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Abstract: The capability to predict short-term maximum individual exposure is very 

important for several applications including, for example, deliberate/accidental release of 

hazardous substances, odour fluctuations or material flammability level exceedance. 

Recently, authors have proposed a simple approach relating maximum individual exposure 

to parameters such as the fluctuation intensity and the concentration integral time scale. In 

the first part of this study (Part I), the methodology was validated against field 

measurements, which are governed by the natural variability of atmospheric boundary 

conditions. In Part II of this study, an in-depth validation of the approach is performed 

using reference data recorded under truly stationary and well documented flow conditions. 

For this reason, a boundary-layer wind-tunnel experiment was used. The experimental 

dataset includes 196 time-resolved concentration measurements which detect the 
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dispersion from a continuous point source within an urban model of semi-idealized 

complexity. The data analysis allowed the improvement of an important model parameter. 

The model performed very well in predicting the maximum individual exposure, 

presenting a factor of two of observations equal to 95%. For large time intervals, an 

exponential correction term has been introduced in the model based on the experimental 

observations. The new model is capable of predicting all time intervals giving an overall 

factor of two of observations equal to 100%. 

Keywords: dosage; individual exposure; turbulence integral time scale, wind tunnel 

measurements; validation 

 

1. Introduction 

The capability to predict short-time maximum individual exposure is very important in order to deal 

with the release of airborne hazardous materials. Such a quantity is of stochastic nature and practically 

unpredictable, especially for very small time intervals since the instantaneous conditions of the 

atmosphere are unknown at the time of the release. However, a parameter very important to emergency 

management and predictable at the same time is the maximum expected individual exposure, which is 

defined as the dosage over a specified time interval Δτ: 

 max max

0 max

( τ) ( )  ΔτD C t dt C
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
 
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where C(t) is the instantaneous concentration at a receptor point, and Cmax(Δτ) is the maximum  

time-averaged (peak) concentration over Δτ. 

The common methodology today to predict maximum concentrations is the utilization of  

well-established probability density functions (pdf) (e.g., chopped normal, log-normal, gamma or 

Weibull) for the concentration distributions [1–5]. In this case, a computational dispersion model uses 

the predicted concentration mean, variance and intermittency factor and a predefined probability 

density function as mentioned above, to estimate the peak concentration with a confidence  

interval (e.g., 95% or 99%). For example, the widely used puff model SCIPUFF [6] uses the chopped 

normal distribution. 

It is to be noted that the results are expected to be sensitive to the particular pdf and especially on 

the confidence limit selected. Therefore additional criteria are needed to specify the appropriate 

confidence interval level [7]. It should also be noted that if, theoretically, the confidence limit tends to 

unity, the peak concentration would tend to infinity. In reality, however, the peak concentration is finite. 

Despite the above mentioned difficulties, the challenge remains to build an individual exposure 

prediction capability in air dispersion models (e.g., Computational Fluid Dynamics models) as simple as 

possible, dealing with geometries as complex as possible. Along this direction, Bartzis et al. (2008) [8] 

have proposed a relatively simple model based on the hypothesis that key parameters in defining the 

maximum dosage are the concentration fluctuation intensity (I) and the autocorrelation time scale (ΤC), 

as follows: 
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where 2C   is the concentration variance and C  is the mean concentration. These quantities as well as 

the concentration autocorrelation time scale can be estimated from experimental time series as 

described in Part I. The extensive analysis of the MUST field concentration data of various stability 

classes has suggested an indicative value of β = 1.72 while the parameter n remained the same as the 

indicative value (=0.3). 

The estimation of the parameter β based on field data analyses includes uncertainties due to the fact 

that the concentration time series are subject to the non-stationarity of the ambient atmospheric 

conditions. Such drawbacks can be eliminated by reverting to reference data, measured in  

boundary-layer wind tunnels under stationary and well-defined boundary conditions. In the following 

section, the methodology will be validated against an extensive laboratory dataset obtained from  

time-resolved concentration measurements in a semi-complex urban model. Using the large amount of 

available wind-tunnel data provides ways for a more reliable estimation of model uncertainties. 

2. The Wind Tunnel Measurements 

2.1. Description of the Concentration Measurements 

The measurements considered for model validation were carried out in the “WOTAN”  

boundary-layer wind tunnel of the Environmental Wind Tunnel Laboratory at the University of 

Hamburg. The so-called “Michelstadt”, an idealized model of a Central-European city district, has 

provided the geometric test case in which dispersion measurements were carried out. The model 

consists of building rings with flat roofs of different heights (15 m, 18 m and 25 m in full scale) 

forming street canyons with widths of 18 m and 24 m. The properties of the approach flow correspond 

to a very rough urban boundary layer of neutral stability. Tracer gas was emitted continuously from a 

point source placed on a rooftop (Figure 1). The concentration was measured using a fast Flame 

Ionization Detector (FID) at 196 locations between and above the building models of Michelstadt. The 

measurement was carried out for 275 s at each location to ensure the statistical representativeness of 

the data. Given the scale-reduced nature of the model (built on a scale of 1:225), this measurement 

time corresponds signal duration of more than 17 h under full-scale conditions. 
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Figure 1. Layout of the Michelstadt model indicating the source location. Flow is 

approaching from the left. 

2.2. Evaluation of the Concentration Data 

As previously mentioned, the selected test case refers to a 1:225-scale wind-tunnel model of a  

semi-idealized urban complexity (Michel-Stadt) that is part of the online validation data base 

CEDVAL-LES (http://www.mi.zmaw.de/index.php?id=433). All available data of the “Michelstadt” 

wind-tunnel experiments are included in the validation. The dataset contains high-resolution 

concentration time series with a sampling time interval of Δτ = 0.005s from 196 fast FID sensor 

measurements. Each sensor contains 55,000 concentration measurements (i.e., 1.078 × 107 data points 

for all sensors) and at each sensor measurements were taken over a duration of T = 275 s. Since the 

quality and statistical representativeness of the data was regularly verified by repetitive measurements, 

no outlier-exclusion has been carried out before the model validation. The ratio of minimum and 

maximum values of the fluctuation intensity (Imax/Imean) and the ratio of maximum and mean values of 

concentration (Cmax/Cmean) are 0.077/15.57 and 16.55/8.82 respectively. Following Yee and Biltoft, 

(2004) [9] the autocorrelation time TC is calculated from the autocorrelation function RC(τ) until the 

value at RC(τ) first decreases below 0.1. The min/max values of TC were determined to be  

0.041 s/1.001 s, which correspond to a normalized time range T/TC = 275 to 6707. These values are 

long enough to assume turbulence stationarity. 

3. Model Refinement and Uncertainties 

Estimation of the Uncertainty of the β Parameter 

Following the same procedures as in Part I, for the model refinement, only high resolution  

(Δτ0 = 0.005s) data has been considered. For the estimation of the parameter β, the exponent n was 

kept constant (n = 0.3) whereas the parameter β was varied from signal to signal. The decision of 

fixing the n value is based on the experimental evidence of relatively mild variability [8]. On the other 
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hand, any variability of n will be absorbed on further variability of the β parameter. Thus in this case 

the imperfectness of the model, as well as possible statistical reproducibility of the measurement 

results, is going to be reflected in the variability of the β value. The indicative value of the constant β is 

obtained from a best fit analysis of Equation (4) versus I where: 
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as shown in Figure 2. This analysis produces an indicative value of β equal to 2.88. This value is 

higher than the value of 1.72 derived from field data. Τhe upper bound of β for the wind-tunnel data 

was found to be equal to 10 corresponding to a maximum value of βmax ≈ 3.5 × β. It should be noticed 

that only a single value out of 196 (i.e., 0.5%) is above 9. In Figure 3 the probability density function 

of the parameter β is presented with its mean value and variance. It is clear from the histogram that the 

indicative value of 2.88 lies in the neighborhood of the most probable β-value. On the other hand, the 

vast majority of β-data lie below 6.6, i.e., 2.3 × β. The latter value is more representative of the β 

uncertainty in this case. 
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Figure 2. Correlation between the quantity Equation (4) and the fluctuation intensity (I). 

The data follow a linear relationship with a slope of 2.88 and a correlation coefficient  

R2 = 0.95. 
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Figure 3. The probability density function of the parameter β. 

4. Performance of the Model for Δτ = Δτ0 

In Table 1 the factor of two of observations (FAC2) is presented using the two values for the β 

parameter as estimated from experiments: 1.72 (field data) and 2.88 (wind-tunnel data). 

Table 1. Cmax model versus observation performance for Δτ = Δτ0. 

Parameter β FAC2 

Original model 1.72 81.63% 
Present model 2.88 95.41% 

5. The Model’s Overall Performance (Δτ ≥ Δτ0) 

Next to the estimation of the model parameters (Εquation (2), there is also a need to test the 

performance of the model for large time intervals. Thus, the model performance is tested with the 

wind-tunnel data for time intervals ranging from Δτ0 = 0.005s to 10s (Δτ/Δτ0 = 1–2000). 

In Table 2 the factor of two of observations (FAC2) is presented for Δτ ranging from Δτ0 to 10 s 

using the two values for the parameter β. 

In this case the original value of 1.72 gives better results for large Δτ values. It is surprising that 

FAC2 is slightly smaller for β = 2.88. In Figure 4, all Cmax(Δτ) data are compared with the model 

equation (2) with β = 2.88. It can be observed that the model predicts the experimental values at small 

integral times rather well, while a model overprediction occurs for the large time intervals (the beta 

dependence on Δτ/TC is examined in the next section). It is obvious that there is a need for model 

improvements with the following two characteristics: 

1. For small time integrals the results of the model should be the same as before. 

2. For large time integrals the results of the model should be decreased. 

Parameter β 
Mean = 3.3 
Variance = 2.26 
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Table 2. Cmax model versus observation performance for Δτ/Δτ0 = 1–2000. 

Parameter β FAC2 

Original model 1.72 97.4% 
Present model 2.88 95% 

 

Figure 4. Peak concentration comparisons (Δτ/Δτ0 = 1–2000). 

6. Μodel Improvements 

In order to fulfill the above mentioned two characteristics one plausible approach is to allow the β 

parameter to be a function of Δτ/TC instead of being held constant, i.e.,: 

C
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T

 
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 (5)

According to the first characteristic (“For small time integrals the results of the model should be the 

same as before”) the model behavior at small Δτ suggests: 

0β 2.88  (6)

In order to fulfill the second characteristic (“For large time integrals the results of the model should 

be decreased”) an extensive data analysis was performed with a view of identifying a proper β—

function. For a first time the following correlation for the parameter β is suggested: 
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The best-fit analysis of β versus Δτ/TC indicates the following value for a: 

012.0  (8)

Thus, the improved model for the Cmax(Δτ) estimation is given by: 
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with β = 2.88, n = 0.3 and a = 0.012. The improved Cmax(Δτ) model results are presented in Figure 5. 

 

Figure 5. Peak concentration comparisons using the improved model (9) (Δτ/Δτ0 =1–2000). 

In comparing Figures 4 and 5 it is obvious that the corrected model performs considerably better 

than the original one. An indicator of this is the increase of the FAC2 to a value of 0.998. Equation (9) 

will be examined in the future with more wind tunnel data. 

7. Conclusions 

The present work concerns the validation of the Bartzis et al. (2008) [8] empirical model for 

Cmax(Δτ) to reliably predict the individual maximum exposure in the case of deliberate or accidental 

releases of hazardous substances into the near-surface atmosphere. For the first time, concentration 

data from a boundary-layer wind-tunnel experiment in a semi-idealized urban geometry were used as a 

reference database. The extensive dataset of the “Michelstadt” laboratory experiment carried out under 

neutral atmospheric stability conditions was analyzed. The dataset contained concentration data from a 

total of 196 sensors with a sampling time interval of 0.005 s. From the data analysis, the parameter β 

was estimated to be equal to 2.88. With the estimated value of the parameter β, the Cmax(Δτ) model 

performed very well (FAC2 ≈ 0.95) in predicting the maximum individual exposure. For large time 

intervals, an exponential correction term has been introduced in order to determine the β-value based 
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on experimental observations. For the present dataset, the new model is capable of predicting all time 

intervals giving an overall FAC2 ≈ 1. 
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