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Abstract: Thermodynamic analysis of Organic Rankine Cycle (ORC) was performed in this work.
The Petroleum Coke burner provided the required heat flux for the Butane Boiler. The simulation of
pet-coke combustion was carried out by using Fire Dynamics Simulator software (FDS) version 5.0.
Validation of the FDS calculation results was carried out by comparing the temperature of the gaseous
mixture and CO2 mole fractions to the literature. It was discovered that they are similar to those
reported in the literature. An Artificial Intelligence (AI) time forecasting analysis was performed on
this work. The AI algorithm was applied to the temperature and soot sensor readings. Two Python
libraries were applied in order to forecast the time behaviour of the thermocouple readings: Statistical
model—ARIMA (Auto-Regressive Integrated Moving Average) and KERAS—deep learning library.
ARIMA is a class of model that captures a suite of different standard temporal structures in time
series data. Keras is a python library applied for deep learning and runs on top of Tensor-Flow.
It has been developed in order to perform deep learning models as fast and easily as possible for
research and development. The model accuracy and model loss plot shows comparable performance
(train and test). Butane has been employed as a working fluid in the ORC. Butane is considered
one of the best pure fluids in terms of exergy efficiency. It has low specific radiative forcing (RF)
compared to Ethane and Propane. Moreover, it has zero ozone depletion potential and low Global
Warming Potential. It is considered flammable, highly stable and non-corrosive. The thermodynamic
properties of Butane needed to evaluate the heat rate and the power were calculated by applying the
ASIMPTOTE online thermodynamic calculator. It was shown that the calculated net power of the
ORC cycle is similar to the net power reported in the literature (relative error of 4.8%). The proposed
ORC energetic system obeys the first and second laws of thermodynamics. The thermal efficiency of
the cycle is 20.4%.

Keywords: CFD; Large Eddy Simulation (LES); pet-coke; Fire Dynamic Simulation (FDS); Artifi-
cial Intelligence (AI); Auto-Regressive Integrated Moving Average (ARIMA); deep learning; time
forecasting; COMSOL multiphysics; Organic Rankine Cycle (ORC); butane

1. Introduction

Pet-coke (Petroleum Coke) is a heavy crude oil refining coproduct. It is identified as
a black-colored and carbon-rich solid. Despite the few human health or environmental
risks posed by the exploitation of pet-coke, it has many industrial applications. It is
mostly applied as a boiling and combusting fuel in industrial, power generation, and
cement plants. Pet-coke is considered a promising substitute for steam coal in power
plants because of its higher heating value, carbon content, and low ash, compared to
bituminous coals. However, pet-coke gasification is a difficult process because of its high
content of fixed carbon and low volatile matter [1]. The pet-coke generated by delayed
cokers has great advantages such as high heating value (over 8500 kcal/kg). This is due to
the fact it contains high carbon content (75–80% by weight) and low ash content (under
1%) [2]. The coke yield is about 33% [3]. It should be noted that coke burns also in FCC
regenerators. The coke-coated catalysts are burned inside the FCC regenerators in order to
restore catalytic activity and to provide the required heat flux for the cracking reactions
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taking place inside the FCC risers [4]. Computational Fluid Dynamics (CFD) is applied
for predicting the hydrodynamic properties and other characteristics of fluidized beds
and chemical reactors [5]. Several works have been written about pet-coke combustion
applications in Energy production. Hamadeh et al. [6] have carried out a techno-economic
analysis of an oxy-pet-coke plant with carbon dioxide capture simulated at pressures
between 1 and 15 bars in Aspen PlusTM. Shen et al. [7] have carried out a feasibility
economic study. Their study included two main systems: The first Integrated Gasification
Combine Cycle (IGCC) complex was applied. The syngas mixture generated by IGCC was
burned in the Heat Recovery Steam Generator (HRSG). The second system offered the
earliest opportunity for the commercial production of Coal to Liquids (CTL) fuels. The
production of liquid fuel was carried out by employing Fischer–Tropsch (F-T) process. The
aim of this research is to investigate whether the pet-coke burner can provide the necessary
heat flux for the Organic Rankine Cycle (ORC) normal operation. This paper presents a
new detailed design of ORC based on a pet-coke burner. The algorithm is composed of
CFD modelling of hydrodynamics, heat transfer, and pet-coke combustion. Based on the
CFD results, the Time Forecasting Modelling Behavior of pet-coke combustion was applied
by using Artificial Intelligence (AI) Algorithms. Thermodynamic analysis was carried
out on the ORC. It was found that the pet-coke particles are mostly applied in the Heat
Recovery Steam Generator (HRSG), in Integrated Gasification Combine Cycle (IGCC) [7],
in Circulating Fluidized Bed (CFB) power plants [2], or in Rotary Kilns (see Section 2.2).
To the best of my knowledge, it is probably the first time that a small-scale pet coke box
burner has been implemented as a heat source for operating Organic Rankine Cycle with
Butane working fluid. There are several applications pet-coke ORC Power systems. For
example, the ORC power plant can be close to the refinery where the refinery uses its
electric power. Green Hydrogen required for Hydrocracking and Hydrodesulphurization
(HDS) reactions may be produced by water splitting. This system may be also applied for
a backup solar power cycle. As far as I know, this work is the first coupled CFD simulation
of pet-coke burner with ARIMA and Deep learning algorithms and ASIMPTOTE online
thermodynamic calculator. This system is shown in Figure 1.

The simulation pet-coke burner is described at the bottom of Figure 1. An Artificial
Intelligence (AI) time forecasting algorithm was applied on the pet-coke burner.

Review of the Applications of Deep Learning Analysis of Combustion

Multilayer Perceptions (or artificial neural networks—ANN) are constructed from a
collection of interconnected nodes, and input and output layers. Inputs are weighted results
provided by the input layer. Each perceptron also has a hidden layer. The perceptron forms
a linear equation that relates the inputs and the hidden layer to the output. An activation
function is employed in the output so that the system can learn nonlinear relationships.
Common activation functions include a sigmoid, step function, rectified linear unit (RELU),
or hyperbolic tangent. The Combination of the entire network results in a series of linear
equations [8].

Deep learning algorithms have recently predicted full-field fire conditions in building
fires (gas temperatures, velocities) and wildland fires [9]. Deep learning had been devel-
oped using convolutional neural networks (CNN) in order to study the flux dependence
from CFD model training data. A comprehensive data-driven approach has developed
in order to predict spatially resolved temperatures and velocities within a compartment
based on coarse zone fire modeling by using a transpose convolutional neural network
(TCNN) [9]. A thousand Fire Dynamics simulations (FDS) of a simple two-compartment
configuration with different fire locations, fire sizes, ventilation configurations, and com-
partment geometries were applied for training and testing the model. The TCNN approach
was also validated with two more complex multi-compartment FDS simulations by pro-
cessing each room individually. Sun et al. [10] have developed three feed-forward neural
network (FFNN) models with the backpropagation by applying Levenberg−Marquardt
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algorithm. These three models were designed for jet fire, early pool fire, and late pool fire
accident scenarios.
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Figure 1. Schematics of an organic rankine cycle system based on pet coke burner.

2. Materials and Methods
2.1. Fire Dynamic Simulation (FDS) Modeling of the Pet-Coke Burner

This software was developed at the National Institutes of Standards and Technology
(NIST) [11–13]. It solves simultaneously the momentum, energy and diffusion transport
equations. In addition to that, it also solves the equation of state within each numerical grid
cell as a function of time. It also provides the heat release rate (HRR). The “smoke-view”
postprocessor software was applied in order to simulate the pet-coke burner combustion
performance. The components and Governing Equations of FDS Software are described in
detail in [14].

2.2. FDS Modelling of the Combustor

The geometrical model of the pet-coke burner is shown in Figure 2.
The height, length and width of the burner are 4.0 m, 2.0 m and 3.0 m, respectively.

It contains 24,000 cells. Coke particles are injected and ignited at the bottom side of the
burner. The numerical model of the pet-coke burner contains thermocouples and carbon
dioxide concentration sensors. The sensors located at x = 4 m, y = 0 and at different heights
z = 0.5 m, 1.0 m, 1.5 m, 2.0 m, 3.0 m, 3.5 m and 4.0 m (the coordinate system center is
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located at the center of the burner bottom plate—see Figure 2). The heat of combustion of
the pet-coke is 38,379 (kJ/kg) [15].
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Figure 2. Geometrical model of the pet-coke burner.

Initial condition—it is assumed that the initial temperature, the component concentra-
tion in the air and pressure are:

T0 = 20 ◦C; cO2,0 = 0.21; cN2,0 = 0.79; ci,0 = 0; p = 101, 325Pa

Boundary Condition—it is assumed that all burner compartment walls are opened.

T = 20 ◦C; cO2 = 0.21; cN2 = 0.79; ci,0 = 0; p = 101, 325Pa

The results obtained in this work were validated against experimental and numerical
results reported in [16]. The pet-coke mass supply flow rate is 0.84 kg/s [16]. The air enters
the burner at a temperature of 20 ◦C [16].

2.3. Time Forecasting Calculations by Applying Artificial Intelligence (AI) Algorithms

An Artificial Intelligence (AI) time forecasting analysis was performed in this section.
This algorithm was applied to the temperature and carbon dioxide, carbon monoxide and
soot sensors readings. Two Python libraries were employed in order to forecast the time
behaviour of the thermocouple readings: Statistical model—ARIMA (Auto-Regressive
Integrated Moving Average) and KERAS—Deep learning library. ARIMA [17] is a class of
models that capture a suite of different standard temporal structures in time series data.
Keras is a Python library for deep learning that runs on top of Tensor-Flow [18–20].
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2.4. Thermodynamic Analysis of the Organic Rankine Cycle

It is assumed that the Steady State Steady Flow (SSSF) process. According to [21], the
continuity equation is:

∑
.

mi = ∑
.

me

where
.

mi represents the mass flow rate entering to the control volume (such as Heat
Exchanger, Turbine, Condenser and Pump) in [kg/s],

.
me is the mass flow rate leaving the

control volume in [kg/s]. the first law of thermodynamics for the SSSF process is [21]:

.
Qc.v + ∑

.
mi

(
hi +

V2
i

2
+ gZi

)
= ∑

.
me

(
he +

V2
e

2
+ gZe

)
+

.
Wc.v

where
.

Qc.v is the heat indication rate invested/produced in the control volume (Heat
Exchanger, Condenser) in [kW].

.
Wc.v is the heat rate invested/Produced in the control

volume in [kW]. hi is the enthalpy of the entering stream in [kJ/kg]. he is the enthalpy
of the leaving stream in [kJ/kg]. Vi and Zi are the velocity and height of the entering
streams, respectively. Ve and Ze are the velocity and height of the streams leaving the
control volume, respectively. The second law of thermodynamics for the SSSF process
is [21]:

.
Snet =

dSnet

dt
=

dSc.v

dt
+

dSsurr

dt
= −∑

.
Qc.v

T
+ ∑

.
mese − ∑

.
misi ≥ 0

where si is the entropy of the entering stream in [kJ/(kg K)]. se is the entropy of the leaving
stream in [kJ/(kg K)], t is the time in [sec] and T is the temperature in [K]. The Organic
fluid, which flows inside the ORC cycle is Butane. The thermodynamic properties (such as
enthalpy, specific volume) needed to evaluate the heat rate and the power were calculated
by applying the ASIMPTOTE online calculator [22]. The Butane temperature at the outlet
of the Boiler was calculated by applying an energy balance equation on the boiler:

.
morch1 =

.
morch4 +

.
QHRR

where
.

QHRR is the average of the Heat Release Rate in [kW].

2.5. Computation Structure Process of the Pet-Coke Burner

The simulation process algorithm discussed in the previous section is summarized in
Figure 3. The algorithm is composed of four modules. FDS output file which contains the
coke combustion simulation data.
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Figure 3. Schematics of the computational process algorithm of the pet-coke burner.

3. Results

This section includes two parts. Section 3.1 presents the numerical results of Fire
Dynamics Simulation (FDS) software. Section 3.2 presents the time forecasting analysis of
the sensor readings by applying ARIMA and Deep learning algorithms (KERAS library).

3.1. Fire Dynamics Simulator Software Results for Burner

Figure 4 shows the temperature field of the pet-coke burner at t = 60.7 s.
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Figure 4. Temperature field (◦C) of the flue gaseous mixture inside the burner at t = 60.7 s.

According to Figure 4, the maximal temperature reaches 1440 ◦C. A similar value was
observed in [18]. The calculated temperature at the bottom region of the burner is about
700 ◦C. Similar to the temperature observed in [23]. Figure 5 shows the velocity field of
flue gases at t = 60.7 s.
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From Figure 5 it can be seen that the gaseous mixture flows upwards because of
buoyancy forces. The velocity is higher near the ceiling. Based on the thermocouples
and CO2 sensor readings, the following plots were constructed. Figure 6 shows the Heat
Release Rate (HRR).
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Figure 7 shows the temperature readings of TC1, TC4 and TC7 thermocouples.
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Figure 7. Temperature readings of the three thermocouples TC1, TC4 and TC7.

Figure 7 shows that the temperature readings of thermocouples TC4 and TC7 are
much larger than the temperatures readings of TC1. This is due to the fact that buoyancy
force causes the hot gas to flow towards the top of the burner. The maximal thermocouple
reading is about: 1440 ◦C. It is similar to the temperature reported in [16]. Figure 8 shows
the CO2 mole fraction readings of the three CO2 sensors.
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Figure 8. Carbon dioxide readings of three sensors inside the burner.

As can be seen from Figure 8 the mole fraction readings are shown by CO2-4 and
CO2-7 are much larger than CO2-1 sensor mole fraction readings. This is due to the fact
that oxidation of the coke particles increases with the temperature. The maximal CO2-7
reading is 15.0%. The calculated carbon dioxide mole fraction is similar to those obtained
in [24,25] which are 14.5% and 13.6%, respectively.

Grid Sensitivity Study Results

Verification of the CFD numerical results was carried out. Additional FDS models were
developed containing 36,000 cells. The average temperature was computed by performing
numerical integration of the instantaneous temperature readings over time (see Figure 7).
The maximum difference is less than 7.5%.

3.2. Time Forecasting Analyses Results for the Calculated Temperature

Time series forecasting problems are a difficult type of predictive modeling problem.
A powerful type of neural network designed to handle this time sequence dependence. The
time forecasting capabilities of Auto Regressive Integrated Moving Average (ARIMA) and
CNN methods are employed in this work. Unlike the regression forecasting modeling, time
series also adds the complexity of sequence dependence among the input variables. A graph
was plot showing the expected values (blue) compared to the forecast predictions (orange).

From Figure 9, it can be seen that the ARIMA model predicts very well the temperature
reading of TC1 thermo-couple readings. The convolutional neural network (CNN) used in
this work contains eight hidden layers. The RELU activation function was employed. This
neural network was trained with several time-dependent CFD output files (including an
additional FDS model which simulates Heptane burner). In all of them, the deep learning
analysis proved that this CNN achieved excellent temperature predictions and provided a
good theoretical verification of CNN for modelling pet-coke combustion. A graph was plot
showing the expected values (blue) compared to the forecast predictions (orange) and the
trained values (orange).

Figure 10 clearly shows that the KERAS model predicts very well the temperature
reading of TC1 thermo-couple readings. Two plots are provided below: model accuracy
and model loss. The history for the validation dataset is labelled as a test dataset for the
model. The accuracy of the deep learning model is shown in Figure 11.
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Figure 10. Prediction of the temperature reading using a simple multilayer perceptron model
with a time lag, blue represents the whole dataset, green represents training and orange
represents predictions.

From the plot of accuracy shown in Figure 11, it can be seen that there is comparable
behaviour on both datasets (train and test). Since the trend for accuracy on both datasets is
similar, the training is satisfactory.

From the plot of loss shown in Figure 12, we can see that the model has comparable
performance on both train and validation datasets (labelled as a test). If these parallel plots
start to depart consistently, it might be a sign to stop training at an earlier epoch.
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It is possible to calculate the correlation between each pair of attributes. This is called
a correlation matrix. The correlation matrix provides an indication of which variables
have a high correlation with each other. The correlation applied in this work provides
an indication of how related the changes are between the time and seven thermocouple
readings. If they are positively correlated, these variables change in the same direction. If
they are negatively correlated, then they change in opposite directions together (one goes
up, one goes down). The correlation matrix temperature plot is shown in Figure 13.
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Figure 13 presents a good correlation between the two proximate thermo-couples
readings. The correlation matrix soot concentration plot is shown in Figure 14.
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From Figure 14 we can see that there is a good correlation between the two proximate
soot concentration sensors readings.

3.3. Thermodynamics Analysis Results of the Organic Rankine Cycle (ORC)

The thermodynamic analysis results are presented in this section. Table 1 includes
the thermodynamic properties of the Butane obtained at different points of the ORC (see
Figure 1).

Table 2 shows the heat rates of the boiler and the condenser, and the power produced
by the turbine and invested in the pump. It is assumed that the mass flow rate of the
Butane flows flowing inside the ORC system is 30.44 [kg/s] [26]. Butane is considered
one of the best pure fluids in terms of exergy efficiency [26]. It has zero ozone depletion
potential and low Global Warming Potential (about 4) [26]. It has low specific radiative
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forcing (RF) compared to Ethane and Propane [27]. It is considered flammable, highly
stable and non-corrosive [28].

Table 1. Thermodynamic properties of Butane at different locations of the Organic Rankine Cycle (the locations are shown
in Figure 1).

Point Pressure [kPa] Temperature [◦C] Enthalpy, h [kJ/kg] Entropy, s [kJ/(kg K)]

1 3905 164.2 770.5 2.3404
2 238 58.7 655.1 2.3550
3 238 24.5 232.7 0.9476
4 3905 25.9 239.6 0.9477

Table 2. Heat and Power invested and produced in the Organic Rankine Cycle.

Heat/Power Value [kW]
.

Qboil 16,161
.

Qcond −12,856
.

Qnet 3305
.

Wturb 3513
.

Wpump −207.4
.

Wnet 3305

Table 2 clearly shows that the net power is equal to the net heat rate. Thus this
thermodynamic cycle obeys the first law of thermodynamics. The calculated net power is
similar to the net power reported in [26] which is also close to 3472 kW. The relative error
is 4.8%. The thermal efficiency of the ORC is calculated by using the following equation:

ηth =

.
Wnet
.

Qboiler

=
3305

16, 161
= 0.204 = 20.4%

Table 3 shows the entropies change rates of the main components of the Organic
Rankine Cycle:

Table 3. Entropies change rates of the main components of the Organic Rankine Cycle.

Component Value [kW/K]
.
Sturb 0.444
.
Scond 0.277
.
Spump 0.003

.
Sboil 5.442

Table 3 clearly shows that the entropies change rates of each component inside the ORC
are positive. Thus this thermodynamic cycle obeys the second law of thermodynamics.

4. Discussion

A thermodynamic analysis of Organic Rankine Cycle (ORC) was carried out in this
work. The Petroleum Coke burner supplied the required heat flux for the Butane Boiler.
Pet-coke (Petroleum Coke) is a heavy crude oil refining coproduct. It is identified as a black-
colored and carbon-rich solid. Despite the few human health or environmental risks posed
by the exploitation of pet-coke, it has many industrial applications. It is mostly applied as
a boiling and combusting fuel in industrial, power generation, and cement plants. pet-coke
is considered a promising substitute for steam coal in power plants because of its higher
heating value, carbon content, and low ash, compared to bituminous coals. However,
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pet-coke gasification is a difficult process because of its high content of fixed carbon and
low volatile matter.

This paper presents a thermodynamic analysis of Organic Rankine Cycle (ORC). The
algorithm is composed of CFD modelling of hydrodynamics, heat transfer, and pet-coke
combustion. Based on the CFD results, Time Forecasting Modelling Behavior of pet-coke
combustion was applied by using Artificial Intelligence (AI) Algorithms. Fire Dynamics
Simulator software (FDS) was applied in order to simulate pet-coke combustion. The FDS
calculation results were validated by comparing the temperature of the gaseous mixture
and CO2 mole fraction to the literature. The maximum flame temperature of the pet-coke
is about: 1440 ◦C. It is similar to the temperature reported in the literature which is about
1400 ◦C. The maximal carbon dioxide mole fraction is 15.0%. It is similar to the carbon
dioxide mole fraction reported in the literature which is 14.5%.

An Artificial Intelligence (AI) time forecasting analysis was performed on this work.
The AI algorithm was applied to the temperature and carbon dioxide and monoxide sensors
readings. Two Python libraries were applied in order to forecast the time behaviour of
the thermocouple readings: Stats models—ARIMA (Auto Regressive Integrated Moving
Average) and KERAS—Deep learning library. ARIMA is a class of models that captures a
suite of different standard temporal structures in time series data. Keras is a Python library
for deep learning that runs on top of Tensor-Flow. It was developed in order to perform
deep learning models as fast and easy as possible for research and development. The
calculated net power of the ORC cycle is similar to the net power reported in the literature.
The proposed ORC obeys the first and second laws of thermodynamics.

5. Conclusions

The aim of this research is to investigate whether the pet-coke burner can provide
the necessary heat flux for the Organic Rankine Cycle (ORC) operation. Butane has been
employed as a working fluid in the ORC. Butane is considered one of the best pure fluids
in terms of exergy efficiency. It has low specific radiative forcing (RF) compared to Ethane
and Propane. It has zero ozone depletion potential and low Global Warming Potential
(about 4).

This paper presents a CFD modeling of hydrodynamics and pet-coke combustion.
Based on the CFD results, Time Forecasting Modelling Behavior of pet-coke combustion
was applied by using Artificial Intelligence (AI) Algorithms. The simulation of pet-coke
combustion was carried out by using Fire Dynamics Simulator software (FDS). Thermo-
dynamic analysis was carried out on the ORC. It was observed that the pet-coke particles
are mostly applied in Heat Recovery Steam Generator (HRSG), in Integrated Gasification
Combine Cycle (IGCC), in Circulating Fluidized Bed (CFB) power plants, or in Rotary
Kilns. To the best of my knowledge, it is probably the first time that a small-scale pet-coke
box burner has been implemented as a heat source for operating Organic Rankine Cycle
with butane working fluid. There are several applications pet-coke ORC Power systems.
For example, the ORC power plant can be close to the refinery where the refinery uses its
electric power. Green Hydrogen required for Hydrocracking and Hydrodesulfurization
(HDS) reactions may be produced by water splitting. This system may be also applied for
a backup solar power cycle. As far as I know, this work is the first coupled CFD simulation
of pet-coke burner with ARIMA and deep learning algorithms and ASIMPTOTE online
thermodynamic calculator. The numerical simulation results were carried out by using
up-to-date computational software. The calculated temperatures and carbon dioxide mole
fraction are similar to these values reported in the literature. Time series forecasting prob-
lems are a difficult type of predictive modeling problem. Unlike regression forecasting
modeling, time series also adds the complexity of sequence dependence among the input
variables. A powerful type of neural network designed to handle this time sequence depen-
dence. The time forecasting capabilities of ARIMA and CNN methods are demonstrated in
this work.
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The convolutional neural network developed in this work contains eight hidden layers.
RELU activation function was employed. This neural network was trained with several
time-dependent CFD output files (including an additional FDS model which simulates
Heptane burner). In all of them, the deep learning analysis proved that this CNN achieved
excellent temperature predictions and provided a good theoretical verification of CNN
for modelling pet-coke combustion. LSTM networks may be applied for time forecasting.
The model accuracy and model loss plots show comparable performance (train and test
datasets). The first thermodynamic equation was applied in order to evaluate the thermal
power generated by the ORC turbine. It is assumed that the mass flow rate of the Butane
flows flowing inside the ORC system is 30.44 [kg/s]. The thermal power generated by the
turbine is 3.5 MW. The calculated net power is similar to the net power reported in the
literature which is also close to 3472 kW. The relative error is 4.8%. The thermal efficiency of
the ORC is 20.4%. It was demonstrated that the ORC system’s energetic system obeys the
first and second laws of thermodynamics. The pet-coke burner can provide the necessary
heat flux needed for the boiler operation. Thus this system is feasible. It is possible to
produce green hydrogen from this reaction by using methane thermal decomposition.
The hydrogen production system is composed of a pet-coke burner and a catalyst bed
reactor. The heat produced from the pet-coke combustion can be utilized for maintaining
the decomposition reaction of methane into hydrogen inside the catalyst bed. Another
possibility is to utilize the electricity produced in the turbine for green hydrogen production
by utilizing water-splitting technology.
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Abbreviation

AI Artificial Intelligence
ANN Artificial Neural Network
ARIMA Auto Regressive Integrated Moving Average
CFB Circulating Fluidized Bed
CFD Computational Fluid Dynamics
CNN Convolutional Neural Networks
FCC Fluid Catalytic Cracking
FDS Fire Dynamics Simulation
FFNN Feed Forward Neural Network
FVM Finite Volume Method
HDS Hydrodesulphurization
HSFO High Sulfur Fuel Oil
HRR Heat Release Rate
HRSG Heat Recovery Steam Generation
IGCC Integrated Gasification Combine Cycle
KERAS Deep learning Python library
LES Large Eddy Simulation
LSTM Long Short Memory
ORC Organic Rankine Cycle
SSSF Steady State Steady Flow
Pet Coke Petroleum Coke
RELU Rectified Linear Unit
RTE Radiation Transport Equation
TCNN Transpose Convolutional Neural Networks
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Nomenclature
g gravity acceleration in [m/s2]
h specific enthalpy of the stream in [kJ/kg]
.

m mass flow rate entering to the control volume in [kg/s]
.

Q heat intecation rate invested/produced in the control volume in [kW]
.

W power in [kW]
.
S entropy change rate in [kW/K]
s specific entropy of the stream in [kJ/(kg K]
T temperature in [K]
t time in [K]
V velocity of the stream in [m/s]
Z height of the stream in [m]
Subscripts
boil boiler
cond condenser
c.v control volume
e leaving
HRR Heat Release Rate
i leaving
net net
pump pump
turb turbine
Greek letters
ηth thermal efficency of the Organic Rankine Cycle
ρ density in [kg/m3]
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