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Abstract: Background: Black kidney transplant recipients have worse allograft outcomes compared
to White recipients. The feature importance and feature interaction network analysis framework of
machine learning random forest (RF) analysis may provide an understanding of RF structures to
design strategies to prevent acute rejection among Black recipients. Methods: We conducted tree-
based RF feature importance of Black kidney transplant recipients in United States from 2015 to 2019
in the UNOS database using the number of nodes, accuracy decrease, gini decrease, times_a_root, p
value, and mean minimal depth. Feature interaction analysis was also performed to evaluate the
most frequent occurrences in the RF classification run between correlated and uncorrelated pairs.
Results: A total of 22,687 Black kidney transplant recipients were eligible for analysis. Of these,
1330 (6%) had acute rejection within 1 year after kidney transplant. Important variables in the RF
models for acute rejection among Black kidney transplant recipients included recipient age, ESKD
etiology, PRA, cold ischemia time, donor age, HLA DR mismatch, BMI, serum albumin, degree of
HLA mismatch, education level, and dialysis duration. The three most frequent interactions consisted
of two numerical variables, including recipient age:donor age, recipient age:serum albumin, and
recipient age:BMI, respectively. Conclusions: The application of tree-based RF feature importance
and feature interaction network analysis framework identified recipient age, ESKD etiology, PRA,
cold ischemia time, donor age, HLA DR mismatch, BMI, serum albumin, degree of HLA mismatch,
education level, and dialysis duration as important variables in the RF models for acute rejection
among Black kidney transplant recipients in the United States.

Keywords: black; race; kidney transplant; transplantation; risk factors; feature importance; machine
learning; artificial intelligence; nephrology; precision medicine; personalized medicine;
individualized medicine
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1. Introduction

Black kidney transplant recipients have worse allograft outcomes compared to White
recipients [1–7]. Previously identified factors possibly responsible for these disparities
have include lower living donor rates [5], longer dialysis vintage [8], longer cold ischemia
times [9], delays in listing and time on transplant waiting list [10,11], greater rates of
marginal donor kidneys [9,12,13], higher rates of delayed graft function (DGF) [14], less
favorable human leucocyte antigen (HLA) matching [9,15–17], variability in the pharma-
cokinetics of immunosuppressive drugs and immunologic responsiveness [18,19], and
more comorbidities, such as hypertension [20] and diabetes mellitus [21]. Such discrepan-
cies have been thought to contribute to a higher rate of acute rejection in Black recipients,
resulting in increased allograft loss [14,22–25]. Despite advancements in modern-era im-
munosuppressive agents, the beneficial effects of immunosuppression specific to acute
rejection remain less apparent in Black recipients compared to White recipients [7,22,26,27].
Furthermore, acute rejection in Black kidney transplant recipients is more likely to be
steroid-resistant [28].

Recent investigations have demonstrated that machine learning approaches are supe-
rior to traditional statistical methods in various clinical scenarios [29,30]. Random forest
(RF) is a widely used machine learning approach that effectively predicts outcomes [31] by
utilizing a combination of tree predictors [32]. The RF algorithm randomly generates boot-
strapped datasets that can be used to train an ensemble of decision trees, which determine
an outcome by a majority “vote” [32]. As a type of robust nonparametric model, RF can
simulate complex relationships and does not depend on the data distribution as is the case
in logistic regression [31]. Whereas most traditional statistical approaches, such as linear
regression and logistic regression, indicate which variables are significant with measures
such as p-value and t-statistics, variable importance by RF is determined by how much each
variable decreases the node impurity (gini decrease), number of nodes, accuracy, mean
minimal depth, and times_a_root (total number of trees in which Xj is used for splitting
the root node) [31,33]. Recently, RF has increasingly been applied to medicine, including
solid organ transplantation [34–36], and there is great potential to use the RF approach to
improve outcomes among Black kidney transplant recipients. Furthermore, the feature
interaction network analysis framework of RF may also provide an understanding of the
interaction among multiple features in order to design strategies to prevent acute rejection
and explore the mechanisms of variable interactions influencing acute rejection among
Black kidney transplant recipients [37].

In this study of the UNOS/OPTN database from 2015 through 2019, we aimed to assess
the risk factors and feature importance of acute rejection among Black kidney transplant
recipients by utilizing RF vs. traditional multivariable logistic regression analysis.

2. Materials and Methods
2.1. Data Source and Study Population

The Organ Procurement and Transplantation Network (OPTN)/United Network
for Organ Sharing database (UNOS) database was used for analysis of this study. The
OPTN/UNOS database contains patient-level data of all transplant events in the United
States. All adult (age ≥18 years) end-stage kidney disease patients who received kidney-
only kidney transplants from 2015 to 2019 were screened. Only Black patients were
included in this study. If patients had multiple kidney transplants during the study period,
the first kidney transplant was selected for analysis. This study was approved by the Mayo
Clinic Institutional Review Board (#21-007698) and the UNOS/OPTN data is publicly
available and de-identified.

2.2. Data Collection

Comprehensive recipient-, donor-, and transplant-related variables in the OPTN/UNOS
database were extracted. All the extracted variables had less than 10% of missing data.
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Missing data was imputed through multivariable imputation by the chained equation
(MICE) method [38].

The primary outcome was acute rejection reported by transplant centers to the
OPTN/UNOS within 1 year after kidney transplant. The UPTN/UNOS database did
not specify the date of acute rejection occurrence.

2.3. Machine Learning Variable Importance Analysis

Variable importance was performed using the “randomForest” package and inter-
preted and visualized by the “randomForestExplainer” [39] packages in R 4.0.2. Random
forests are ensemble classifiers that aggregate the results of many individual decision trees.
We used the ‘randomForest’ R package [40] with two hyperparameters: the number of
training trees (nTree) and the number of predictors to consider at each split point (mTry).
The default settings of nTree = 500 and mTry as the square root of the number of predictor
variables were used in this study. To avoid the bias of analysis of variable importance,
various indicators (number of nodes, accuracy decrease, Gini decrease, times_a_root (total
number of trees in which Xj is used for splitting the root node), p value, and mean minimal
depth) were selected to represent different perspectives and to comprehensively evaluate
the importance of features [31,33]. The Gini impurity measures the frequency at which any
element of the dataset will be mislabeled when it is randomly labeled. The minimum value
of the Gini Index is 0. This happens when the node is pure, indicating that all the contained
elements in the node are of one unique class. “Gini_decrease” indicates the decrease in the
Gini impurity index, and “accuracy_decrease” refers to the mean decrease of prediction
accuracy after the corresponding predictor was permuted [39].

The importance of each variable can be expressed using other metrics, such as mean
minimal depth, times_a_root, accuracy decrease, and Gini decrease.

2.4. Statistical Analysis

Continuous variables were presented as mean ± standard deviation (SD) for normally
distributed data, or median with interquartile range (IQR) for non-normally distributed
data. Categorical variables were presented as number with percentage. The difference in
clinical characteristics between patients with and without rejection were tested using the
student’s t-test or Wilcoxon’s rank sum test as appropriate for continuous variables, and
Chi-squared test for categorical variables. For traditional analysis to identify independent
predictors for rejection, backward stepwise multivariable logistic regression with inclusion
of variables whose p-value in univariable analysis <0.05 was performed.

All analyses were performed using R, version 4.0.3 (RStudio, Inc., Boston, MA, USA;
http://www.rstudio.com/ (accessed on 15 January 2021)). We used the “randomForest”
and “randomForestExplainer” packages in R 4.0.2. for machine learning analysis [39], and
the MICE command in R for multivariable imputation by chained equation [38].

3. Results

A total of 22,687 black kidney transplant recipients were eligible for analysis. Of these,
1330 (6%) had acute rejection within 1 year after kidney transplant. Table 1 compared
the recipient-, donor-, and transplant-related characteristics between patients with and
without rejection. Patients with rejection were younger, more likely to have a glomerular
kidney disease etiology, have longer dialysis duration, and be HIV-seropositive. They
were less likely to be diabetic or receive a living donor kidney transplant and more likely
to have delayed graft function. They were also more likely to be kidney retransplants,
have a higher PRA, have a higher total number of HLA mismatches, and carry public
insurance. With regard to immunosuppression, patients with rejection were less likely to
receive depleting induction (e.g., thymoglobulin, alemtuzumab) and were more likely to
receive basiliximab. They were also more likely to be on cyclosporine, mycophenolate,
azathioprine, and mTOR inhibitors for maintenance immunosuppression.

http://www.rstudio.com/
http://www.rstudio.com/
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Table 1. Clinical characteristics between kidney transplant recipients with and without rejection.

All Rejection No Rejection p-Value

(n = 22,687) (n = 1330) (n = 21,357)

Recipient Age (year) 51.4 ± 12.6 47.8 ± 13.2 51.6 ± 12.6 <0.001

52 (43–61) 48 (37–58) 53 (43–61)

Recipient male sex 13,635 (60) 817 (61) 12,818 (60) 0.31

ABO blood group

0.34
- A 6452 (28) 368 (28) 6084 (28)
- B 4334 (19) 239 (18) 4095 (19)
- AB 1255 (6) 68 (5) 1187 (6)
- O 10,646 (50) 655 (49) 9991 (47)

Body mass index (kg/m2)
29.3 ± 5.7 29.2 ± 5.5 29.3 ± 5.7

0.3329.0 (25.1–33.4) 28.9 (25.1–33.2) 29.0 (25.1–33.4)

Kidney retransplant 2413 (11) 222 (17) 2191 (10) <0.001

Dialysis duration

<0.001
- Preemptive or <1 year 3585 (16) 159 (12) 3426 (16)
- 1–3 years 4069 (18) 245 (18) 3824 (18)
- >3 years 15,033 (66) 926 (70) 14,107 (66)

Cause of end-stage kidney disease

<0.001

- Diabetes mellitus 6460 (28) 313 (24) 6147 (29)
- Hypertension 8189 (36) 455 (34) 7734 (36)
- Glomerular disease 4027 (18) 295 (22) 3732 (17)
- PKD 839 (4) 36 (3) 803 (4)
- Other 3172 (14) 231 (17) 2941 (14)

Comorbidity
- Diabetes mellitus 8253 (36) 417 (31) 7836 (37) <0.001
- Malignancy 1580 (7) 85 (6) 1495 (7) 0.4
- Peripheral vascular disease 2119 (9) 109 (8) 2010 (9) 0.14

PRA 0 (0–48) 0 (0–69) 0 (0–47) <0.001

Positive HCV serostatus 1825 (8) 118 (9) 1707 (8) 0.25

Positive HBs antigen 340 (2) 18 (1) 322 (2) 0.65

Positive HIV serostatus 767 (3) 67 (5) 700 (3) 0.001

Functional status

0.84
- 10–30% 50 (0) 2 (0.2) 48 (0.2)
- 40–70% 11,869 (52) 700 (53) 11,169 (52)
- 80–100% 10,768 (47) 628 (47) 10,140 (47)

Working income 5883 (26) 320 (24) 5563 (26) 0.11

Public insurance 18,504 (82) 1117 (84) 17,387 (81) 0.02

US resident 22,597 (99) 1327 (99) 21,270 (99) 0.31

Undergraduate education or above 12,405 (55) 708 (53) 11,697 (55) 0.28

Serum albumin
4.0 ± 0.6 3.9 ± 0.5 4.0 ± 0.6

0.324.0 (3.6–4.3) 4.0 (3.6–4.3) 4.0 (3.6–4.3)

Kidney donor status

0.047
- Non-ECD deceased 17,052 (75) 1030 (77) 16,022 (75)
- ECD deceased 2482 (11) 145 (11) 2337 (11)
- Living 3153 (14) 155 (12) 2998 (14)
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Table 1. Cont.

All Rejection No Rejection p-Value

Donor age 38.4 ± 4.8 38.2 ± 15.0 38.2 ± 14.8 0.99

38 (27–50) 39 (27–50) 38 (27–50)

Donor male sex 13,064 (58) 796 (60) 12,268 (57) 0.08

Donor race

0.57
- White 13,784 (61) 817 (61) 12,967 (61)
- African American 5918 (26) 328 (25) 5590 (26)
- Hispanic 2266 (10) 143 (11) 2123 (10)
- Other 719 (3) 42 (3) 677 (3)

History of hypertension in donor 5477 (24) 310 (23) 5167 (24) 0.46

KDPI

0.02
- Living donor 3153 (14) 155 (12) 2998 (14)
- KDPI < 85 17,892 (79) 1093 (82) 16,889 (79)
- KDPI ≥ 85 1552 (7) 82 (6) 1470 (7)

HLA mismatch
- A 2 (1–2) 2 (1–2) 2 (1–2) 0.64
- B 2 (1–2) 2 (1–2) 2 (1–2) 0.48
- DR 1 (1–2) 1 (1–2) 1 (1–2) <0.001
- ABDR 5 (4–5) 5 (4–5) 5 (4–5) 0.008

Cold ischemia time
15.8 ± 9.8 16.1 ± 9.5 15.8 ± 9.8

0.4115.5 (9.1–21.7) 15.2 (9.8–21.4) 15.5 (9.0–21.7)

Allocation type

0.03
- Local 16,718 (74) 973 (73) 15,745 (74)
- Regional 2821 (12) 142 (11) 2679 (13)
- National 3147 (14) 215 (16) 2633 (14)

Kidney on pump 9496 (42) 557 (42) 8939 (42) 0.99

Delay graft function 6720 (30) 494 (37) 6226 (29) <0.001

EBV status

0.54
- Low risk 122 (1) 5 (0.4) 117 (0.5)
- Moderate risk 21,200 (93) 1239 (93) 19,961 (93)
- High risk 1365 (6) 86 (6) 1279 (6)

CMV status

0.55
- D-/R- 2531 (11) 149 (11) 2382 (11)
- D-/R+ 6554 (29) 374 (28) 6180 (29)
- D+/R+ 10,398 (46) 632 (48) 9766 (46)
- D+/R- 3204 (14) 175 (13) 3029 (14)

Induction immunosuppression
- Thymoglobulin 14,376 (63) 803 (60) 13,573 (64) 0.02
- Alemtuzumab 3792 (18) 197 (15) 3595 (17) 0.05

- Basiliximab 3684 (16) 289 (22) 3395 (16) <0.001
- Other 328 (1) 9 (0.7) 319 (1) 0.02
- No induction 1547 (7) 96 (7) 1451 (7) 0.55

Maintenance Immunosuppression
- Tacrolimus 20,689 (91) 1203 (90) 19,486 (91) 0.33
- Cyclosporine 184 (1) 19 (1) 165 (1) 0.01
- Mycophenolate 20,907 (92) 1250 (94) 19,657 (92) 0.01
- Azathioprine 65 (0.3) 8 (0.6) 57 (0.3) 0.03
- mTOR inhibitors 62 (0.3) 8 (0.6) 54 (0.3) 0.02
- Steroid 16,131 (71) 954 (72) 15,177 (71) 0.60

Abbreviations: BMI—Body mass index; CMV—Cytomegalovirus; DGF—Delayed graft function; DM—Diabetes mellitus; EBV—Epstein-
Barr Virus; ESKD—End-stage kidney disease; HBs—Hepatitis B surface; HCV—Hepatitis C virus; HIV—Human immunodeficiency virus;
HLA—Human leukocyte antigen; KDPI—Kidney donor profile index; mTORi—Mammalian target of rapamycin inhibitors; PRA—Panel
reactive antibody; PVD—Peripheral vascular disease.
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3.1. Traditional Analysis

The multi-collinearity of continuous variables was assessed by a correlation matrix,
which demonstrated no significant multi-collinearity (Figure 1).

Figure 1. Correlation matrix assessing the pair-wise correlation between the continuous variables.

Using traditional analysis with backward stepwise multivariable logistic regression
(Table 2), the independent predictors for increased acute rejection risk included kidney
retransplantion, dialysis duration ≥1 years, a PRA of 81–100, HIV infection, ECD deceased
donor utilization, a higher total number of HLA mismatches, delayed graft function,
basiliximab induction, and the use of cyclosporine, azathioprine, and mTOR inhibitors for
maintenance immunosuppression. In contrast, the independent predictors for decreased
rejection risk included older recipient age and the use of thymoglobulin and alemtuzumab
for induction.
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Table 2. Univariable and multivariable logistic regression analysis for acute rejection.

Variable
Univariate Analysis Multivariate Analysis

OR (95% CI) p-Value OR (95% CI) p-Value

Recipient Age (per 5-year increase) 0.89 (0.87–0.91) <0.001 0.88 (0.86–0.90) <0.001

Recipient male sex 1.06 (0.95–1.19) 0.31

ABO blood group
- A 0.92 (0.81–1.05) 0.23
- B 0.89 (0.76–1.04) 0.13
- AB 0.87 (0.68–1.13) 0.30
- O 1 (ref) -

Body mass index (kg/m2) 0.98 (0.93–1.03) 0.34

Kidney retransplant 1.75 (1.51–2.04) <0.001 1.50 (1.24–1.81) <0.001

Dialysis duration
- Preemptive or <1 year 1 (ref) - 1 (ref) -
- 1–3 years 1.38 (1.12–1.69) 0.002 1.28 (1.04–1.58) 0.02
- >3 years 1.41 (1.19–1.68) <0.001 1.26 (1.04–1.51) 0.02

Cause of end-stage kidney disease
- Diabetes mellitus 0.87 (0.75–1.00) 0.055
- Hypertension 1 (ref)
- Glomerular disease 1.34 (1.15–1.56) <0.001
- PKD 0.76 (0.54–1.08) 0.11
- Other 1.34 (1.13–1.57) <0.001

Comorbidity
- Diabetes mellitus 0.79 (0.70–0.89) <0.001
- Malignancy 0.91 (0.72–1.13) 0.39
- Peripheral vascular disease 0.86 (0.70–1.05) 0.13

- PRA
- 0 1 (ref) - 1 (ref) -
- 1–20 1.18 (0.98–1.42) 0.09 1.18 (0.98–1.43) 0.08
- 21–80 0.96 (0.81–1.12) 0.59 0.97 (0.82–1.14) 0.69
- 81–100 1.51 (1.31–1.74) <0.001 1.39 (1.16–1.67) <0.001

Positive HCV serostatus 1.12 (0.92–1.36) 0.25

Positive HBs antigen 0.90 (0.56–1.45) 0.65

Positive HIV serostatus 1.57 (1.21–2.02) 0.001 1.35 (1.03–1.76) 0.03

Functional status <80% 1.01 (0.90–1.13) 0.85

Working income 0.90 (0.79–1.02) 0.11

Public insurance 1.20 (1.03–1.39) 0.02

US resident 1.81 (0.57–5.73) 0.31

Undergraduate education or above 0.94 (0.84–1.05) 0.28

Serum albumin (per 1-g/dL increase) 0.95 (0.86–1.05) 0.33

Kidney donor status
- Non-ECD deceased 1 (ref) - 1 (ref) -
- ECD deceased 0.97 (0.81–1.15) 0.70 1.23 (1.02–1.48) 0.03
- Living 0.80 (0.68–0.96) 0.01 0.98 (0.80–1.19) 0.82

Donor age 1.00 (0.98–1.02) 0.99

Donor male sex 1.10 (0.99–1.24) 0.08

Donor race
- White 1 (ref) -
- African American 0.93 (0.82–1.06) 0.29
- Hispanic 1.07 (0.89–1.28) 0.48
- Other 0.98 (0.72–1.36) 0.92

History of hypertension in donor 0.95 (0.84–1.09) 0.46

KDPI
- Living donor 0.80 (0.67–0.95) 0.01
- KDPI < 85 1 (ref) -
- KDPI ≥ 85 0.86 (0.68–1.09) 0.20



Medicines 2021, 8, 66 8 of 19

Table 2. Cont.

Variable
Univariate Analysis Multivariate Analysis

OR (95% CI) p-Value OR (95% CI) p-Value

HLA A mismatch
- 0 1 (ref) -
- 1 1.37 (1.08–1.73) 0.01
- 2 1.29 (1.02–1.63) 0.03

HLA B mismatch
- 0 1 (ref) -
- 1 1.23 (0.91–1.67) 0.19
- 2 1.24 (0.92–1.66) 0.16

HLA DR mismatch
- 0 1 (ref) -
- 1 1.25 (1.02–1.53) 0.03
- 2 1.49 (1.22–1.82) <0.001

HLA ABDR mismatch
- 0 1 (ref) - 1 (ref) -
- 1 3.05 (1.11–8.37) 0.03 2.84 (1.03–7.81) 0.04
- 2 4.24 (1.82–9.87) 0.001 4.43 (1.90–10.34) <0.001
- 3 3.88 (1.71–8.83) 0.001 4.37 (1.92–9.97) <0.001
- 4 3.69 (1.64–8.33) 0.002 4.32 (1.91–9.80) <0.001
- 5 4.14 (1.84–9.31) 0.001 5.10 (2.25–11.54) <0.001
- 6 4.42 (1.95–9.98) <0.001 5.63 (2.48–12.80) <0.001

Cold ischemia time 1.00 (0.99–1.01) 0.42

Allocation type
- Local 1 (ref) -
- Regional 0.86 (0.72–1.03) 0.10
- National 1.19 (1.02–1.38) 0.03

Kidney on pump 1.00 (0.89–1.12) 0.99

Delay graft function 1.44 (1.28–1.61) <0.001 1.44 (1.28–1.62) <0.001

EBV status
- Low risk 0.69 (0.28–1.69) 0.41
- Moderate risk 1 (ref) -
- High risk 1.08 (0.86–1.36) 0.49

CMV status
- D−/R− 0.97 (0.80–1.16) 0.72
- D−/R+ 0.94 (0.82–1.07) 0.32
- D+/R+ 1 (ref) -
- D+/R− 0.89 (0.75–1.06) 0.20

Induction immunosuppression
- Thymoglobulin 0.87 (0.78–0.98) 0.02
- Alemtuzumab 0.86 (0.74–1.00) 0.05 0.80 (0.68–0.95) 0.01
- Basiliximab 1.47 (1.28–1.68) <0.001 0.79 (0.64–0.98) 0.03
- Other 0.45 (0.23–0.87) 0.01 1.40 (1.17–1.67) <0.001
- No induction 1.07 (0.86–1.32) 0.55

Maintenance Immunosuppression
- Tacrolimus 0.91 (0.75–1.10) 0.33
- Cyclosporine 1.86 (1.15–3.00) 0.01 2.33 (1.42–3.82) 0.002
- Mycophenolate 1.35 (1.07–1.70) 0.01 0.02
- Azathioprine 2.26 (1.08–4.75) 0.03 2.70 (1.24–5.87) 0.02
- mTOR inhibitors 2.39 (1.13–5.03) 0.02 2.65 (1.24–5.66)
- Steroid 1.03 (0.91–1.17) 0.60

Abbreviations: BMI—Body mass index; CMV—Cytomegalovirus; DGF—Delayed graft function; DM—Diabetes mellitus; EBV—Epstein-
Barr Virus; ESKD—End-stage kidney disease; HBs—Hepatitis B surface; HCV—Hepatitis C virus; HIV—Human immunodeficiency virus;
HLA—Human leukocyte antigen; KDPI—Kidney donor profile index; mTORi—Mammalian target of rapamycin inhibitors; PRA—Panel
reactive antibody; PVD—Peripheral vascular disease.

3.2. Machine Learning Variable Importance
3.2.1. Distribution of Minimal Depth

Figure 2 demonstrates variables based on the minimum depth locations between the
tree and the number of trees. The minimal depth for a variable in a tree is equal to the depth
of the node which splits on that variable and is the closest to the root of the tree. If it is low,
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then a number of observations are divided into groups on the basis of this variable. From
the top 10 variables with the smallest mean value of minimal depth plotted in Figure 2,
recipient age, cold ischemia time, BMI, PRA, and serum albumin are the top 5 variables
used to split trees at the root. The RF model built 500 trees with no limit to the maximum
number of terminal nodes in a tree. It is evident that trees were split until a depth of 11.

Figure 2. The distribution of the minimal depth among the trees of the forest for the important variables is presented in
distinctive colors for the individual level of minimal depth. The mean of the distribution is demonstrated by a vertical black
bar with a value label on it, and the scale of the X-axis ranges from 0 to the maximum number of trees in which any variable
was utilized for splitting. Abbreviations: BMI- Body mass index; DGF—Delayed graft function; ESKD—End-stage kidney
disease; HLA—Human leukocyte antigen; PRA—Panel reactive antibody.

3.2.2. Importance Measures

Table 3 demonstrates the measures of importance (mean minimal depth, number of
nodes, accuracy decrease, gini decrease, number of trees, times_a_root, and p value) for all
variables in the forest. The following variables are the top five variables based on different
important measures:

• Mean minimal depth: recipient age, cold ischemia time, BMI, PRA, and serum albumin
are the top five variables used to split trees at the root.

• Number of nodes: cold ischemia time, BMI, donor age, recipient age, and serum
albumin.

• Decrease in accuracy: cold ischemia time, age, donor age, KDPI group, and number of
transplants.

• Decrease in Gini: BMI, cold ischemia time, recipient age, donor age, and serum
albumin.

• Number of trees: BMI, cold ischemia time, recipient age, donor age, and serum
albumin.

• Times_a_root: recipient age, retransplant, cause of ESKD, DGF, and basiliximab
induction.
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Table 3. Measures of importance for all variables in the forest (The order of these listed variables based on mean decrease
in Gini).

Variable Mean Minimal
Depth

Number of
Nodes

Accuracy
Decrease Gini Decrease Number of Trees Times_a_Root * p Value

BMI 3.1920 72,508 0.0010 236.4036 500 13 <0.001

Cold ischemia time 3.1200 73,014 0.0040 236.2731 500 15 <0.001

Age 2.2080 65,930 0.0036 203.8359 500 64 <0.001

Donor age 3.4700 67,340 0.0022 202.5135 500 5 <0.001

Serum albumin 3.3020 61,652 0.0005 176.4404 500 14 <0.001

PRA 3.2120 40,174 0.0017 113.1232 500 38 <0.001

Education level 3.7800 32,605 0.0001 82.5028 500 20 <0.001

CMV status 4.3320 32,808 0.0002 82.0938 500 1 <0.001

ABO blood type 4.6260 31,967 −0.0000 78.2775 500 2 <0.001

Total HLA mismatch 3.9760 33,012 0.0017 77.9731 500 9 <0.001

Cause of ESKD 3.3980 28,985 0.0019 73.6816 500 43 <0.001

Dialysis duration 4.2220 21,608 0.0008 52.6351 500 11 <0.001

HLA DR mismatch 4.2940 20,334 0.0009 45.7800 500 16 <0.001

HLA A mismatch 5.0020 19,639 0.0003 43.1578 500 4 <0.001

Allocation type 5.0260 16,622 0.0011 38.9588 500 7 1.00

HLA B mismatch 5.3220 16,180 0.0008 37.2973 500 0 1.00

Functional status 5.9100 17,307 0.0000 36.0106 500 0 1.00

Donor male 5.7640 16,565 −0.0000 33.6225 500 0 1.00

Kidney pump use 6.1100 15,487 0.0008 31.9330 500 0 1.00

Steroid use 5.9380 14,707 0.0004 31.7875 500 0 1.00

Male 5.7760 15,622 0.0004 31.6972 500 0 1.00

Working for income 5.9480 13,230 0.0004 28.1003 500 0 1.00

Donor White 6.1580 13,616 0.0003 27.706 500 0 1.00

Hypertensive donor 6.3700 12,578 0.0006 26.6712 500 0 1.00

Thymoglobulin
induction 5.7580 12,740 0.0004 26.2509 500 2 1.00

DGF 3.7540 10,816 0.0013 25.4752 500 40 1.00

Donor status 5.4620 11,189 0.0019 >25.2774 500 4 1.00

Donor black 6.3460 11,570 0.0004 24.1010 500 0 1.00

DM 5.7140 11,370 0.0012 23.5846 500 18 1.00

KDPI group 5.5320 9255 0.0020 21.5138 500 7 1.00

Public insurance 6.2720 9871 0.0001 21.2143 500 1 1.00

Basiliximab induction 3.7560 7713 0.0008 20.5859 500 39 1.00

Tacrolimus use 6.4760 7983 0.0002 19.4706 500 0 1.00

Alemtuzumab
induction 6.6840 8913 0.0005 19.2899 500 2 1.00

EBV status 6.2540 7302 −0.0000 19.1136 500 0 1.00

Recipient HCV
serostatus 6.3560 7444 0.0003 18.7719 500 1 1.00

Donor Hispanic 6.5880 8153 0.0000 18.6623 500 1 1.00

PVD 6.8200 7303 0.0001 17.0666 500 0 1.00

Malignancy 6.9220 6275 0.0001 15.7198 500 1 1.00

Number of transplants 4.3420 4851 0.0019 15.5554 500 38 1.00

No induction 7.1900 6050 −0.0000 14.4486 500 0 1.00

Recipient HIV
serostatus 6.0180 4810 0.0003 13.8118 500 6 1.00

MMF use 6.5580 5683 0.0002 13.6395 500 2 1.00

Donor- other race 7.7300 3861 −0.0000 10.5321 500 0 1.00

Preemptive transplant 7.3320 4415 0.0001 9.7186 500 4 1.00

Retransplant 5.6520 3136 0.0019 9.2727 466 61 1.00
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Table 3. Cont.

Variable Mean Minimal
Depth

Number of
Nodes

Accuracy
Decrease Gini Decrease Number of Trees Times_a_Root * p Value

Cyclosporine use 6.5829 2157 0.0001 7.7893 499 4 1.00

Recipient HBs
antigen 8.1428 2137 −0.0000 6.6728 497 0 1.00

mTORi use 7.5623 1253 0.0000 4.8298 489 4 1.00

Azathioprine use 7.6357 1154 0.0000 4.6491 479 2 1.00

Other induction 10.9853 1263 0.0000 3.2797 471 0 1.00

US resident 12.5317 484 −0.0000 1.5589 328 1 1.00

* Times_a_root—total number of trees in which Xj is used for splitting the root node. p value < 0.01 means significant variable (the
variable is used for splitting more often than would be the case if the selection was random). Abbreviations: BMI—Body mass index;
CMV—Cytomegalovirus; DGF—Delayed graft function; DM—Diabetes mellitus; EBV—Epstein-Barr Virus; ESKD—End-stage kidney
disease; HBs- Hepatitis B surface; HCV—Hepatitis C virus; HIV—Human immunodeficiency virus; HLA—Human leukocyte antigen;
KDPI—Kidney donor profile index; mTORi—Mammalian target of rapamycin inhibitors; PRA—Panel reactive antibody; PVD—Peripheral
vascular disease.

3.2.3. Multi-way Importance Plot

The multi-way importance plot reveals the relation between the 3 measures of impor-
tance and labels 10 variables that scored best when it comes to these 3 measures.

The first multi-way importance plot (Figure 3) centers on three important measures
acquired from the structure of trees in the forest, including (1) mean depth of the first
split on the variable, (2) number of trees in which the root is split on the variable, and (3)
the total number of nodes in the forest that split on that variable. These top 10 relative
variables of importance in the RF models for acute rejection are based on the minimum
average depth and the number of nodes, and the times to root include age, cause of ESKD,
PRA, education level, cold ischemia time, HLA DR mismatch, BMI, serum albumin, degree
of HLA mismatch, and donor age.

Figure 3. Classification of the top and not top variables based on the minimum average depth, number of nodes, and
times to root. The 10 top variables are highlighted in blue. The size of points reflects the number of nodes split on the
variable. Times_a_root: total number of trees in which the variable is used for splitting the root node. Mean_minimal_depth:
mean minimal depth. Abbreviations: BMI—Body mass index; ESKD—Endstage kidney disease; HLA—Human Leukocyte
antigen; PRA—Panel reactive antibody.
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The second multi-way importance plot (Figure 4) reveals the important measures
that emerge from the role of the variables in the prediction of acute rejection, including a
decrease in accuracy and a decrease in Gini, with additional information on the p-value
based binomial distribution of the number of nodes split on the variable implying that the
variables are randomly drawn to form splits. After combining the mean decrease in Gini,
decrease in accuracy, and p values of these features, the top variables for acute rejection
include cold ischemia time, recipient age, donor age, BMI, serum albumin, PRA, degree of
HLA mismatch, causes of ESKD, dialysis duration, and HLA-DR mismatch.

Figure 4. Multiway feature importance analysis of the acute rejection combining the mean decrease in Gini, decrease in
accuracy, and p values of the features (pink circle; p < 0.01). Abbreviations: BMI—Body mass index; ESKD—End-stage
kidney disease; HLA—Human leukocyte antigen; PRA—Panel reactive antibody.

3.2.4. Compare Rankings of Variables

Figure 5 exhibits the bilateral relations between the rankings of variables according to
the selected importance measures. It demonstrates that the RF parameters of importance
are ascertained to have correlations among each other, thereby implying the reliability of
each of these parameters to rank the variable importance. The top correlations among
themeasures of importance include decrease in gini:number of nodes, decrease in gini:mean
minimal depth, and mean minimal depth: number of nodes.
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Figure 5. Relations between rankings according to different measures (panels in the lower triangle of the grid displaying
distribution of rankings of all predictor variables with black dots accompanying a blue trend line) as well as correlation
coefficient over rankings of any 2 parameters (panels in the upper triangle of the grid). Abbreviations: No—Number;
min—Minimum; Corr—correlation. * p < 0.05, *** p < 0.001.

3.2.5. Variable Interactions

Feature interactions with the most frequent occurrences in the RF classification run
between correlated and uncorrelated pairs. Figure 6 outlines the 30 top interactions of the
variables according to the mean of conditional minimal depth, a generalization of minimal
depth that measures the depth of the second variable in a tree of which the first variable is
a root (a subtree of a tree from the forest).

To be comparable to the normal minimal depth, 1 is subtracted so that 0 is the mini-
mum. Smaller values of the mean conditional depth with associated higher unconditional
depth, as well as increased occurrences, indicate interaction effects (Table 4). The inter-
actions considered are those with the following variables as first (root variables): cold
ischemia time, recipient age, donor age, BMI, PRA, cause of ESKD, serum albumin, total
number of HLA mismatches, dialysis duration, HLA-DR mismatches, allocation type, edu-
cation level, CMV status, HLA-B mismatch, HLA-A mismatch, and all plausible values of
the second variable. The three most frequent interactions consist of two variables, including
recipient age:donor age, recipient age:serum albumin, and recipient age:BMI, respectively.
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Figure 6. Mean minimum depth for the 30 most prevalent interactions variables. The bar displaying the mean condi-
tional minimal depth and the line the unconditional mean minimal depth. The horizontal line presents the minimal
value of the depicted statistic among interactions for which it was calculated. Abbreviations: BMI—Body mass index;
CMV—Cytomegalovirus; ESKD—End-stage kidney disease; HLA—Human leukocyte antigen; PRA—Panel
reactive antibody.

Table 4. Top 30 interactions that appeared most frequently.

Variable Root Variable Mean Minimal Depth Occurrences Interaction Unconditional Mean
Minimal Depth

Recipient Age Age 2.4218 467 Age:Age 2.2080

Donor age Age 2.4069 467 Age:Donor age 3.4700

Serum albumin Age 2.6582 461 Age:Serum albumin 3.3020

BMI Age 2.7236 460 Age:BMI 3.1920

Cold ischemia time Age 2.5770 459 Age:Cold ischemia time 3.1200

CMV status Age 3.9216 452 Age:CMV status 4.3320

ABO Age 4.2978 449 Age:ABO 4.6260

Education level Age 3.8707 448 Age:Education level 3.7800

PRA Age 3.6716 448 Age:PRA 3.2120

Total HLA mismatch Age 3.9931 446 Age:Total HLA mismatch 3.9760

Cause of ESKD Age 4.4647 442 Age:Cause of ESKD 3.3980

HLA-A mismatch Age 5.4840 433 Age:HLA-A mismatch 5.0020

HLA-DR mismatch Age 5.3943 431 Age:HLA-DR mismatch 4.2940

Dialysis duration Age 5.2511 429 Age:Dialysis duration 4.2220

Functional status Age 6.5738 426 Age:Functional status 5.9100

HLA-B mismatch Age 5.9078 426 Age:HLA-B mismatch 5.3220

Steroid use Age 6.4615 425 Age:Steroid use 5.9380

Working for income Age 6.6328 425 Age:Working for income 5.9480

Donor male Age 6.6333 421 Age:Donor male 5.7640

BMI Cold ischemia time 4.0932 418 Cold ischemia time:BMI 3.1920

Age Cold ischemia time 4.0842 417 Cold ischemia time:Age 2.2080

Serum albumin Cold ischemia time 4.2897 417 Cold ischemia time:Serum albumin 3.3020

Kidney pump use Age 7.2689 416 Age:Kidney pump use 6.1100

Allocation.type Age 6.4040 414 Age:Allocation type 5.0260

Male Age 7.0507 414 Age:Male 5.7760

Donor age Cold ischemia time 4.5872 412 Cold ischemia time:Donor age 3.4700

Donor White Age 7.3541 411 Age:Donor White 6.1580

BMI PRA 4.1529 411 PRA:BMI 3.1920

Cold ischemia time Cold ischemia time 4.3130 407 Cold ischemia time:Cold ischemia time 3.1200

Public insurance Age 7.6620 406 Age:Public insurance 6.2720

Abbreviations: Age—Recipient age; BMI—Body mass index; CMV—Cytomegalovirus; ESKD—End-stage kidney disease; HLA—Human
leukocyte antigen; PRA—Panel reactive antibody.
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4. Discussion

In this study, using tree-based RF feature importance and the feature interaction
network analysis framework, we were able to demonstrate important variables in the RF
models for acute rejection among Black kidney transplant recipients using the number of
nodes, accuracy decrease, gini decrease, times_a_root, p value, and mean minimal depth.
These identified risk factors for rejection included recipient age, cause of ESKD, PRA,
cold ischemia time, donor age, HLA DR mismatch, BMI, serum albumin, degree of HLA
mismatch, education level, and dialysis duration.

By comparison, traditional multivariable logistic regression analysis showed that
younger recipient age; kidney retransplantation; ECD deceased donor utilization; dialysis
duration; PRA; recipient HIV seropositivity; degree of HLA mismatch; DGF; basiliximab
induction; and cyclosporine, azathioprine, and mTOR inhibitor-based immunosuppression
were independent risk factors for acute rejection among Black kidney transplant recipients.
Whereas some important variables from traditional logistic regression analysis are not
listed as important variables in the RF approach, these factors are still variables that were
used to predict acute rejection outcomes among Black kidney transplant recipients (as
shown in Figure 7).

Figure 7. Variable importance summarized from Table 1 (The order of these listed variables based on mean decrease in
Gini). Abbreviation: BMI—Body mass index; CMV—Cytomegalovirus; DGF—Delayed graft function; DM—Diabetes
mellitus; EBV—Epstein-Barr virus; ESKD—End-stage kidney disease; HBs—Hepatitis B surface; HCV—Hepatitis C virus;
HIV—Human immunodeficiency virus; HTN—Hypertension; KDPI—Kidney donor profile index; MMF—Mycophenolate,
mTORi—Mammalian target of rapamycin inhibitor; PKD—Polycystic kidney disease; PRA—Panel reactive antibody;
PVD—Peripheral vascular disease.
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RF is an ensemble of decision trees. Many trees produced in a particular “random”
way build a RF [41]. Each tree is constructed from a diverse sample of rows, and at
individual nodes, a different sample of features is chosen for splitting. Each of the trees
produces its own individual prediction. These predictions are subsequently averaged to
generate a single result. Averaging strengthens a RF to be better than a single decision tree
and thereby increases its accuracy and lessens overfitting. The average of these models
evens out the variance, resulting in an error reduction that is both low in bias and low in
variance. This nonparametric and nonlinear machine learning RF method can resist noise
and is expected to build accurate prediction models using aggregated data. In addition,
RF works well on large datasets, especially when there are many categorical independent
variables and unbalanced data [41], as in our OPTN/UNOS dataset. Conversely, a logistic
regression analysis approach, which uses a generalized linear equation and the stepwise
variable selection method, is based on the likelihood ratio test to describe the directed
dependencies among a set of variables. To do so, a number of statistical assumptions must
be met. Common concerns include overfitting (rule of 10) as well as outliers. As a result,
logistic regression inherently has bias and low variance due to the rigid nature of the shape
of the line.

Previous studies have demonstrated higher PRA, longer cold ischemia time, increased
HLA mismatches, HLA DR mismatches, and longer dialysis duration as important gen-
eralizable risk factors for acute rejection among kidney transplant recipients. From our
current study using RF, we demonstrate that some of these established variables, such as
cold ischemia time and HLA DR mismatch, are not listed as independent predictors for
acute rejection among Black kidney transplant recipients in traditional logistic regression
analysis. Furthermore, we also found that BMI, cause of ESKD, serum albumin, donor age,
and education level are important variables in RF, but not in traditional analysis. Given that
the RF algorithm has increasingly been applied in medicine and transplantation [34–36], it
is important to recognize these unique RF model variables for acute rejection among Black
kidney transplant recipients. A good prediction model begins with a great feature selection
process. Understanding these variables in our study using a national database will help
each transplant center to develop their individualized RF model, prognosticate the risk of
rejection among Black kidney transplant recipients, and develop strategies to prevent these
serious events.

In addition to the identification of feature importance for acute rejection in Black
kidney transplant recipients in the RF model, we also conducted feature interaction network
analysis. A great benefit of the tree structure is the understanding of the interaction between
variables. For example, if the split in a parent is by one variable and by another variable
in the daughter node, it can be concluded that there is an interaction between these two
variables [14,24,25]. Interactions also become apparent as common occurrences of variable
combinations. Thus, both the pair frequency and the associated distances are informative
with regard to the interaction effects. From the findings of our study, the three most
frequent interactions consist of two numerical variables, including recipient age:donor age,
recipient age:serum albumin, and recipient age:BMI, respectively. These findings from the
feature interaction network analysis may help to determine the important effect modifiers
of acute rejection risk among Black kidney transplant recipients.

Our study has several limitations. Given the nature of the UNOS database, we do
not have details on the factors leading to acute rejection such as immunosuppression
levels, medication non-adherence, donor-specific antibodies, or infection prior to episodes
of acute rejection. Thus, we aimed to investigate RF feature importance with feature
interaction network analysis as an initial step to create an RF prediction model. Additional
investigations are needed to incorporate the findings of our study into other important
variables such as crossmatch results, the presence of DSA, and follow-up data to construct
a RF prediction model with a high predictive performance for acute rejection among Black
kidney transplant recipients. In addition, future studies assessing tree-based RF feature
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importance and the feature interaction network analysis framework for acute rejection
among the general kidney transplant recipient populations are needed.

5. Conclusions

In conclusion, the application of tree-based RF feature importance and the feature
interaction network analysis framework identified the recipient age, ESKD etiology, PRA,
cold ischemia time, donor age, HLA DR mismatch, BMI, serum albumin, degree of HLA
mismatch, education level, and dialysis duration as important variables in the RF models
for acute rejection among Black kidney transplant recipients in the United States.
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