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Abstract: A fuzzy knowledge-based controller of hydraulic retention time (HRT) was designed
and tested in an outdoor membrane photobioreactor (MPBR) to improve nitrogen recovery from
a microalgae cultivation system, maintaining the algae as photosynthetically active as possible
and limiting their competition with other microorganisms. The hourly flow of the MPBR system
was optimised by adjusting the influent flow rate to the outdoor environmental conditions which
microalgae were exposed to at any moment and to the nitrogen uptake capacity of the culture. A
semi-empirical photosynthetically active radiation (PAR) prediction model was calibrated using
total cloud cover (TCC) forecast. Dissolved oxygen, standardised to 25 ◦C (DO25), was used as
an on-line indicator of microalgae photosynthetic activity. Different indexes, based on suspended
solids (SS), DO25, and predicted and real PAR, were used as input variables, while the initial HRT
of each operating day (HRT0) and the variation of HRT (∆HRT) served as output variables. The
nitrogen recovery efficiency, measured as nitrogen recovery rate (NRR) per nitrogen loading rate
(NLR) in pseudo-steady state conditions, was improved by 45% when the HRT-controller was set
in comparison to fixed 1.25-d HRT. Consequently, the average effluent total soluble nitrogen (TSN)
concentration in the MPBR was reduced by 47%, accomplishing the discharge requirements of the
EU Directive 91/271/EEC.

Keywords: fuzzy logic; hydraulic retention time; microalgae; nitrogen removal; photobioreactor;
wastewater

1. Introduction

Due to its capacity to assimilate nutrients from wastewater and carbon dioxide from
the atmosphere, microalgae biotechnology has been used to treat wastewater for decades [1]
and nowadays represents a key technology to develop water resource recovery facility
(WRRF) schemes [2,3]. The first studies related to microalgae were based on extensive
waste stabilisation ponds (WSP) [4]. WSP consist of large shadow basins where wastewater
is treated and aerated. These systems are simple and low-cost (with minimal civil works),
but their biological activity is often limited and entail huge land requirements, i.e., in the
order of hundreds of hectares [5]. As a consequence, microalgae cultivation in WSP is
usually limited to small rural areas where huge land surfaces are available [6,7].

As an enhanced version of WSP, high-rate algal ponds (HRAPs) are designed to in-
crease microalgae performance by improving the reactor’s mechanical and structural char-
acteristics [8–10]. In this respect, Morillas-España et al. [11] reported maximum nitrogen
and phosphorus removal of 29.1 mg N·L−1·day−1 and 1.5 mg P·L−1·day−1, respectively, at
a hydraulic retention time (HRT) of 5 days, which is much lower than those reported by
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Abis and Mara [6], i.e., 11–86 days. Despite this improvement, land requirements of HRAP
reactors can still be as high as 10 m2 per equivalent person [12]. Consequently, most existing
HRAPs are small or medium scale, i.e., in the range 1–50 hectares [13]. Alternatively, closed
photobioreactors (PBRs), such as tubular, vertical and flat-panel PBRs are engineer-based
microalgae cultivation systems designed to improve microalgae photosynthetic efficiency
by isolating the culture from outer contamination and better controlling the factors that
affect microalgae growth, such as temperature, pH and light distribution [8,10,14]. How-
ever, the operational costs of PBRs are considerably higher than HRAPs, which makes
wastewater treatment not economically competitive [12,15]. As a next step, membrane
photobioreactor (MPBR) systems have recently been developed to increase nutrient loading
rates to PBRs while maintaining microalgae biomass inside the reactors for longer. This is
attained by decoupling the HRT and the solids retention time (SRT), enabling reduction
in land requirements while maintaining (or even improving) microalgae activity [16–19].
Some recent advances have been made in the application of MPBR systems for wastewater
treatment. As an example, González-Camejo et al. [20] obtained a high-quality effluent
(which met legal requirements) in an outdoor MPBR system which operated at constant
HRT of 1.25 days. However, these conditions were only maintained for 25 days. After this
period, microalgae activity fell due to unfavourable climatic conditions and, in consequence,
nutrient effluent concentrations surpassed legal limits. Moreover, the photosynthetic ef-
ficiency of the system was only in the range of 5.40–5.68%, with maximum theoretical
photosynthetic efficiencies up to 12% [21]. Finally, the operational (OPEX) and capital
expenditures (CAPEX) in this study still remained high. All these drawbacks could be
improved by using monitoring tools and instrumentation, control and automation (ICA)
systems that can help to improve the efficiency and robustness of the system.

There are some examples of control strategies based on dynamic modelling of data to
predict microalgae behaviour. For instance, Pawlowski et al. [22] described a model-based
control to regulate pH by CO2 addition in open microalgae cultivation ponds. Robles
et al. [23] used pH and dissolved oxygen (DO) sensors to assess microalgae performance
during the start-up of a raceway pond. In addition, Foladori et al. [24] evaluated the nitro-
gen and phosphorus removal of a laboratory-scale microalgae-bacteria culture using pH,
DO and oxidation-reduction potential (ORP) sensors, while Hossain et al. [25] developed
empirical models to predict nitrogen and phosphorus removal from a microalgae-based
municipal wastewater treatment system. Other authors have used artificial neural net-
works (ANN) to model and predict the microalgae biological activity according to the
input data [26]. These control systems obtained valuable information about microalgae
performance. However, they cannot accurately predict how the variability of ambient
parameters and the biochemical state of the culture can affect microalgae in the next hours
or days, which can have significant consequences on the process robustness. In this respect,
approaches using weather forecasts coupled to detailed predictive models of microalgae
productivity have been used by other authors [27,28]. The relation between microalgal
growth, nitrogen uptake and storage, and dissolved oxygen production in a polyculture
cultivated in open algal ponds has also been established [29]. All these authors have been
faced with the complexity of modelling variable environmental conditions and their effects
on biological cultures. Further research on this topic is therefore needed to obtain profi-
cient ICA controllers that can improve the performance of microalgae-based wastewater
treatment systems.

Fuzzy logic appears to be a useful tool to control wastewater treatment operations. In
this kind of process, conditions depend not only on physical conditions but also on micro-
biological activities that are usually related to culture inertia (apart from the variability in
physical and chemical conditions) [30]. There are plenty of successful examples of optimised
wastewater complex processes using this kind of advanced controller [31–33]. However,
little information can be found regarding advanced control in microalgae cultivation sys-
tems, the majority being used to increase biofuel production from microalgae biomass
rather than improving microalgae-based wastewater treatment performance [34–36]. Con-
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sequently, there is huge potential for advanced control in microalgae-based wastewater
treatment technology. Proficient ICA systems require appropriate monitoring to gather all
the relevant information about the process. With respect to microalgae-based wastewater
treatment process basic parameters, such as photosynthetically active radiation (PAR),
temperature, pH and dissolved oxygen are usually monitored on-line since they are widely
known to affect microalgae [15,37–42]. However, to gain comprehensive knowledge of
these systems and to provide relevant information to operators about microalgae biological
activity (and that of their competitors), nutrient consumption, etc., other parameters are
needed [43–45]. Off-line laboratory-based measurements (for instance, suspended solids
(SS) and nutrient concentrations) are often employed to gather this information, but the
data obtained from them is limited since punctual performance variations and decays due
to limiting and inhibitory conditions cannot be assessed. Moreover, they entail expensive
and time-consuming analyses that require a certain delay [24,46]. Finding performance
indicators (PI) of microalgae activity (that overcome these hurdles) can help to develop
models and tools which, in turn, can serve to monitor and control microalgae-based sys-
tems. As an example, González-Camejo et al. [30] developed an on-line monitoring system
based on data obtained from pH data dynamics. They showed that the first derivate of
pH data variations (pH’) could be correlated (over both short- and long-term) with mi-
croalgae photosynthetic activity. However, this pH’ depends on several factors. The model
has, thus, to be adapted to each cultivation system and to treatment conditions, limiting
its applicability.

The aim of this study was to use an ICA system based on a knowledge-based fuzzy
logic approach to increase the performance of a pilot-scale MPBR system in terms of ni-
trogen recovery from sewage by hourly modification of the operating HRT according to
variations in ambient conditions, with the goal of improving the feasibility and competi-
tiveness of microalgae-based wastewater treatment systems.

2. Materials and Methods
2.1. MPBR Pilot Plant

The MPBR plant (Figure 1) was set out as a side nitrogen recovery system in a water
resource recovery facility (WRRF) scheme. It was placed in the facilities of the Carraixet
WWTP (Valencia, Spain) and consisted of a flat-plate PBR connected to an ultrafiltration
membrane tank (MT). This allowed the separation of microalgae biomass from the water
permeate, enabling decoupling of the SRT from the HRT. The PBR was closed to the
atmosphere and perfectly mixed by air at 0.2–0.25 vvm. pH was controlled by injecting
pressurised CO2 (99.9%) into the air stream when the pH value was over the setpoint of 7.5.
Twelve white LED lamps (Unique Led IP65 WS-TP4S-40W-ME) were installed at the dark
surface of the PBR, offering a continuous irradiance of 300 µmol·m−2·s−1 with the goal to
avoid possible side effects and to ensure the results were comparable to those obtained (at
fixed HRT) in a previous study [20].

ChemEngineering 2022, 6, x FOR PEER REVIEW 4 of 22 
 

  
(a) (b) 

Anise: NH4-probe; B: Blower; CIP: clean-in-place tank; DC: Distribution chamber; DO: dissolved oxygen; MT: membrane tank; 
P: pump; PBR: photobioreactor; SS: suspended solids. 

Figure 1. (a) Outdoor MPBR system scheme. (b) Detail of probe locations. 

2.1.1. Instrumentation and Automation 
The following on-line sensors were installed: (i) one pH-temperature sensor (pHD sc 

DPD1R1, Hach Lange); (ii) one dissolved oxygen sensor (LDO sc LXV416.99.20001, Hach 
Lange); (iii) one irradiation sensor (Apogee Quantum SQ-200) on the PBR front surface to 
measure the PAR; (iv) one ammonium-nitrate sensor (AN-ISE sc LXV440.99.00001, Hach 
Lange) to measure the concentration of NH4+ and NO2−+NO3−; and (v) one suspended sol-
ids sensor (SOLITAX ts-line sc LXV423.99.00100) to monitor the suspended solids (SS) 
concentration. Probes (i), (ii), (iv) and (v) were submerged into the left side of the PBR, 20 
to 40 cm from the top surface. Figure 1 shows a scheme of the system including the probe 
locations. 

The regular maintenance of the pH sensors consisted of replacing the salt bridge and 
the buffer once a year and calibrating them with a frequency of two weeks. In the case of 
the oxygen and ammonium sensors, the membrane was replaced every three months. Ox-
ygen sensors were calibrated in saturated air every two weeks, while the ammonium sen-
sor was calibrated every week with the results obtained in the laboratory from grab sam-
ples following the method described in Section 2.3. The SS sensor was calibrated in an 
analogous way to the ammonium sensor.  

To achieve representative values of SS and total soluble nitrogen (TSN), previous ex-
perience in the use of SOLITAX probes for SS concentration measurements and ANISE 
probes to monitor NH4+ and NO2−+NO3− concentrations was considered. The SOLITAX 
probe was equipped with colour correction and an automatic wiper, which improved 
probe accuracy. An exhaustive cleaning protocol was established for both probes, and 
they were both installed with a 30-degree deviation from the regular perpendicular angle 
to the PBR surface (Figure 1b) as this was found to prevent probe fouling and to obtain 
more stable data. Sensors were connected to a PLC to perform the process control and 
data acquisition. The PLC was connected to a PC provided with supervisory control and 
data acquisition (SCADA) software to view the process parameters and store the signals. 
Other transmitters were installed to measure the flow rate, level, pressure, etc. Further 
information about this control system was reported in Viruela et al. [41]. 

2.1.2. Microalgae Substrate and Inoculum 
The microalgae substrate consisted of filtrated (pore size 0.03 μm) wastewater from 

the effluent of Carraixet WWTP where nutrients were added (nitrogen, phosphorus and 
carbon) to achieve similar nutrient concentrations to those of an AnMBR pilot plant that 
treated real sewage [47]. To do this, the following reagents were added to the substrate: 

Figure 1. (a) Outdoor MPBR system scheme. (b) Detail of probe locations.



ChemEngineering 2022, 6, 24 4 of 21

2.1.1. Instrumentation and Automation

The following on-line sensors were installed: (i) one pH-temperature sensor (pHD sc
DPD1R1, Hach Lange); (ii) one dissolved oxygen sensor (LDO sc LXV416.99.20001, Hach
Lange); (iii) one irradiation sensor (Apogee Quantum SQ-200) on the PBR front surface to
measure the PAR; (iv) one ammonium-nitrate sensor (AN-ISE sc LXV440.99.00001, Hach
Lange) to measure the concentration of NH4

+ and NO2
− + NO3

−; and (v) one suspended
solids sensor (SOLITAX ts-line sc LXV423.99.00100) to monitor the suspended solids (SS)
concentration. Probes (i), (ii), (iv) and (v) were submerged into the left side of the PBR,
20 to 40 cm from the top surface. Figure 1 shows a scheme of the system including the
probe locations.

The regular maintenance of the pH sensors consisted of replacing the salt bridge and
the buffer once a year and calibrating them with a frequency of two weeks. In the case
of the oxygen and ammonium sensors, the membrane was replaced every three months.
Oxygen sensors were calibrated in saturated air every two weeks, while the ammonium
sensor was calibrated every week with the results obtained in the laboratory from grab
samples following the method described in Section 2.3. The SS sensor was calibrated in an
analogous way to the ammonium sensor.

To achieve representative values of SS and total soluble nitrogen (TSN), previous
experience in the use of SOLITAX probes for SS concentration measurements and ANISE
probes to monitor NH4

+ and NO2
− + NO3

− concentrations was considered. The SOLITAX
probe was equipped with colour correction and an automatic wiper, which improved probe
accuracy. An exhaustive cleaning protocol was established for both probes, and they were
both installed with a 30-degree deviation from the regular perpendicular angle to the PBR
surface (Figure 1b) as this was found to prevent probe fouling and to obtain more stable
data. Sensors were connected to a PLC to perform the process control and data acquisition.
The PLC was connected to a PC provided with supervisory control and data acquisition
(SCADA) software to view the process parameters and store the signals. Other transmitters
were installed to measure the flow rate, level, pressure, etc. Further information about this
control system was reported in Viruela et al. [41].

2.1.2. Microalgae Substrate and Inoculum

The microalgae substrate consisted of filtrated (pore size 0.03 µm) wastewater from
the effluent of Carraixet WWTP where nutrients were added (nitrogen, phosphorus and
carbon) to achieve similar nutrient concentrations to those of an AnMBR pilot plant that
treated real sewage [47]. To do this, the following reagents were added to the substrate:
210 mg·L−1 of NH4Cl, 24 mg·L−1 of KH2PO4, and 85 mg·L−1 of NaHCO3. The average
characteristics of the nutrient-enriched substrate (MPBR influent) during the operation can
be seen in Table 1.

Table 1. Substrate (MPBR influent) characteristics.

Parameter Unit Mean ± SD

NH4-N mg N·L−1 53.7 ± 2.2

NO2-N + NO3-N mg N·L−1 0.5 ± 0.7

P mg P·L−1 5.2 ± 0.4

N:P molar ratio 23.3 ± 1.6
NH4: ammonium; NO2: nitrite; NO3: nitrate; P: phosphorus; N:P: nitrogen:phosphorus molar ratio.

The microalgae culture was obtained from a previous experiment [20]. Originally, mi-
croalgae were derived from the walls of the secondary clarifiers of the Carraixet WWTP [48].
As a consequence, the culture was composed of a mix of green microalgae (mainly Coelas-
trella and Scenedesmus) and heterotrophic and nitrifying bacteria. To favour microalgae
growth with respect to their competitors, the startup procedure described in González-
Camejo et al. [18] was followed.
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To avoid the side-effects of nitrification on the process, allylthiourea (ATU) was added
to the culture to inhibit nitrifier activity [49]. This practice would not be feasible at indus-
trial scale (due to its associated costs and environmental impacts), but it was considered
necessary for comparison with previous results.

2.1.3. Operation of the Pilot Plant

The experiment was performed for 55 days in spring. The pilot plant was operated at
a fixed SRT of 2.25 days, but under variable ambient conditions (Table 2). At the beginning
of each hourly cycle of the controlling period, the corresponding amount of culture volume
was automatically purged and refilled to maintain this fixed SRT. Afterwards, the HRT
was calculated each hour by the fuzzy logic controller (see Section 2.2.2) and then the
corresponding amount of water was automatically permeated to maintain this calculated
HRT. Only light hours were considered for this operation.

Table 2. Operation and outdoor conditions of the MPBR operating period.

Parameter Unit Mean ± SD

Average solar PAR µmol·m−2·s−1 275 ± 112

Average maximum solar PAR µmol·m−2·s−1 1218 ± 388

Average Temperature ◦C 18.6 ± 1.5

Average DO mg O2·L−1 10.7 ± 0.5

SRT d 2.25 ± 0.01

HRT d 1.8 ± 0.4

NLR g N·day−1 7.3 ± 2.0
DO: dissolved oxygen; HRT: hydraulic retention time; NLR: nitrogen loading rate; PAR: photosynthetically active
radiation; SRT: solids retention time.

2.2. HRT Controller and Meteorological Model
2.2.1. Monitoring Parameters and HRT Controller Indexes

To control and monitor microalgae performance, the data obtained from the moni-
toring sensors (Section 2.1.1) was used. From this data, the following parameters were
calculated: (i) the dissolved oxygen standardised to 25 ◦C (DO25) (1); (ii) the first derivative
of DO25 variations for the previous hour (DO25′) (2); (iii) the DO25′ normalised by microal-
gae biomass measured as SS (monitored by the sensor) (DO25′:SS) (3); (iv) the nitrogen
recovery rate (NRR) (mgN·L−1·day−1) normalised by microalgae biomass (NRR:SS) (4);
(v) the biomass productivity (BP) (mgSS·L−1·day−1) normalised by microalgae biomass
(BP:SS) (5); (vi) the slope of the relation between DO25and PAR (DO25sl) (6); (vii) an index
combining the average SS of the previous day (SS_YD_AV) and the average predicted PAR
of the operating day (HRT_I1) (7); (viii) the PAR predicted according to the meteorolog-
ical model based on the total cloudiness forecast (Section 3.2) as moving average for the
following 60 min (PAR_MA60_FW); (ix) the PAR moving average for the previous 60 min
(PAR_MA60_FB); and (x) the slope of the relation between DO25 and PAR standardised
with SS (DO25sl:SS) (8):

DO25 = DO− (DOsat−DO25sat) (1)

DO25′ =
d(DO25)

dt
(2)

DO25′ : SS =
DO25′

SS
·103 (3)

NRR : SS =
NRR

SS
·103 (4)
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BP : SS =
BP
SS
·102 (5)

DO25sl =
∆DO25
∆PAR

·105 (6)

HRT_I1 = 0.5·SS_YD_AV + PAR_TDA_AV (7)

DO25sl : SS =
DO25sl

SS
(8)

where DO (mg O2·L−1) is the dissolved oxygen concentration measured by the sensor;
DOsat is the saturation concentration of dissolved oxygen at the microalgae culture tem-
perature and DO25sat is the saturation concentration of dissolved oxygen at 25 ◦C, both
calculated by the procedure described in Sander [50]; SS (mg·L−1) is the suspended solids
concentration monitored by the sensor; NRR is the nitrogen recovery rate measured in
the system and BP is the biomass productivity, both calculated by the equations reported
by González-Camejo et al. [20]; ∆DO25 is the variation of DO25 in a defined period of
time, and ∆DO25_YD is the daily variation of ∆DO25 in the previous day; ∆PAR is the
variation of PAR in a defined period of time (one day in this case), and ∆PAR_YD is its daily
variation from the previous day; DO25sl_YD is the daily DO25sl from the previous day;
PAR_TDA_AV (µmol·m−2·s−1) is the daily average predicted PAR for the operating day
(Section 3.2); and SS_YD_AV (mg·L−1) is the daily average of SS measured by the sensor
on the previous day.

Dissolved Oxygen Standardised to 25 ◦C (DO25)

In this closed MPBR system, DO concentration would depend on air flow rate and
mixing, temperature and microalgae photosynthetic activity [30]. Air flow and mixing were
kept constant, so were their effects over DO. To directly correlate DO to microalgae activity,
the temperature effect must be neglected by standardising to a reference temperature
(25 ◦C), obtaining the DO25 parameter. This standardisation was achieved by subtracting
the difference between the saturation concentration of dissolved oxygen at the microalgae
culture temperature and the saturation concentration of dissolved oxygen at 25 ◦C.

HRT_I1 Index

NRR is related to the culture photosynthetic activity (indirectly measured by DO25sl),
biomass concentration (SS) and light conditions (PAR). A normalised multivariable corre-
lation was performed with historical database daily average values, using SS, PAR and
DO25sl to correlate them with NRR (R2 = 0.4955; p-value < 0.05). The resulting weights of
the parameters were 18%, 34% and 48%, for SS, PAR and DO25sl, respectively, which was
very close to a 1:2:3 relation. To simplify, it was decided to combine SS and PAR in a single
parameter, i.e., HRT_I1, defined in (7), by adjusting the weight of SS at half of its value. This
parameter was used to calculate an appropriate initial HRT (HRT0) (Section 2.2.3) before
the daytime operation started, using SS_YD_AV and predicted PAR_TDA_AV as the most
accurate values related to biomass and light irradiance, respectively.

2.2.2. Auxiliar Meteorological Model for the HRT Controller

A fuzzy knowledge-based controller of HRT was developed to regulate the influent
wastewater flow to the MPBR system according to its instantaneous treatment capacity.
For this, the time of sunrise, culmination and sunset were established by means of a
meteorological model simulated for the PAR prediction. In this model, the first hour after
sunrise and the last hour before sunset were not considered, establishing a daily working
interval between those points, where the number of hourly cycles was fixed around the
culmination time.

The first step of the model for the PAR prediction was based on establishing the
PAR_MAX in cloudless conditions as a correlation was found between experimental data
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and the cosine of maximum daily solar altitude angle (γs_MAX) (Section 3.2), which was
easily obtained using the methodology from Page [51].

Latitude (ϕ) and longitude (λ) positions, together with the day number of the year,
allowed the astronomical calculation of some variables of interest for each moment of the
daytime, using the methodology of Page [51], including: declination (δ), hour angle (ω),
solar altitude angle (γs), azimuth angle of the sun (αs), sunrise hour, and culmination and
sunset hours. As already stated, the PBR was vertical, which implied a slope angle (β) of
90◦, oriented to the south. By convention in the Northern Hemisphere, the azimuth angle
of the surface (α) was thus 0◦.

The astronomical variables showed, for a full sunny day, a Gaussian-like distribution
of PAR between PAR = 0 at sunrise time and PAR = 0 at sunset, i.e., increasing PAR values
to PAR_MAX at culmination hour, and decreasing PAR values after that to zero values.
The distribution was directly proportional to cos ν, where ν was the angle of incidence
between the sun and normal to the PBR’s surface. It was calculated by the methodology
from Page [51] adapted to a vertical surface (9):

cosν = cosγs· cos(αs − α) (9)

cos ν (9) had a minimum value at sunrise and sunset hours, and a maximum at
culmination hour. A normalisation was therefore made to establish the values between 0
(minimum) and 1 (maximum) along daytime (10):

(cosν)N =
cosν−min(cosν)day

max(cosν)day −min(cosν)day
(10)

PAR for full sunny days (cloudless) was calculated at any moment of the daytime (11):

PAR(Cloudless) = PARMAX·(cosν)N (11)

The cloudiness factor was included using a Haurwitz-type Equation (12):

PAR(Cloudiness)/PAR(Cloudless) = (1 − a·(% TCC)/100)b (12)

As this model is semi-empirical, a calibration stage was needed (Section 3.2).

2.2.3. Initial HRT Controller

As at nighttime the MPBR system was not fed (i.e., HRT was infinite), an initial
HRT (HRT0) was needed. HRT0 was calculated using DO25sl_YD and HRT_I1 as con-
troller inputs. At the beginning of each cycle, the controller inputs were DO25′:SS and
PAR_MA60_FW. The controller output was ∆HRT, i.e., the difference between the previous
HRT (applied to the previous daylight hour) and the following HRT. This calculated HRT
was applied to the reaction volume divided by the number of cycles in the following hour
of operation. In consequence, a different HRT was used for each cycle of the day according
to the estimated treatment capacity. There were some heuristic rules in order to narrow the
application range to an appropriate one or to correct the effect of significative differences
between predicted and real PAR registered.

For each operating day, the controller set an initial HRT (HRT0) from which the
controller action started. HRT0 cannot be constant since different conditions of the culture
photosynthetic activity, biomass concentration and light conditions would define different
starting points. The hourly HRT controller (see Section 2.2.4) was designed to last a few
hours to progressively increase the treatment capacity in a sunny day, but it barely actuated
in extremely cloudy conditions. Consequently, fixing an initial and appropriate HRT0 was
needed to allow the wide or narrow hourly variation, relating it to an average treatment
capacity represented by HRT0, that would be smaller on cloudy days to allow some action
and larger on sunny days to allow for progressive action.
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HRT0 depended on the culture biomass concentration (SS_YD_AV), the light forecast
for the whole day (PAR_TDA_AV), and the culture photosynthetic activity (measured as
DO25sl_YD). These three variables were related to NRR, as has already been explained
(Section 2.2.2), combining SS_YD_AV and PAR_TDA_AV in the HRT_I1 parameter. In
summary, the input variables for stage 1 of setting the HRT0 controller were: (i) HRT_I1,
and (ii) DO25sl_YD.

The methodology was based on Ruano et al. [33]. In stage 2, the so-called “fuzzifica-
tion”, the input variables were converted into linguistic variables (fuzzy set), which are
represented in this study by Gaussian shape membership functions and defined by the
Equation (13):

µ(p) = e−
(p−c)2

2·σ2 (13)

where p is the numerical value of the variable; and c and σ are the centre and amplitude of
the Gaussian membership functions to fuzzify each input variable (“Large” L, “Medium”
M, “Small”, S).

The output variable is HRT0. To defuzzify it, five Gaussian membership functions
were used (“Extra Large” XL, “Large” L, “Medium” M, “Small” S, “Extra Small” XS). In
stage 3, the so-called inference engine, a set of rules was applied to the fuzzy set obtained
in stage 2. They are presented in Table 3. The output linguistic variables were obtained in
this stage by the Max-Prod operator, following Larsen’s [52] fuzzy inference method, and
applying the operator (14) for each rule defined in Table 3:

µrule,i = ∏j
1 µj (14)

where j represents each of the input fuzz sets involved in the rule i.

Table 3. Fuzzy control rules HRT0 controller.

Inference Rules:

IF HRT_I1 is S and DO25sl_YD is S, THEN HRT0 is XS

IF HRT_I1 is M and DO25sl_YD is S, THEN HRT0 is S

IF HRT_I1 is S and DO25sl_YD is M, THEN HRT0 is S

IF HRT_I1 is S and DO25sl_YD is L, THEN HRT0 is M

IF HRT_I1 is M and DO25sl_YD is M, THEN HRT0 is M

IF HRT_I1 is L and DO25sl_YD is S, THEN HRT0 is M

IF HRT_I1 is M and DO25sl_YD is L, THEN HRT0 is L

IF HRT_I1 is L and DO25sl_YD is M, THEN HRT0 is L

IF HRT_I1 is L and DO25sl_YD is L, THEN HRT0 is XL

Similarly, in order to establish only one output linguistic value when the consequences
of different rules were the same, the operator (15) was applied as follows:

µk = Max
(
µrule,i

)
(15)

In stage 4, the so-called “defuzzification”, these linguistic variables needed to be
converted numerically into the corresponding control actions. In Mendel [53], the height
defuzzifier method was described, and was used in this study in order to obtain a single
output value (P), as expressed in (16):

P =
∑n

i=1 ci·µ(pi)

∑n
i=1 µ(pi)

(16)
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Stage 5, finally, corresponded to the output stage, where the HRT0 was established as
the starting point for the operation of the HRT controller.

2.2.4. Hourly HRT Controller

Once HRT0 was fixed, the daytime operation time began, divided into equal hourly
cycles. At the beginning of each cycle, as described before, the corresponding amount of
culture volume was purged and refilled to maintain a fixed SRT of 2.25 days. The purged
volume established the maximum applicable HRT. Consequently, if the output of the HRT
controller was bigger than SRT, it adopted the SRT value.

Increasing or decreasing HRT hourly depended on the light forecast for the follow-
ing hour (PAR_MA60_FW), and the photosynthetic activity of the culture (measured as
DO25′:SS). Both variables were inversely related to HRT. If both increased, the capacity of
the system also increased and consequently, HRT was shortened. Hence, the input variables
for stage 1 of the hourly HRT controller feed-forward action were: (i) PAR_MA60_FW;
(ii) DO25′:SS.

The methodology was again based on Ruano et al. [33]. In stage 2, fuzzification, the
input variables were converted into linguistic variables using (13) to fuzzify each input
variable (“Large” L, “Medium” M, “Small”, S for PAR_MA60_FW; “Large Positive” LP;
“Small Positive” SP; “Zero” ZE; “Small Negative” SN, “Large Negative” LN for DO25′:SS).
The output variable was ∆HRT. To defuzzify it, five Gaussian membership functions were
used (“Large Positive” LP; “Small Positive” SP; “Zero” ZE; “Small Negative” SN, “Large
Negative” LN). In stage 3, inference engine, a set of rules was applied to the fuzzy set
obtained in stage 2, which are displayed in Table 4. The output linguistic variables were
obtained in this stage once again by (14) and (15). In stage 4, defuzzification, these linguistic
variables needed to be converted numerically into the corresponding control actions, using
(16). Finally, stage 5 corresponded to the output stage of the controller, where the ∆HRT
was established and added to HRT0 if the cycle was the first, or to the previous HRT for the
rest of cycles.

Table 4. Fuzzy control rules hourly HRT controller.

Inference Rules:

IF PAR_60_FW is S and DO25′:SS is LN, THEN ∆HRT is LP

IF PAR_60_FW is M and DO25′:SS is LN, THEN ∆HRT is LP

IF PAR_60_FW is S and DO25′:SS is SN, THEN ∆HRT is LP

IF PAR_60_FW is L and DO25′:SS is LN, THEN ∆HRT is SP

IF PAR_60_FW is M and DO25′:SS is SN, THEN ∆HRT is SP

IF PAR_60_FW is S and DO25′:SS is SN, THEN ∆HRT is ZE

IF PAR_60_FW is L and DO25′:SS is SN, THEN ∆HRT is ZE

IF PAR_60_FW is M and DO25′:SS is ZE, THEN ∆HRT is ZE

IF PAR_60_FW is S and DO25′:SS is SP, THEN ∆HRT is ZE

IF PAR_60_FW is L and DO25′:SS is ZE, THEN ∆HRT is SN

IF PAR_60_FW is M and DO25′:SS is SP, THEN ∆HRT is SN

IF PAR_60_FW is S and DO25′:SS is LP, THEN ∆HRT is SN

IF PAR_60_FW is L and DO25′:SS is SP, THEN ∆HRT is LN

IF PAR_60_FW is M and DO25′:SS is LP, THEN ∆HRT is LN

IF PAR_60_FW is L and DO25′:SS is LP, THEN ∆HRT is LN

To prevent the effect of big differences between PAR predicted and real PAR due to
forecast failures, when the cycle was over, and before establishing the next cycle conditions,
the measured PAR moving average for the last 60 min (PAR_MA60_FB) was calculated
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and the ∆HRT was recalculated as a feedback action of the hourly HRT controller. If
the difference between the applied and recalculated ∆HRT was longer than 0.05 day, a
correction was applied to the feed-forward action for the next cycle.

2.2.5. Comparison with Fixed-HRT Calculation

In a previous study, the MPBR system of this study was operated at different SRT/HRT
values, fixing diverse conditions in different stages of the study, but in the operating ranges
of this study. The database of González-Camejo et al. [20] was used to interpolate MPBR
performance at a fixed-HRT of 1.25 days continuously, with the goal of comparing it
with the real MPBR performance under the operation of the fuzzy-logic HRT controller
developed in this study.

2.3. Sampling and Methods

Grab samples were collected in duplicate from the influent and effluent streams of the
MPBR pilot plant twice a week. Ammonium (NH4), nitrite (NO2), and nitrate (NO3) were
continuously monitored in the plant with the sensors described in Section 2.1. To calibrate
these sensors, these nitrogen compounds were analysed in a Smartchem 200 analyser
(WestcoScientific Instruments, Westco, Danbury, CT, USA) according to methods 4500-
NH3-G, 4500-NO2-B, and 4500-NO3-H of Standard Methods [54]. Suspended solids of the
microalgae culture (from grab samples) were analysed according to Standard Methods [54]:
method 2540 E. These values were used to correlate with the SS monitored with the
SOLITAX probe (R2 = 0.9903; p-value < 0.05; n = 17).

3. Results and Discussion
3.1. Obtaining the Control Parameters

Since oxygen results from microalgae photosynthesis, oxygen concentration can act as
an indicator of microalgae activity [24,55]. In this respect, a previous study of González-
Camejo et al. [20] showed a significant correlation between DO concentration and NRR
and biomass productivity (p-value < 0.01). However, correlation between DO and PAR
was not found. It should be noted that in this previous study, correlations were calculated
from average daily values, i.e., considering both daily and night data as a whole, rather
than analysing instantaneous changes. In addition, DO should be standardised to constant
temperature (in this case, 25 ◦C) to normalise the parameter. If instantaneous data is
analysed, it can be observed that DO25 and PAR evolution during daily hours follow the
same trend on both sunny (Figure 2a) and cloudy days (Figure 2b), but for the case of DO
(not standardised) on the sunny day, they do not follow the same trend due to the variation
of the temperature throughout the day (Figure 2a). Since temperature on the cloudy day
was almost constant, the trend of DO and DO25 were similar.

The difference between DO25 during daylight hours and DO25 at night is assumed
to be related to microalgae activity. Although DO25 during light hours is influenced by
both heterotrophic and nitrifying bacteria activities [56], previous studies in this MPBR
plant showed that bacterial activity only accounted for around 4–5% of the microalgae
activity [30]. Consequently, the first derivative of the variation of DO25 (DO25′) was calcu-
lated as an indicator of microalgae activity. To normalise DO production with biomass, SS
concentration values (532 ± 78 mg·L−1 in average) were used as a proxy for microalgae
biomass. This was considered a good approximation since a previous study showed a
high correlation between suspended solids and microalgae cell concentrations [44]. To
corroborate the relationship between DO25′ and microalgae activity, a linear correlation
between the daily average DO25sl:SS of the previous day (DO25sl:SS_YD) and NRR:SS
(NRR:SS_YD) was obtained, as shown in Figure 3a. The correlation was statistically sig-
nificant (R2 = 0.5534; p-value < 0.05). Consequently, DO25′:SS appeared to be a good
indicator of photosynthetic activity and followed the instantaneous and continuous trend
of NRR:SS, as shown in Figure 3b. Analogous parameters based on pH data were found
to be correlated with microalgae performance in this MPBR system [30]. However, the
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normalised parameter based on pH (pH’) can only be obtained if the pH control of the
system is turned off, which limits microalgae activity. Nevertheless, the correlation between
BP:SS and DO25′:SS presented a much lower R2 value, i.e., 0.2889. This was not surprising
since previous studies also showed that the response of the system to variations in oper-
ating and ambient conditions was observed more in nitrogen recovery than in biomass
productivity [20,44]. Changes in biomass not only depend on instantaneous changes in
nutrient assimilation but are also influenced by factors such as cell size, the shadow effect
due to biomass, chlorophyll and other substances present in the culture, cell viability, the
proliferation of competing and predating organisms, etc. [57–60]. The normalised param-
eters based on dissolved oxygen concentration were thus selected to be used in the HRT
fuzzy controller (Section 3.3), together with a model to forecast solar irradiance according
to total cloud cover (Section 3.2).

Figure 2. Daily evolution of dissolved oxygen (DO) concentration, dissolved oxygen concentration,
standardised at 25 ◦C (DO25), and PAR during: (a) a sunny day (operating day 12); and (b) a cloudy
day (operating day 17).
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3.2. Calibration of PAR Prediction

To predict maximum solar PAR applied to the MPBR during continuous operation,
a correlation equation was obtained using historical data of TCC from the METEOBLUE
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database for the region of Alboraya (Valencia) and experimental PAR data obtained over
four years on a vertical south-oriented surface.

First, maximum daily solar altitude angle (γs_MAX) was obtained using the method-
ology from Page [51]. A significant correlation between the cosine of γs_MAX and the
experimental data for PAR_MAX was found, as shown in Figure 4.

Figure 4. Correlation between experimental maximum PAR (PAR_MAX) and cosine of maximum
solar altitude angle (cos (γs_MAX)).

As explained in Section 2.2.2, PAR (Cloudless) could be easily calculated for every
moment of the day using (11). This model performance is shown in Figure 5, in comparison
to real PAR data for a full sunny day.

Figure 5. PAR model performance for a sunny day.
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To calibrate (12), three days a month during the previous four years of the operation
were chosen: one fully cloudy, another medium cloudy and the other a little cloudy. The
Solver-Excel tool was applied to (12) using the chosen historical data to adjust the a and b
constants. A = 0.85 and b = 2.01 were then obtained. As an example, Figure 6 shows the
adjustment of the simulated PAR value to the real data obtained during the four seasons of
the year. The more accurate the %TCC values, the more accurate the PAR modelled will be.

Figure 6. PAR TCC model performance for several days: (a) winter; (b) spring; (c) summer; and
(d) autumn.

After calibration, the adjusted Haurwitz-type Equation (12) was considered to be a
valuable tool to predict the irradiance availability for the microalgae culture. Since light
irradiance is the main factor affecting microalgae photosynthetic activity [21,61], this tool
could be very helpful in predicting the maximum activity that microalgae could attain at
any time. This is essential to predict the treatment capacity limit of the system at any time,
which could improve the robustness of the process and avoid undesirable phenomena,
such as washout, proliferation of competing organisms, etc. [8,49].

3.3. HRT Control

The action of the HRT controller, as assessed by its input and output values, is shown
in Figure 7. As an example, operating day 16 (Figure 7a,b) and 40 (Figure 7c,d) were chosen.
In these figures, it can be observed that when OD25′:SS and predicted PAR increased, HRT
decreased, allowing treatment of more influent wastewater. On the other hand, when
both OD25′:SS and predicted PAR decreased, HRT increased. This can be observed in
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Figure 7a,b, where HRT decreased in the first hours of the day, when light was increasing
with a good performance of the DO25′:SS, but, after midday, a significant reduction in the
predicted light led to increasing HRT. After culmination time, the trend was increasing
HRT due to general OD25′:SS and PAR reduction. In Figure 7c,d, performance on a cloudy
day is shown. It can be observed that the controller action was narrower, HRT was thus at
its maximum value for the majority of the day and only reduced in the most favourable
conditions of the day.

Figure 7. Hourly HRT controller action. Day 16: (a) Input variables; (b) Output settings; Day 40:
(c) Input variables; (d) Output settings.

A comparison between real MPBR performance of this study and the interpolated
performance from the database from a previous study at fixed 1.25-days HRT [20] can be
seen in Figure 8. In Figure 8a, the continuous registration of the total soluble nitrogen (TSN,
measured as the sum of NH4, NO2 and NO3 in the effluent), SS and PAR for the entire
experimental period is shown, along with PAR from the meteorological model and TSN
interpolated at fixed 1.25-days HRT. A zoom is applied in Figure 8b for the operating period
30–42 days. In Figure 8c, the action of the HRT0 controller (once a day) can be observed. In
Figure 8d the action of the HRT controller (hourly in the daytime) is displayed, with the
input and output variables, with a zoom for the operating period 30–42 days (Figure 8e). In
Figure 8f, the ratio between the biologically removed nitrogen with respect to the nitrogen
fed to the system (NRR·NLR−1) can be observed for all the experimental period, as well as
registered values from the HRT controller versus interpolated values from the fixed HRT
database. Average results for the entire experiment and for the last 10 days of the period
(which was considered as the most representative period) are displayed in Table 5.
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Table 5. Average results for the HRT controller and the fixed HRT.

Parameter HRT Controller Fixed HRT (1.25 days)

NRR·NLR−1 (%) [1–55 days] 66.0 ± 13.8 50.0 ± 11.9

NRR·NLR−1 (%) [46–55 days] 73.8 ± 5.1 50.8 ± 4.7

NST (mgN·L−1) [1–55 days] 19.0 ± 5.4 27.1 ± 5.0

NST (mgN·L−1) [46–55 days] * 13.4 ± 1.9 25.9 ± 1.9
* 46–55 days: Operating period after recovering from extreme cloudy days.

In Figure 8a, it is evident that after the first 10 days (considered as the start-up phase),
a general trend of decreasing TSN in sunny days and increasing TSN in cloudy days was
obtained, which is in accordance with previous studies that reported the highly significant
influence of light irradiance on microalgae activity [21,44,56,57,61]. A certain stability in SS
was observed, except for a period when several cloudy days were concatenated, leading
to a partial biomass washout since the SRT of the system was relatively short (fixed at
2.25 days).

In Figure 8c, the HRT0 controller performance can be observed, showing a general
direct relation between input and output variables. For instance, low values of both input
variables on day 7 led to a short HRT0 value. The opposite situation was observed on
day 51. In the period 30–42 days (Figure 8b,e), it was observed that corrective feedback
action was able to compensate for the differences between modelled and real PAR due to
an inappropriate TCC forecast, particularly for days 31 and 33, by adjusting the feed flow
to the real capacity and maintaining the TSN in low ranges. However, TSN increased for
the period 34–39 days due to a concatenation of several extremely cloudy days, showing
the upper limitation of the controller with SRT, that was fixed, and limiting the action of the
controller to HRT = SRT instead of the controller output. Consequently, the associated feed
flow exceeded the instantaneous system capacity in these low-light conditions, leading to
TSN accumulation in the system. Further investigation is needed to design an SRT controller
and to couple it to the HRT controller of this study to improve the MPBR performance on
extremely cloudy days and under other possible stress conditions.

In conclusion, for the entire experimental period, the nitrogen recovery efficiency
(measured as NRR·NLR−1) was improved from 50.0 to 66.0% using the HRT controller, and
consequently, the average effluent TSN concentration in the MPBR system was reduced
by 30%. If only the last 10 days of the operation are considered (to minimise the effect of
the start-up phase and the concatenation of extremely cloudy days), the improvement was
significantly higher, i.e., 48% for both NRR·NLR−1 and TSN, also meeting the discharge re-
quirements of the EU-Directive 91/271/EEC, which limits effluent nitrogen to 15 mgN·L−1

for 10,000–100,000-p.e. WWTPs. The fuzzy HRT controller was able to improve the nitrogen
recovery efficiency of the MPBR system in the mid-term. These results show a promising
application of fuzzy logic control that could be developed at industrial scale for a side
microalgae-based process for nitrogen recovery in future WRRFs [2,42,62].

For the entire experimental period, the average HRT was 1.84 days, equivalent to an
influent wastewater flow of 128 L·day−1, while the 1.25-days fixed HRT accounted for
188 L·day−1. The controller thus significantly improved the nitrogen recovery efficiency
but reduced the volumetric treatment capacity. However, this larger treatment capacity of
the fixed 1.25-days HRT implies that more nitrogen was wasted with the effluent instead of
being recovered by microalgae biomass [2], as can be observed by the significant difference
of the TSN effluent concentration in both cases (Figure 8f). In fact, a reduction of nitrogen
losses with the wastewater effluent of 47% was achieved when the HRT controller was used.

4. Conclusions

This paper has proposed a fuzzy logic knowledge-based controller based on the
application of DO, SS and PAR sensors combined with an astronomic-plus-cloud-cover
forecast meteorological model to control nitrogen recovery from microalgae in an outdoor
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MPBR, adjusting the hourly HRT of the plant to improve the instantaneous recovery
capacity of the system. The results showed that this HRT control improved the ratio of
nitrogen biologically removed to nitrogen fed to the system by 45% when compared to
fixed HRT. Moreover, when the fuzzy logic HRT control was used, a reduction in nitrogen
losses with the wastewater effluent of 47% was achieved. Overall, the results obtained
show a promising application of an ICA system to improve microalgae-based wastewater
treatment as a side nitrogen recovery process in a WRRF scheme.
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Glossary

AnMBR Anaerobic membrane bioreactor
ATU Allylthiourea
BP Biomass productivity
BP:SS Biomass productivity normalised by suspended solids
BP:SS_YD Biomass productivity normalised by suspended solids of the previous day
c Centre of a Gaussian membership function
CAPEX Capital expenditures
(cos ν)N Cosine of angle ν normalised to 0–1 range
DO Dissolved oxygen at culture temperature
DOsat Dissolved oxygen concentration at saturation
DO25 Dissolved oxygen standardised to 25 ◦C
DO25sat Dissolved oxygen concentration at saturation at 25 ◦C
DO25′ First derivative of the variation of DO25
DO25′:SS DO25′ normalised by SS (monitored by the sensor)
DO25sl Slope of the relation DO25 vs. PAR
DO25sl_YD Slope of the relation DO25 vs. PAR of the previous day
DO25sl:SS DO25sl standardised with suspended solids
DO25sl:SS_YD DO25sl standardised with suspended solids of the previous day
HRAP High-rate algal pond
HRT Hydraulic retention time
HRT0 Initial hydraulic retention time

HRT_I1
Index combining average SS from previous day with today average
predicted PAR

L Large
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LN Large Negative
LP Large Positive
M Medium
MPBR Membrane photobioreactor
NH4 Ammonium
NLR Nitrogen loading rate
NO2 Nitrite
NO3 Nitrate
NRR Nitrogen recovery rate
NRR_AV Average nitrogen recovery rate
NRR:SS Nitrogen recovery rate normalised by SS
NRR:SS_YD Nitrogen recovery rate normalised by SS of the previous day
N:P Nitrogen-phosphorus molar ratio
OPEX Operational expenditures
ORP Oxidation-reduction potential
P Phosphorus
PAR Daily average photosynthetically active radiation
PAR_AV Average PAR
PAR_MAX Daily maximum photosynthetically active radiation
PAR_MA60_FB PAR moving average for the last 60 min
PAR_MA60_FW PAR predicted from the model as moving average for the next 60 min
PAR_TDA_AV PAR predicted from the model as today daily average
PBR Photobioreactor
pH’ First derivate of pH data dynamics
S Small
SD Standard deviation
SCADA Supervisory control and data acquisition
SN Small Negative
SP Small Positive
SRT Solid retention time
SS Suspended solids
SS_AV Average suspended solids
SS_YD_AV Daily average of the suspended solids of the previous day
TCC Total cloud cover
Temp Temperature
TSN Total soluble nitrogen in the effluent
UF-MT Ultrafiltration membrane tank
WRRF Water resource recovery facility
WSP Waste stabilisation pond
WWTP Wastewater treatment plant
XL Extra Large
XS Extra Small
ZE Zero
α Azimuth angle of PBR surface exposed to light
αs Azimuth angle
β Slope angle of PBR surface exposed to sun light
γs Solar altitude angle
γs _MAX Daily maximum solar altitude angle
δ Declination
∆DO25 Variation of DO25 with time
∆DO25_YD Daily variation of DO25 of the previous day

∆HRT
Controller output, i.e., the difference between the previous HRT and the
following HRT

∆PAR Variation of PAR with time
∆PAR_YD Daily variation of PAR of the previous day
λ Longitude
µ Fuzzy membership value using a Gaussian membership function
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σ Amplitude of a Gaussian membership function
ν Angle of incidence between sun and normal to PBR surface
ϕ Latitude
ω Hour angle
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