of NaCl
concentration on photocatalaytic hydrogen generation using TiO2 with the aid of simulta-
neous Rh deposition from a formic acid solution was inspected. It was observed that the
production of hydrogen decreased with the addition of sodium chloride (Figure 6). The
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dissolved chloride ion in the aqueous formic acid solution was adsorbed on the surface
of the TiO2. The chloride on the surface hindered the adsorption of formic acid on the
photocatalyst [30]. Thus, the generation of hydrogen gas was disturbed by the addition
of NaCl.
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3.1.7. Effect of Formate Type

Various formate solutions were tested for photocatalytic hydrogen using TiO2 with
the aid of simultaneous Rh photo-deposition. Among these formates, a significant amount
of hydrogen evolved from the formic acid solution (Figure 7). This result indicates that
negligible amounts of hydrogen were produced from the direct hydrolysis of the formate
ions (HCOO− + H2O → H2 + HCO3

−) [31]. Therefore, formic acid can act as a better
scavenging agent compared to ammonium formate, lithium formate, sodium formate and
potassium formate.
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3.2. Characterization of Photocatalysts
3.2.1. XRD Analysis

The XRD of the TiO2 and collected Rh/TiO2 photocatalysts were analyzed. The results
are shown in Figure 8. The TiO2 photocatalyst exhibits at 2θ = 25.44◦, 37.80◦, 48.18◦, 53.96◦,
54.08◦, 62.72◦, 68.74◦, 70.06◦ and 74.96◦, corresponding to the (101), (004), (200), (105), (201),
(204), (116), (220) and (215) planes, respectively. These peaks were observed for anatase
phase of TiO2. These results are in agreement with the previously reported work on pure
TiO2 [32]. The TiO2 photocatalyst also exhibits peaks at 2θ = 27.42◦, 36.14◦ and 41.34◦.
These three peaks could be attributed to the rutile phase of TiO2. Similar peaks could be
observed for the Rh/TiO2 photocatalyst. Furthermore, any additional peak for the Rh/TiO2
photocatalyst could hardly be observed. These facts indicate that the Rh metal was well
dispersed on the TiO2 crystal [33]. Hence, the crystal phase of the TiO2 may scarcely change
after the photo-deposition of the Rh metal.
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3.2.2. SEM Analysis

The SEM images of both the TiO2 and Rh/TiO2 photocatalysts are shown in Figure 9.
Figure 9A shows the spherical morphology of the TiO2 with a particle size of 30 nm. A
similar particle size and shape are also observed for the Rh/TiO2 (Figure 9B). In the SEM
image of the Rh/TiO2 photocatalyst, the Rh particle could be hardly observed as a discrete
particle, which indicated that very fine Rh particles were uniformly dispersed on the
TiO2 [4].
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3.2.3. PL Analysis

Generally, the weak fluorescence intensity is responsible for the lower recombination
of the photogenerated electron hole pair. From Figure 10, it was seen that the peak intensity
of the PL spectra for Rh/TiO2 was lower than that of TiO2, and it was observed that the
photocatalytic activity of Rh/TiO2 is greater than that of TiO2. Thus, photogenerated carrier
recombination reduction in the photo-deposition of Rh on TiO2 was confirmed by the PL
spectra [34].
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3.2.4. UV–Vis Diffuse Reflection Spectrum Analysis

UV–Vis diffuse reflection spectroscopy was used to characterize the absorption edge
and band gap shift of the TiO2 before and after the photo-deposition of the Rh metal. In
general, the band gap in a semiconductor is related with the absorbed wavelength, where
the band gap decreases with the increase in the absorption edges [35]. The reflectance data
was converted to the absorption coefficient F(R) values according to the Kubelka–Munk
equation; then, the corresponding Tauc plots (plotting αhν vs. hν) were determined for the
band gap energy of the photocatalysts (Figure 11) [36]. It was observed that the absorption
edges of the spectra were slightly red shifted to a higher wavelength from 389 nm to 396 nm
after the Rh was photo-deposited on the TiO2. The metal doping on the TiO2 could increase
the absorption edge and decrease the band gap [4].

3.2.5. BET Surface Area

The N2 adsorption and desorption isotherms of both photocatalysts at 77 K were
measured. The results are shown in Figure 12. The isotherm of TiO2 and Rh/TiO2 exhibits
a typical type IV isotherm, according to the classification of the adsorption and desorption
isotherms by IUPAC. The results indicate that both photocatalysts were porous materials.
The BET surface area, total pore volume and average pore diameter of the photocatalysts
were determined from the isotherm and are presented in Table 1. It was observed that the
BET surface area, total pore volume and average pore diameter of the Rh/TiO2 increased
after the photo-deposition of Rh. More photocatalytic activity for hydrogen production
would be correlated with a greater BET surface area, total pore volume and average pore
diameter of the photocatalyst. The photocatalytic hydrogen generation activity increased
with the increase in the BET surface area and pore volume, and a decreasing pore diameter
for La/TiO2 was reported [37].
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3.3. Reaction Mechanism

In the present work, the photocatalytic hydrogen generation from a formic acid so-
lution using the TiO2 photocatalyst with the simultaneous photo-deposition of Rh metal
was better relative to the hydrogen generation with bare TiO2. On the basis of the char-
acterization of the photocatalyst, the reasons for this may be as follows: (1) the progress
of the electron-hole separation, (2) the reduction of the recombination of the electron-hole
separation, (3) the metallic catalyst and (4) the slightly red shift of the absorption edge. On
the basis of the experimental study in the present work and a few literature reviews of
photocatalytical hydrogen generation by modified TiO2, a possible mechanism is proposed
in Figure 13 [1,5,20,21,24,26,38–40]. The pairs of the electron-hole are generated when the
TiO2 is irradiated with UV light with a wavelength of 380 nm or less. The Rh3+ ion is
reduced to Rh metal on the TiO2 by accepting the electrons. Furthermore, the electrons
photogenerated by the TiO2 move on the Rh. Thus, the electron-hole recombination is
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reduced and stimulates the hydrogen generation reaction. On the other hand, the proton
and CO2 are generated by the oxidation of water and formate ions with photogenerated
holes. Afterwards, the proton is reduced by accepting the electrons on the surface of the
Rh to form hydrogen. There are two possible effects on promoting hydrogen generation
in this work. Firstly, the promotion of hydrogen production on the surface of Rh metal
can occur. The photogenerated electron moves from the conduction band of the TiO2
onto the surface of the Rh metal and improves the hydrogen generation by promoting the
reduction reaction of the proton. Secondly, the oxidation reaction enhances the promotion
of hydrogen production. Formic acid is adsorbed on the surface of the Rh metal to promote
the oxidation reaction into formaldehyde. The first effect may be considered a leading one
for the increase in hydrogen generation.
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Table 1. Physicochemical properties of TiO2 and Rh/TiO2.

Photocatalyst BET Surface Area
[m2 g−1]

Total Pore Volume
[cm3 g−1]

Average Pore
Diameter [nm]

P-25 TiO2 53 0.296 22.3
Rh/TiO2 54 0.417 31.2

ChemEngineering 2022, 6, x FOR PEER REVIEW 12 of 15 
 

Figure 12. N2 adsorption–desorption isotherms of (a) P-25 TiO2 (upper) and (b) Rh/TiO2 (down). 

Table 1. Physicochemical properties of TiO2 and Rh/TiO2. 

Photocatalyst BET Surface Area [m2 g−1] Total Pore Volume [cm3 g−1] Average Pore Diameter [nm] 

P-25 TiO2 53 0.296 22.3 

Rh/TiO2 54 0.417 31.2 

3.3. Reaction Mechanism 

In the present work, the photocatalytic hydrogen generation from a formic acid so-

lution using the TiO2 photocatalyst with the simultaneous photo-deposition of Rh metal 

was better relative to the hydrogen generation with bare TiO2. On the basis of the charac-

terization of the photocatalyst, the reasons for this may be as follows: (1) the progress of 

the electron-hole separation, (2) the reduction of the recombination of the electron-hole 

separation, (3) the metallic catalyst and (4) the slightly red shift of the absorption edge. On 

the basis of the experimental study in the present work and a few literature reviews of 

photocatalytical hydrogen generation by modified TiO2, a possible mechanism is pro-

posed in Figure 13 [1,5,20,21,24,26,38–40]. The pairs of the electron-hole are generated 

when the TiO2 is irradiated with UV light with a wavelength of 380 nm or less. The Rh3+ 

ion is reduced to Rh metal on the TiO2 by accepting the electrons. Furthermore, the elec-

trons photogenerated by the TiO2 move on the Rh. Thus, the electron-hole recombination 

is reduced and stimulates the hydrogen generation reaction. On the other hand, the proton 

and CO2 are generated by the oxidation of water and formate ions with photogenerated 

holes. Afterwards, the proton is reduced by accepting the electrons on the surface of the 

Rh to form hydrogen. There are two possible effects on promoting hydrogen generation 

in this work. Firstly, the promotion of hydrogen production on the surface of Rh metal 

can occur. The photogenerated electron moves from the conduction band of the TiO2 onto 

the surface of the Rh metal and improves the hydrogen generation by promoting the re-

duction reaction of the proton. Secondly, the oxidation reaction enhances the promotion 

of hydrogen production. Formic acid is adsorbed on the surface of the Rh metal to pro-

mote the oxidation reaction into formaldehyde. The first effect may be considered a lead-

ing one for the increase in hydrogen generation. 
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4. Conclusions

In summary, it was found that the simultaneous photo-deposition of Rh metal on TiO2
increased the photocatalytic hydrogen production from formic acid by TiO2. Under optimal
conditions, the photocatalytic hydrogen generation with the aid of the simultaneous photo-
deposition of Rh metal on TiO2 was about 250 times better than that obtained with the
bare TiO2.
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