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Abstract: Reduced graphene oxide has certain unique qualities that make them versatile for a myriad
of applications. Unlike graphene oxide, reduced graphene oxide is a conductive material and well
suited for use in electrically conductive materials, such as solar cell devices. In this study, we report
on the synthesis of graphene oxide as well as the fabrication and characterization of dye-sensitized
solar cells with a photoanode which is an amalgam of reduced graphene oxide and titanium
dioxide. The synthesized reduced graphene oxide and the corresponding photoanode were fully
characterized using Ultraviolet-visible, Fourier transform infrared (FTIR), and Raman Spectrometry.
The morphology of the sample was assessed using Atomic Force Microscopy, Field Emission Scanning
Electron Microscopy, Transmission Electron Microscopy, and Energy Dispersive X-ray Spectroscopy.
The photovoltaic characteristics were determined by photocurrent and photo-voltage measurements
of the fabricated solar cells. The electrical impedances of both sets of devices were also evaluated.
Overall, the solar to electric power efficiency of the device with reduced graphene oxide was observed
to be higher (2.02%) than the device without the reduced graphene oxide (1.61%).

Keywords: titanium dioxide; Graphene Oxide (GO); Reduced Graphene Oxide (rGO); DSSC; FTIR;
Raman; AFM; TEM

1. Introduction

The ever-increasing demand for energy has spurred the exploration of different sources of energy
over the last few decades. Growing concern about global warming and climate change, however, has
led to an increased focus on renewable energy sources, such as solar, wind, hydro, and geothermal
energy. Among all these sources, solar energy is considered as the ultimate source of energy and most
abundant in supply. Solar cells absorb energy from sunlight and convert it into electricity. In the case of
photosynthesis where green plants absorb energy from the sun for the production of molecules needed
for growth and development, light absorbing pigment, chlorophyll, is responsible for the capture of
the photons from the sun that allow the process to occur. Dye-sensitized solar cells (DSSCs)—a third
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generation solar cell—work similarly to photosynthesis. Sensitizing dyes absorb radiant energy which
is subsequently converted into electricity. The DSSCs are low cost, environmentally friendly and easy
to produce. They were invented by Michael Gratzel in 1991 [1]. They are made of a photoanode, a
cathode, and an electrolyte. When dye imbedded in nanocrystalline semiconductors, such as TiO2,
electrodes absorb photons from the sunlight, the dye molecules become excited and inject electron
in the TiO2 semiconductor. The oxidized dye molecule accepts an electron from the redox couple
electrolyte, and the ground state of the dye molecule is restored. The injected electron is transported
through the TiO2 semiconductor and through an external circuit before reaching the cathode. The redox
couple electrolyte is regenerated by acceptance of the electron at the cathode. Most studies on DSSCs
are focused on improving the efficiency of the solar cells through the optimization of the various
components of the solar cell [2–6].

Recently, graphene, graphene oxide, and reduced graphene oxide have been used for the
optimization of DSSC [7–10]. Graphene along with graphene oxide and reduced graphene oxide
belongs to the family of 2D nanomaterials. 2D nanomaterial is crystalline single layer of atoms
characterized by confinement in one direction [11]. In fact, graphene was the first material reported
as an example of 2D carbon nanomaterial [11]. And like all 2D nanomaterials, they possess unique
characteristics that make them versatile for application in photovoltaic, semiconductors, electrodes,
among others [11–20]. Graphene materials, for example, have been used as either a counter electrode
or a component of the photoanode [21–23]. Graphene oxide is a chemically modified graphene
composed of a single layer of carbon atom network and oxygen functional groups, such as epoxides,
carboxylic acids, and alcohols. Reduced graphene oxide are single-layered sheets derived from the
chemical reduction of graphene oxide. Various synthetic routes have been reported for the synthesis of
reduced graphene oxide [24–28]. Reduced graphene oxide possess electrical and mechanical properties
similar to that of graphene and, thus, makes them versatile for a number of applications including
dye-sensitized solar cells [29–33].

Most of the studies on the use of graphene material in dye-sensitized solar cells involve the
fusion of titanium dioxide with the graphene material to form the photoanode [34–36]. Reasons that
have been attributed to the increase in the efficiency of the solar cell include the increase in the dye
absorption resulting in the increase in the absorption of photons [36]. Other reasons for enhanced
performance include improved porosity of the photoanode and improved charge collection facilitated
by intimate contact between the highly conductive graphene material and the TiO2 [37,38].

In this work, dye-sensitized solar cells were fabricated using reduced graphene oxide as part of
the photoanode. The synthesis of reduced graphene oxide and its characterization together with the
performance of the solar cells fabricated with the reduced graphene are reported herein. A commonly
used dye sensitizer, N719, was deployed in the fabrication of all the dye-sensitized solar cells.

2. Experimental Details

2.1. Preparation of Reduced Graphene Oxide

The synthesis of reduced graphene oxide (rGO) suspension used in the study was done via
the chemical reduction of individual graphene oxide (GO) sheets as described in our previous
publications [39–42]. The individual GO sheets in powdered form were obtained from Cheap Tubes
Inc., Cambridgeport, VT. Thirty milligrams of GO powder was added to a 30 mL of deionized (DI)
water in a vial. The GO solution was then stirred with a Teflon-coated magnetic stirring bar in a
water bath for 24 h to obtain well dispersion. Ammonia aqueous solution (200 µL of 5%) and 30 µL of
hydrazine hydrate (Sigma-Aldrich, St. Louis, MO, USA, 35% DMF) were added to the GO solution,
and the mixture was heated at 90 ◦C for 60 min under stirring to obtain rGO. To measure the surface
topography and Raman spectrum, a drop of rGO suspension was spun onto a clean Si/SiO2 substrate
and dried in air. Before that, substrates were cleaned in an ultrasonic bath with acetone and isopropyl
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alcohol for 10 min in each case, followed by rinsing with DI water and drying with nitrogen blow.
A substrate treatment with Ar plasma was carried out afterwards.

2.2. AFM Measurements

The thickness and surface root mean square (rms) roughness of the rGO film was measured
directly by atomic force microscopy (AFM). In this case AFM, measurements were taken on a dimension
3100 scanning probe microscope (Veeco Instruments Inc., Plainview, NY, USA) using tapping mode
operation. A silicon, n-type cantilever with L: 125 µm, W: 35 µm, T: 4.5 µm. Tip radius: <10 nm, H:
14–16 µm, f: 200–400 kHz, was used for scanning the sample. A voltage of 0.6 V was applied to drive
the vibration of the molecules. Resolution for topography measurements was 512 × 512 points at
1 Hz frequency.

2.3. Raman Measurements

Raman spectra were recorded with alpha300 RA confocal Raman system from WITec Instruments
Corp. (Knoxville, TN, USA) The samples were illuminated with 532.0 nm laser light in ambient
conditions. A line lens was used to collect Raman spectra (Stream Line mode) within a short time
frame and with minimal thermal stress to the sample. In that case, the laser power was set at 1.3 mW
for an integration time of 1 s of data acquisition for the projected pixel of width 0.063 µm and height
0.063 µm. The spectrometer was calibrated at 520.6 cm−1 silicon (Si) band.

2.4. Other Characterization Techniques

The morphology of each film was analyzed using field emission scanning electron microscopy
(Model FESEM: JSM-7100FA JEOL USA, Inc.). Absorption spectroscopy was carried out with UV-3600
Plus from Shimadzu, MD, USA. Emission spectroscopy was measured with RF-5301PC from Shimadzu,
MD, USA. Attenuated total reflectance spectra were obtained with a Thermo Nicolet iS50 FTIR.
Transmission Electron Microscopy (TEM) images were captured on JEM-1400 PLUS (JEOL USA,
Peabody, MA, USA). The images were viewed using Digital Micrograph software from GATAN
(GATAN Inc., Pleasanton, CA, USA). TiO2 paste was printed on fluorine doped tin oxide (FTO)
glass using WS-650 Series Spin Processor from Laurell Technologies Corporation, PA, USA. Carbon
paint used in making cathode slides was purchased from TED PELLA, Inc. (Redding, CA, USA).
The cell performance was measured using 150 W fully reflective solar simulator with a standard
illumination of air-mass 1.5 global (AM 1.5 G) having an irradiance of 100 mW/cm2 (Sciencetech Inc.),
London, Ontario, Canada. Reference 600 Potentiostat/Galvanostat/ZRA from GAMRY Instruments
(Warminster, PA, USA).

2.5. Solar Cell Fabrication

The photoanode was prepared by depositing a thin film of the blend of reduced graphene oxide
and titanium dioxide on the conductive side of fluorine doped tin oxide (FTO) glass using a spin coater.
The reduced graphene oxide and titanium dioxide amalgam were prepared using titanium dioxide
powder, acetic acid, soapy water, and reduced graphene oxide. Ten milliliters of 1 mg/mL of reduced
graphene oxide was mixed with 4.8 g of TiO2, and 1 mL soapy water and 10 mL acetic acid were added
and ground in a mortar with a pestle to form a smooth paste. Upon deposition of the paste on the glass
slide, the film was sintered at 380 ◦C for 2 h. The TiO2/rGO covered FTO glass was then immersed
in 5 mM N719 solution overnight. The counter electrode (cathode) was prepared by painting FTO
glass with colloidal graphite. The TiO2/N719 electrode and the carbon electrode were assembled to
form a solar cell sandwiched with a redox (I−/I3−) electrolyte solution. The active area of the cell was
5 cm2. The solar energy to electricity conversion efficiency (η) was calculated based on the equation,
η = FF × Isc × Voc, where FF is the fill factor, Isc is the short-circuit photocurrent density (mA cm–2),
and Voc is the open-circuit voltage (V) as listed in Table 1.



ChemEngineering 2019, 3, 7 4 of 13

Table 1. Current–Voltage Characteristics of dye-sensitized solar cells measured under an illumination
of air-mass 1.5 global (AM 1.5 G) having an irradiance of 100 mW/cm2.

Sample Vmp Imp Voc Isc FF Efficiency (%)

N719 only 0.37 4.33 0.66 6.87 0.35 1.61
N719+rGO 0.31 6.46 6.24 10.80 0.30 2.02

3. Results and Discussion

3.1. Synthesis of Reduced Graphene Oxide

The reduced graphene oxide (rGO) used in this work was synthesized using a modified version of
a previously reported protocol [25]. Graphene sheets in powdered form were reduced with hydrazine
hydrate to form the reduced graphene oxide at a concentration of 1 mg·mL−1. Upon reduction,
graphene oxide changed color from brown to black reduced graphene oxide dispersion. The change in
color could be due to changes in the hydrophobicity which is a direct consequence of the removal of
oxygen-containing functional groups.

3.2. Raman Studies

Presence of rGO flake was further confirmed by performing Raman studies on the sample.
Figure 1 shows the Raman spectrum for the rGO sample. The rGO sample shows the usual ‘D’ peak
at ~1347 cm−1 and ‘G’ peak at ~1599 cm−1 in the Raman spectrum. The GO peak intensity increased
upon reduction with a simultaneous reduction to the ID/IG ratio. In our case ID/IG ratio was found
as 1.19, whereas for GO this ratio was a bit higher than that earlier reported (1.88) [43,44]. ID/IG

ratio should lie between 1.12 and 1.42 [43], which confirms a better quality of the prepared rGO; and
confirming the expected greater graphitization following reduction.
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Figure 1. Raman spectrum of the reduced graphene oxide (rGO) sample obtained with a 532 nm
excitation wavelength.

3.3. UV–vis Measurement

The UV–vis spectrum of the reduced graphene oxide shows a single broad absorption band at
257 nm as displayed in Figure 2. This shows a red shift in comparison with UV–vis spectra of graphene
oxide (not displayed) which occurs at 230 nm and has been attributed to π → π* transition of the
aromatic C–C bonds [45]. This shift in wavelength has been used to monitor the reduction reaction of
graphene oxide (GO) to reduced graphene oxide (rGO).
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Figure 2. UV–Vis spectrum of an aqueous dispersion of reduced graphene oxide.

3.4. Dynamic Light Scattering

The particles size distribution of the reduced graphene oxide dispersion was characterized using
dynamic light scattering. Dynamic light scattering is usually employed to characterize spherical
particles but is also seldom used to evaluate the uniformity of reduced graphene oxide dispersion.
The spectra as displayed in Figure 3 reveal a sizeable portion of the reduced graphene oxide dispersion
to be 400 nm. There is a peak that is also formed after 1000 nm and extends beyond 100,000 nm, which
could be due to dispersion of reduced graphene oxide in the aqueous media. Side products from the
reduction of graphene oxide to the reduced graphene oxide could also account for part of those with
sizes beyond the micron range.
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3.5. Transmission Electron Microscopy/Energy Dispersive X-ray Spectroscopy Studies

The reduced graphene oxide was also analyzed via transmission electron microscopy imaging
and energy dispersive X-ray spectroscopy (EDS). In preparing samples for TEM imaging, a drop of
the reduced graphene oxide dispersion was transferred onto a TEM grid, which was then allowed
to dry completely at room temperature in a hood overnight. Figure 4a,b show the high-resolution
TEM and Scanning Transmission Electron Microscope (STEM) images of the rGO sample, respectively.
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The multilayer structure of reduced graphene oxide is observed in the TEM image shown in Figure 4a,
and the rGO sheet is clearly observed in the STEM image depicted in Figure 4b. The EDS spectrum
(Figure 4c) exhibits a strong carbon peak which is in agreement with the high percentage of carbon
in rGO. The EDS spectra also revealed peaks likely to be due to the other materials used or formed
during the reduction process. A strong copper peak shown in the spectrum originates from the copper
grid used for TEM analysis.
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3.6. Atomic Force Microscopy Imaging

The reduced graphene oxide was further characterized using atomic force microscopy as displayed
in Figure 5. Figure 5a shows an atomic force microscopic topographical image of a representative
single layer flake on Si/SiO2 substrate.
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Figure 5. Atomic force microscopy (AFM) analysis of reduced graphene oxide: (a) high-resolution
AFM image for height measurement of single-layer rGO; (b) 2-D height profile recorded along the
black dotted line shown in (a).

A two-dimensional line profile recorded along the dashed line of Figure 5a is presented in
Figure 5b. This height profile of approximately 1 nm layer thickness confirms the detection of a single
rGO sheet as shown in Figure 5b [43]. This height is similar to single layer rGO sheet heights reported
in previous studies [43,46–49]. Root mean square (RMS) surface roughness was measured and found
to ~0.4 nm. Single and multiple GO sheets are clearly discernible from the optical contrast in the
AFM images where the thicker layers give whitish color from its reflection originating from the lack
in transparencies.

3.7. Field Emission Scanning Electron Microscopy Imaging

Field emission scanning electron microscopy measurements were carried out to study the
topography and surface morphology of the reduced graphene oxide. Figure 6 displays the field
emission scanning electron microscope images (Figure 6a,b,d), taken at different magnifications and
compared with the atomic force microscope image (Figure 6c) of rGO bundle. With the thin rGO sheet,
rGO bundles do not get well dispersed in the rGO suspension, as shown in Figure 4. To obtain the
AFM and SEM images, a drop of rGO suspension was dried on a Si/SiO2 wafer. The AFM image
was obtained in non-contact mode. The scan area was 10 µm × 10 µm showing rGO from single to
several layers. The contrast becomes brighter and whitish due to reflectance with the increase of layer
numbers. After taking the AFM image, the SEM image was then acquired with the same samples.
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3.8. Current and Voltage Characteristics Measurements

Graphene and derivatives of graphene have been synthesized by various means and have
numerous applications in diverse fields [50–57]. In this work, reduced graphene oxides was applied
in dye-sensitized solar cells to improve the current and voltage characteristics of the fabricated solar
cells. The current and voltage characteristics of the N719 dye and N719/rGO dye-sensitized solar
cells were evaluated and cross-compared as displayed in Figure 7 and Table 1. The solar to electric
power efficiency of the N719/rGO sensitized solar cells was significantly higher than those of only the
N719. The conductive properties of the reduced graphene oxide, thus, play a role in the increase in
performance on the DSSC containing rGO. In all, the N719/rGO had an efficiency of 2.02% whereas
that of only N719 was 1.35%.
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3.9. Impedance Measurement

Impedance measurements are used to investigate the properties and quality of dye-sensitized
solar cells. They are usually employed to study the kinetics and energetics of charge transport and
recombination in dye-sensitized solar cells. The electrochemical impedance spectra were recorded
in the frequency range of 1 Hz and 100 KHz. The measurement provides information about the
charge transfer resistance between the counter electrode and redox (I−/I3−) electrolyte and also a
measure of the resistance to the flow of electron at the TiO2/dye/electrolyte interphase. The impedance
measurement results are shown in Figure 8 (Nyquist plot) and Figure 9 (Bode plot). In the Nyquist plot,
the equivalent series resistance of the N719 + rGO is a little bit smaller than that of only N719 electrode,
but the charge transfer resistance shows the larger difference. The charge transfer resistance can be
gained by interpolating the semi-circle to the real x-axis at the low-frequency area. The decrease in the
series resistance and the charge transfer resistance results in the increase in the current density of the
N719 + rGO. Charge transfer resistance (Rct) obtained from fitting the EIS spectra was approximately
17.5 Ω for N719 and 12.5 Ω for the N719 + rGO. Since the charge transfer resistance to a large extent
characterizes the electron flow at the counter electrode, the smaller the resistance, the faster the rate of
electron flow and the better the performance of the solar cell. Thus, the results obtained are consistent
with the solar-to-electric power efficiency data.
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4. Conclusions

In this study, reduced graphene oxide was successfully synthesized from GO and used to enhance
the performance of the dye-sensitized solar cell. The extent of GO reduction, thicknesses of rGO, and
its dispersion were characterized using UV–visible Spectrometry, Raman spectroscopy, Atomic Force
Microscopy, Transmission Electron Microscopy, X-Ray Dispersive Spectroscopy, and Field Emission
Scanning Electron Microscopy. The solar to electric power efficiency of the dye-sensitized solar
fabricated with the reduced graphene oxide and N719 was 2.02% whereas the conversion efficiency of
the dye-sensitized solar cell fabricated with only N719 was 1.61%. The electrochemical impedance
measurements corroborated the current–voltage measurements and, thus, showed that the reduced
graphene oxide could improve the efficiency of the dye-sensitized solar cell.
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