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Abstract: Poly- and perfluoroalkyl substances (PFASs) are a group of anthropogenic chemicals
with an aliphatic fluorinated carbon chain. Due to their durability, bioaccumulation potential, and
negative impacts on living organisms, these compounds have drawn lots of attention across the
world. The negative impacts of PFASs on aquatic ecosystems are becoming a major concern due to
their widespread use in increasing concentrations and constant leakage into the aquatic environment.
Furthermore, by acting as agonists or antagonists, PFASs may alter the bioaccumulation and toxicity
of certain substances. In many species, particularly aquatic organisms, PFASs can stay in the body and
induce a variety of negative consequences, such as reproductive toxicity, oxidative stress, metabolic
disruption, immunological toxicity, developmental toxicity, cellular damage and necrosis. PFAS
bioaccumulation plays a significant role and has an impact on the composition of the intestinal
microbiota, which is influenced by the kind of diet and is directly related to the host’s well-being.
PFASs also act as endocrine disruptor chemicals (EDCs) which can change the endocrine system
and result in dysbiosis of gut microbes and other health repercussions. In silico investigation and
analysis also shows that PFASs are incorporated into the maturing oocytes during vitellogenesis and
are bound to vitellogenin and other yolk proteins. The present review reveals that aquatic species,
especially fishes, are negatively affected by exposure to emerging PFASs. Additionally, the effects of
PFAS pollution on aquatic ecosystems were investigated by evaluating a number of characteristics,
including extracellular polymeric substances (EPSs) and chlorophyll content as well as the diversity
of the microorganisms in the biofilms. Therefore, this review will provide crucial information on
the possible adverse effects of PFASs on fish growth, reproduction, gut microbial dysbiosis, and
its potential endocrine disruption. This information aims to help the researchers and academicians
work and come up with possible remedial measures to protect aquatic ecosystems as future works
need to be focus on techno-economic assessment, life cycle assessment, and multi criteria decision
analysis systems that screen PFAS-containing samples. New innovative methods requires further
development to reach detection at the permissible regulatory limits.
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1. Introduction
1.1. What Is PFAS?

According to the Organisation for Economic Co-operation and Development [1],
aliphatic fluorinated carbon chains are found in a class of thousands of anthropogenic
compounds known as poly- and perfluoroalkyl substances (PFASs). Throughout the
entirety of their manufacturing cycles, polyfluoroalkyl and perfluoroalkyl chemicals are
discharged into the aquatic environment (i.e., during their production, along the supply
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chains, product use, and disposal of industrial and consumer products). While indirect
emission sources are defined as emissions from the transformation of their precursors,
direct emission sources of PFASs are characterised as emissions throughout their product
cycle. Because of their durability, ability to bioaccumulate and potential for negative
impacts on living organisms, PFASs have drawn attention from the general public on a
worldwide scale. In silico research provides a computational platform to screen the activity
of a potential molecule against a given target and select the molecules with the highest
potential activity for further in vivo and in vitro studies. The computational analysis
reveals that PFOA, which binds to Vitellogenin1 with a binding energy of −8.4 Kcal/mol,
will possess a negative impact on the early gametogenesis of aquatic organisms. Some of
the environmentally relevant groups of PFASs have been given in Table 1.

Table 1. Environmentally relevant groups of polyfluoroalkyl and perfluoroalkyl substances (PFASs)
in aquatic environments [2].

Compound Groups Acronym Formula Chemical Structure Typical PFASs

Perfluoroalkyl
substances

Perfluoroalkyl
sulfonates

PFASs CnF2n+1SO3
−-
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Table 1. Cont.

Compound Groups Acronym Formula Chemical Structure Typical PFASs

Polyfluoroalkyl
substances

Polyfluoroalkyl
phosphoric acid esters

PAPs (O)P(OH)3–x
(OCH2CH2CnF2n+1)x
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significant commercial success and widespread application [5]. PFASs are also found in 
many common home products, such as cookware and food packaging, because of their hy-
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(Figure 1). For a number of reasons, human exposure to PFASs is seen as ubiquitous. PFASs 
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1.2. Uses of PFAS

Growing pollutants, such as PFASs, are very difficult to naturally breakdown. Since
about a century ago, electrochemical fluorination and other telomerization methods have
been used to create PFASs. This family of compounds is extremely useful for various appli-
cations due to its high chemical resistance, hydrophobicity, lipophobicity, heat resistance,
and extremely low friction coefficient. Unfortunately, once released into the environment,
these same beneficial characteristics turn them into “forever chemicals” [3]. The applica-
tions of PFASs are numerous and varied. Its several formulations have been used for a
variety of purposes, including waterproofing, surfactants, repellent cookware coatings,
and firefighting foams and fireproofing, among others [4]. PFASs’ physical and chemical
characteristics, such as its high degree of thermal and chemical stability due to the strength
of its carbon-fluorine (C-F) bonds and its capacity to lower surface tension, can be attributed
to its significant commercial success and widespread application [5]. PFASs are also found
in many common home products, such as cookware and food packaging, because of their
hydrophobic and oleophobic qualities. The textile sector uses the most PFASs and its
precursors, followed by the paper packaging industry and aftermarket consumer goods.

2. Impact of PFASs on Environment

Traditional bioaccumulation measures have to be re-evaluated since PFASs and neutral
lipophilic chemical compounds have very different bioaccumulation processes in animals.
There is proof that phospholipids and proteins are crucial for the distribution and accu-
mulation of PFAS in tissues [6]. Due to their persistence, propensity for bioaccumulation,
and potential negative effects on living organisms, PFASs have drawn attention from the
general public worldwide. Perfluorobutane sulfonic acid (PFBS) and perfluorobutanoic
acid (PFBA), the two most prevalent short-chain PFASs, have been found in large quantities
in drinking water, sediment, sewage sludge, and even snow and ice in the polar region.
Leaching in landfills or dump sites, spraying of aqueous film forming foam (AFFF), and
wastewater disposal and air emissions at manufacturing facilities are all ways that PFASs
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reach the environment (Figure 1). For a number of reasons, human exposure to PFASs is
seen as ubiquitous. PFASs are known to bioaccumulate, accumulating in human and fish,
in addition to being persistent and widespread. Because PFAS exposure has been linked to
detrimental effects on human health, PFASs can be regarded as one of the most important
groups of emerging contaminants or chemicals of emerging concern (CEC) [7]. Water is
thought to be the primary means of PFASs’ transfer between environmental compartments
and biota because of PFASs’ partial solubility in water, which significantly contributes to
their diffusion. According to [8], wastewater treatment plants (WWTPs) frequently report
high concentrations of perfluoroalkyl acids (PFAAs), which include both perfluoroalkyl
carboxylic acids (PFCAs) and perfluoroalkane sulfonic acids (PFSAs). Although there are a
few exceptions, such as bioconcentration factors (BCFs) and bioaccumulation factors (BAFs)
(litres per kilogramme) of specific PFAAs in plankton, aquatic gill-ventilating invertebrates
and fish generally rise with increasing perfluoroalkyl chain length and hydrophobicity [9].
Food webs of avian and marine mammals have the highest recorded trophic magnification
factors (TMFs) for PFAA [10]. For instance, the TMF for perfluorooctane sulfonic acid
(PFOS) in these rather lengthy food chains with fauna that breathes air (such as marine
birds and other land animals) is around 20. TMFs are often substantially lower in aquatic
piscivorous food webs. For instance, the TMFs of PFOS in the aquatic piscivorous food
webs of Lake Ontario range from 1.9 to 5.9 [11]. This trend is consistent with earlier findings
of low-octanol/water partition coefficients (KOW) and high octanol–air partition coefficient
(KOA), moderately hydrophobic organic compounds, being biomagnified specifically for
food webs [12]. All PFASs have the common feature of having extremely stable perfluoro-
carbon moieties in their molecular structure. Therefore, all PFASs either fully or partially
change into very persistent PFASs in the environment and biota [13,14]. Perfluoroalkanes,
one kind of PFAS, are thought to have been existed for thousands of years, according to
studies. Therefore, even if environmental emissions stop right away, PFAS will persist in
the environment for millennia or longer. Due to PFAS’s high persistence, they accumulate
over time in the environment and in living organisms, which raises the potential for harm.
When plants are cultivated on polluted soil or are irrigated with contaminated water, PFASs
can accumulate in plants, including food crops. Through the food chains, bioaccumulation
takes place, with apex predators (such as whales, bald eagles and humans) having the
greatest amounts [10,15].
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3. Impact of PFASs on Aquatic Ecosystem

Long-chain PFASs and PFCAs have a high propensity to adhere to particles and
have a large potential for bioaccumulation, whereas short-chain PFASs and PFCAs are
usually found in the aqueous phase of the environment [16]. There are concerns about
how the presence of PFASs in the aquatic environment may impact the flora and fauna
in hydro systems (Figure 2). Physiologically based toxicokinetic (PBTK) models with
absorption, distribution, metabolism, and excretion metrics have been created to assess
the toxicokinetic of PFOS and perfluorooctanoic acid (PFOA) in various animal models,
including fish and mammals [17]. These models are particularly useful for assessing the
influence of membrane transporters and illuminating the considerable challenges in PFAS
bioaccumulation equilibrium modelling.
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3.1. Impact on Different Aquatic Organisms

Perfluoroalkyl acids (PFAAs) are a class of perfluorinated substances that have a car-
bon backbone that is completely fluorinated and are charged with functional hydrophilic
groups, such as carboxylate, sulfonate, or phosphonate [19,20]. Surface runoff, product
deterioration, or wastewater discharge are three ways through which PFAAs may enter
the aquatic environment [21]. PFAS exposure pathways to aquatic environment has been
given in Figure 3. Additionally, the bioaccumulation potential of PFASs differs across
different species and individuals as well as depending on their physicochemical charac-
teristics, such as their branched or linear chains, lengths of their chains, and functional
groups. Additionally, it has been demonstrated that the PFAS structure affects the removal
rate. For instance, linear isomers are removed more quickly than branching isomers [22].
Additionally, PFAS buildup and removal are influenced by the species, sex, and stage of
pregnancy [23]. Numerous earlier investigations have shown that aquatic species expe-
rienced oxidative damage after being exposed to PFAAs. In Oreocromis niloticus cultured
hepatocytes, exposure to 0–30 mg/L 127 PFOS and PFOA enhanced superoxide dismutase
(SOD), catalase (CAT), and/or glutathione reductase activity, which resulted in reactive
oxygen species (ROS). Additionally, a drop in glutathione (GSH) concentration and a rise
in lipid peroxidation were observed [24]. Similarly, exposure to PFOS increased ROS gen-
eration in zebrafish (Danio rerio) embryos while also significantly increasing antioxidant
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activity [25]. Following PFOS exposure, adult D. rerio had enhanced ROS generation in
the liver along with reduced CAT and elevated SOD activity [26]. Similar to adult fish,
D. rerio larvae produced ROS after 24 h of exposure to perfluorononanoic acid (PFNA),
and there were noticeable changes in the expression of the Sod1/2 and Gpx1 genes. It
has been determined that a number of variables affect the toxicological effects of PFAAs
on aquatic life. Sex affects the toxicity of PFAAs. In response to PFOA, Gobiocypris rarus
displayed a sexual variation in the degree of protein expression. By being exposed to
PFOS, male D. rerio developed a noticeable lipid buildup in their livers, whereas females
showed a smaller accumulation. These findings suggest that sexual traits have an impact
on PFAA-induced lipid metabolism. Male fish in mature D. rerio accumulated more PFNA
than female fish did, and the transcription of genes associated with the reproductive system
varied depending on sex, with levels of 17b-hsd, cyp19a, and star increasing in the female
gonad while decreasing in the male gonad [27]. Additionally, PFOA exposure in male
Pimephales promelas resulted in a considerable rise in thiobarbituric acid reactive substances
(TBARSs) but not in females. G. rarus was exposed to PFOA, which raised the expression
of methionine sulfoxide reductase B (MSRB) and peroxiredoxin (PRX) in both male and
female fish. Only female Oryzias latipes exposed to PFOA had distinct expression patterns
for osmolytes, such as trimethylamine N-oxide, whereas male fish had significantly higher
levels of dimethylamine and myo-inositol. Life cycle exposure to Oryzias melastigma’s PFBS
lowered the moist eye weight and increased the contents of choline, Gamma-aminobutyric
acid (GABA), norepinephrine, and glutamate in female fish, but similar changes were not
seen in male fish, indicating a sexual variation in ocular toxicity [28]. Consequently, one
of the mechanisms causing variations in PFAA toxicity might be sexual differences. The
biological toxicity of different chemical species of the PFAS family on different organisms
has been given in Table 2.

Toxics 2023, 11, x FOR PEER REVIEW 7 of 20 
 

 

Rare minnows 
(Gobiocypris 

rarus) 

increase, as well as an increase 
in generation time. 

Hypertrophy in liver, eosino-
philic hyaline droplets in the 
hepatocytes cytoplasm, and 

eosinophilic hyaline droplets 
in hepatocytes. 

PFDoA D. rerio embryos/larvae 

Decrease in acetylcholine 
(ACh) content and activity, 

with a decrease in swimming 
speed. 

[35] 

PFBS O. melastigma 

Decreased the eye wet weight, 
and increased the choline, 

GABA, norepinephrine, and 
glutamate contents in female 

fish. 

[36] 

PFAA 
Cells of Salmo salar, O. 

niloticus, and G. rarus. 

Changes such as increased 
fatty acid synthase transcrip-
tion, reduced GSH, increased 

CAT activity, increased 
Casp3/8/9activity induction, 
CYP1A/3A transcription in-

crease, Vtg protein content in-
crease, and nuclear receptor 

activation. 

[24]  

PFNA 

Zebrafish (D. rerio) 
Pericardial oedema, spine 

crooked malformation, devel-
opmental delays. 

[37] 

Zebrafish (D. rerio) 
Enlarged follicles, hypertro-
phy of follicular epithelium, 
hyperplasia of follicle cell. 

[38] 

PFAA mixture 
(PFOA, 

PFOS, PFBS, PFNA) 

Japanese medaka 
(Oryzias latipes) 

Low fecundity, low hatching 
rate, and low larval survival 

rate 
[39] 

 
Figure 3. Poly- and perfluoroalkyl substances (PFASs) exposure pathways to aquatic environment. 
Figure 3. Poly- and perfluoroalkyl substances (PFASs) exposure pathways to aquatic environment.

Table 2. Adverse effects of perfluoroalkyl acids on different organisms [29].

Type of PFAS Organisms (Species) Impact Reference

PFOS

Danio rerio embryos
Caused a delay in hatching; decrease in the hatching

rate, larval survival rate, and body length; and
developmental abnormality (yolk sac oedema).

[30]

Daphnia magna
Number of days to the first brood increased, decreased

first brood quantity, and decreased population’s
intrinsic rate of growth.

[31]

Oryzias melastigma Larval malformation, such as bent spine, cardiac 710
oedema, and abdominal oedema growth. [32]
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Table 2. Cont.

Type of PFAS Organisms (Species) Impact Reference

PFOA

Freshwater microalgae
Chlamydomonas. reinhardtii

Brachionus calyciflorus
Rare minnows

(Gobiocypris
rarus)

Significant inhibition of and
decrease in the reproduction and intrinsic rate of

natural increase, as well as an increase in
generation time.

Hypertrophy in liver, eosinophilic hyaline droplets in
the hepatocytes cytoplasm, and eosinophilic hyaline

droplets in hepatocytes.

[33,34]

PFDoA D. rerio embryos/larvae Decrease in acetylcholine (ACh) content and activity,
with a decrease in swimming speed. [35]

PFBS O. melastigma
Decreased the eye wet weight, and increased the
choline, GABA, norepinephrine, and glutamate

contents in female fish.
[36]

PFAA Cells of Salmo salar, O. niloticus,
and G. rarus.

Changes such as increased fatty acid synthase
transcription, reduced GSH, increased CAT activity,
increased Casp3/8/9activity induction, CYP1A/3A
transcription increase, Vtg protein content increase,

and nuclear receptor activation.

[24]

PFNA

Zebrafish (D. rerio) Pericardial oedema, spine crooked malformation,
developmental delays. [37]

Zebrafish (D. rerio) Enlarged follicles, hypertrophy of follicular epithelium,
hyperplasia of follicle cell. [38]

PFAA mixture (PFOA,
PFOS, PFBS, PFNA)

Japanese medaka
(Oryzias latipes)

Low fecundity, low hatching rate, and low larval
survival rate [39]

3.1.1. Impact on Fish

The expression of genes involved in lipid metabolism, energy generation, RNA process-
ing, protein creation/degradation, and contaminant detoxification changed in largemouth
bass exposed to high PFAS concentrations; these alterations are all in line with biomarker
responses shown in other PFAS investigations. On average, PFOS levels were high enough
in virtually all fish species to warrant recommendations against eating fish, but more
research is required.

3.1.2. Impact on Different Developmental Stages of Fish

Acridine orange fluorescence demonstrated an increase in apoptosis in Danio rerio
larvae exposed to PFOS. According to this research, PFOS exposure causes apoptosis,
which is accompanied by a considerable shift in the expression of oxidative stress indi-
cators [40]. There may be connections between several molecular pathways that cause
PFAA-induced toxicity. There is a significant link between reproductive toxicity, oxidative
stress, and developmental toxicity. Oxidative stress can influence egg hatching and larval
deformity [29]. O. latipes embryos subjected to silver nanoparticles showed abnormalities
along with a substantial shift in oxidative stress indicators, indicating that oxidative stress
might have an impact on developmental processes [41]. PFAAs have an impact on how
lipids, such as cholesterol, which is a precursor to sex hormones, are metabolised [42].
These findings imply that endocrine disturbances may be linked to PFAA-induced changes
in lipid metabolism. Additionally, Gao et al. [43] demonstrated that Oestrogen receptors
(ERs) regulate the genes for acyl-CoA oxidase 1 (Acox1) and pyruvate dehydrogenase
kinase 4 (PDK4), which could inhibit the pyruvate dehydrogenase involved in the conver-
sion of pyruvate to acetyl-CoA. This suggests that PFAA-induced endocrine disruption is
connected to both carbohydrate and lipid metabolism. Neurotoxicity, followed by motor
impairment and predator population decline, can result from thyroid disturbance, which
is followed by developmental disruption, metabolic change, and apoptosis related to ox-
idative stress. Thyroid hormones, such as T3 and T4 in particular, caused fish to become
more masculine, whereas thyroid hormone synthesis inhibitors, such as perchlorate, caused
fish to become more feminine [44]. It seems that the reproductive system and thyroid
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disturbance are related. PFAAs inhibit larval development. The disturbance of metabolism
and lipid metabolism, followed by a drop in adenosine triphosphate (ATP) content and
developmental harm may be responsible for this outcome [29,45]. The main component of
the yolk of vertebrate eggs is vitellogenin. As essential nutrients for developing embryos,
all fishes manufacture vitellogenins. The majority of the components required to create and
support a new life are delivered to the ooplasm of oocytes by vitellogenin when they de-
velop by orders of magnitude during oogenesis. It is likely that PFASs are incorporated into
the maturing oocytes during vitellogenesis and are bound to vitellogenin and other yolk
proteins [46]. In the computer-aided drug designing process, protein–ligand docking is an
important tool that predicts the interaction between the target and the ligand, both in terms
of its structure, to find likely binding modes and energetics to estimate binding affinity.
Here, we performed an in silico investigation analysis (molecular docking), to find out the
potential binding interaction of perfluorooctanoic acid (PFOA) with vitellogenin-1, the egg
precursor protein of D. rerio. The crystalline structure of vitellogenin-1 was extracted from
AlphaFold (https://alphafold.ebi.ac.uk/ accessed on 9 November 2022)), an artificial intel-
ligence (AI) system developed by Deep Mind in collaboration with the European Molecular
Biology Laboratory’s European Bioinformatics Institute (EMBL-EBI) to predict the most
accurate structure of proteins, from their amino acid sequence. The Protein Data Bank (PDB)
structure of Vitellogenin-1 was validated using SAVES server (https://saves.mbi.ucla.edu/
(accessed on 9 November 2022). The three-dimensional structure of perfluorooctanoic
acid was extracted from the Pubchem database (https://pubchem.ncbi.nlm.nih.gov/ (ac-
cessed on 9 November 2022). Molecular docking was performed using SeamDock server
(https://bioserv.rpbs.univ-paris-diderot.fr/services/SeamDock/ accessed on 9 November
2022). SeamDock is an online user-friendly web server that integrates different docking
tools in a common framework that makes it possible to undergo ligand global and/or local
docking and a hierarchical approach combining the two for easy interaction site identi-
fication. For performing molecular docking, we have used the Autodock Vina platform
in the SeamDock. The different parameters to perform docking (spacing, mode number,
exhaustiveness, and energy range) were set and the docking program was launched. The
Autodock docking output shows PFOS binds to vitellogenin-1 with a binding affinity of
−8.4 kcal/mol (root-mean-square deviation (RMSD) value) (Figure 4). The interaction
consists of a series of hydrophobic contacts and hydrogen bonds in the complex. This
computational analysis indicates towards the fact that PFOA may have a negative impact
on the reproductive cycle of the fish population as well.
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3.1.3. Impact on Different Organs of Fish

Since PFASs have a high affinity for serum albumin and fatty-acid-binding proteins,
their distribution in the biota is tissue-dependent [47]. For example, in a variety of freshwa-
ter fish species from Beijing, China, the tissue distribution for PFASs changed from blood to
liver and brain to muscle [2]. PFAA-induced oxidative stress has been recorded in aquatic
species other than fish, despite the fact that there has only been limited research on fish.
In Oreocromis niloticus cultured hepatocytes, exposure to 0–30 mg/L PFOS and PFOA in-
creased superoxide dismutase (SOD), catalase (CAT), and/or glutathione reductase activity,
which resulted in ROS. In addition, Liu et al. [24] found that glutathione content decreased,
and lipid peroxidation increased. The nrf2, nqo1, and ho-1 genes were upregulated in
the liver of the dark-spotted frog Pelophylax nigromaculatus (formerly Rana nigromaculata)
in response to PFOA [48]. Together, these results imply that the Jun N-terminal kinase 1
(JNK1) and p38-dependent MAPK pathway may be the main player in the antioxidant
activation brought on by PFAA treatment. According to [49], the glutathione S-transferase
(GST) activity of Daphnia magna increased as a result of PFOS exposure. In Paramecium
caudatum, exposure to 100 M PFOA considerably increased ROS production, while expo-
sure to 10 M PFOA also increased ROS production [50]. In response to exposure to 2, 6,
and 10 mg/L PFOS, Unio ravoisieri displayed enhanced SOD and CAT activities as well
as elevated malondialdehyde (MDA) [51]. Perfluorododecanoic acid (PFDoA) treatment
caused Chlamydomonas reinhardtii to produce more ROS and MDA. Following exposure
to perfluorooctylphosphonic acid (PFOPA) for 6 or 24 h, an increase in the expression of
ascorbate peroxidase I (apxI) transcription was seen [52]. It was also discovered that PFAA
caused disruptions in lipid metabolism in fish tissues and the circulatory system. The
serum LDL/VLDL levels and ATP content dropped, indicating hepatic lipid buildup in
male fish. The liver total cholesterol and total glycerol content increased with increasing
liver size [45]. D. rerio exposure to PFOS raised the liver’s total triglyceride/total cholesterol
content while lowering serum triglyceride levels [53]. Hepatocyte viability in Oreochromis
niloticus was decreased by PFOA and PFOS [54]. The survival of the D. rerio liver cells
was reduced by PFOA, PFBA, and Perfluorohexanoic acid (PFHxA), and PFBA caused
the development of lipid droplets, suggesting PFAA hepatotoxicity. After exposure to
PFOS, the liver of male Zebrafish displayed lipid droplet buildup [38]. Danio rerio treated
with perfluoro-N-decanoic acid (PFDA) had a greater triglyceride to total cholesterol ratio
(TG/TC) in the liver and a lower ratio in the serum. Danio rerio showed an increase in
hepatocyte vacuolization and lipid droplet number in response to PFOS [55]. Additionally,
when compared to the control, fish exposed to either PFOS or PFOA significantly increased
their hepatosomatic index (HSI) [55]. In D. rerio, PFOS exposure decreased serum TC
and TG levels while elevating liver TG and TC levels with rising HIS as demonstrated by
Cheng et al. [55]. According to some research, the formation of PFAS-relevant cellular and
molecular targets may be connected, at least in part, to the compound’s rising toxicity with
exposure time. As known hepatotoxins, PFASs have been well-documented targets of the
liver’s hepatocytes and the enzymes involved in phase I hepatic detoxification, particularly
cytochrome P450 [56]. Recent studies in zebrafish have shown that the differentiation of
the liver and hepatic enzymes may be responsible for the stage-dependent increase in the
embryotoxicity of both PFOA and perfluoroether carboxylic acids (PFECAs) as well as other
hepatotoxins [1,57,58]. Xu et al., found that Coryphaena hippurus (mahi-mahi) express genes
involved in hepatocyte differentiation and related liver enzymes during a time window
(i.e., 36–48 h post fertilization (hpf)) that corresponds with increased embryotoxicity in
the current study, suggesting that hepatic development may also play a part in this toxic-
ity [59]. It is unclear whether the observed enhanced toxicity is brought on by the chorion
barrier breach, liver growth, potentially other targets, or just the prolonged duration of the
exposure (and cumulative effects).
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3.2. Biofilm as a Bio-Indcator of PFAS Contamination

In aquatic environments, biofilm is one of the most widely dispersed producers [60].
It has been used as a natural sampling tool to track the spatial variability of anthropogenic
pollutants, such as heavy metals (copper, zinc, and cadmium) and hydrophobic organic
pollutants, such as polychlorinated biphenyls [61], pesticides, and herbicides. Copper,
arsenic, and cadmium were the main sources of heavy metal contamination in oysters from
the northern South China Sea, followed by lead and mercury [62]. Copper (Cu) stable iso-
topes in transplanted oysters can therefore act as a new tool for monitoring anthropogenic
metal bioaccumulation in marine environments, as demonstrated by [63]. They show that
Cu isotopes can constrain the continental Cu fraction bioaccumulated in Pacific oysters
(Crassostrea gigas) and infer its natural or anthropogenic origin. Mussels (Mytilus edulis) can
bioaccumulate Lithium (Li) in their soft tissues, which suggests that they could be used as
biomonitoring organisms for Li pollution in coastal water, according to research by [64].
However, little is understood about how biofilm affects PFAS fate in aquatic systems [65,66].
Additionally, it is common practice to evaluate the negative effects of hazardous chemicals
on aquatic ecosystems using the microbial diversity and sensitivity of biofilms [67]. Given
that PFASs are common in aquatic settings, biofilms should be exposed to high concen-
trations of PFASs, yet their interactions have not yet been comprehensively investigated.
Low levels of the fungal community’s alpha diversity in biofilms were similarly corre-
lated with high PFAS levels. A useful biomarker for identifying the presence of PFASs
in aquatic habitats is biofilm. In Taihu Lake, China, where prior research suggested that
PFAS contamination is widespread, surface water, biofilm, phytoplankton, and freshwater
snails (Cipangopaludina chinensis, Gastropoda) were collected [68]. To further comprehend
the significance of biofilm in PFAS transfer in the environment, the trophic transfer of
PFASs from biofilm to snails was assessed. Additionally, the effects of PFAS pollution on
aquatic ecosystems were investigated by evaluating a number of characteristics, including
extracellular polymeric substances (EPSs) and chlorophyll content as well as the diversity
of the microorganisms in the biofilms Zhang et al. [69] claim that biofilms can efficiently
acquire PFASs and can accurately describe the levels, profiles, and geographical trend of
PFASs in a body of water. They first reported the presence of chlorinated polyfluoroalkyl
ether sulfonic acid (Cl-PFESAs, trade name F-53B) in periphytic biofilm. The study found
that the colonised biofilms successfully bioaccumulated PFASs from water, with the total
concentration (PFASs) ranging from 1.96–20.1 ng/g wet weight, and that the bioaccumula-
tion factor grew with the PFASs log Kow values. The PFASs in biofilms showed a greater
association with those in water compared to phytoplankton. The PFAS concentrations
in biofilm are likely to be more representative than in grab samples, making it a suitable
integrative sample.

4. Effect of PFAS on Gut Microbiome of Aquatic Organisms

Little is known about the effects of PFASs on aquatic species, such as fish, particularly
at the molecular level of host gut–microbiome interactions. There are still some works in
the higher levels, such as reptiles (turtles). One of the numerous perfluoroalkyl compounds
(PFASs) utilised to increase product stain, grease, and water resistance is PFOS (perfluorooc-
tane sulfonate). These substances are widely present in both food products and a variety of
industrial products. PFASs are known to bioaccumulate, impair human and environmental
health, and are highly persistent and common in aquatic habitats. Consequently, PFAS
bioaccumulation has been documented in a number of freshwater and marine aquatic or-
ganisms [70,71]. It has been reported by [72] that PFOS increases yolk sack area in zebrafish
larvae. The gut microbiota of freshwater turtles was also affected by PFAS exposure in
terms of cysteine and methionine metabolism, sulphur metabolism, toluene degradation,
and tyrosine metabolism. Both the gut microbiota of the turtle (host) and several pathways
related to carbohydrates, energy, amino acids, nucleotides, co-factors, vitamins, terpenoids,
and polyketides were disturbed [73]. Some of the factors responsible for gut dysbiosis are
given in Figure 5. PFOS (perfluorooctane sulfonate) and PFOA (perfluorooctanoic acid) are
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persistent organic pollutants due to their long carbon chains and high-energy fluorocarbon
bonds, which make them extremely stable [9]. As a result, some commercial alternatives
for short carbon chains or semi-fluorinated analogues have evolved [74]. One of the novel
substitutes for PFASs is sodium-perfluorous nonenoxybenzene sulfonate (OBS). It is widely
employed in the fire protection industry, oil extraction, cleaning steel plates, printing, elec-
troplating, and other industrial fields due to its reduced production costs and substantially
greater cost performance. Environmental contamination issues undoubtedly followed as a
consequence. The maximum concentration of OBS even reached 3.2 × 103 ng/L in a lake
close to the Daqing oil field, where it had been discovered [59]. Bao et al., found that OBS
causes gut microbiota dysbiosis in adult zebrafish and is hardly biodegradable [75].
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5. Impact of PFASs on Aquaculture

Previous research revealed that various fish species displayed varying quantities of
PFASs even from the same fishing location, which may affect the levels of PFASs in the
raw materials used to make fish meals and feeds. In addition to fish species, the fishing
location has an impact on the presence and concentrations of PFASs in raw materials. PFOSs
have often been detected at greater concentrations in fish than PFOA. Fish from regions
with PFASs point to sources that have been reported to have increased levels of PFOA.
If present in high amounts, drugs and pesticides with low atomic fractions of fluorine
might cause water to have a moderate or high organofluorine content. During conventional
sample extraction, other PFAS classes could be left out of the study. For instance, only 1:1
hexane/acetone was effective in removing nonpolar PFASs, such as perfluorobutyl side
chain-fluorinated copolymer surfactant with molecular weight > 1600 g/mol, from soil,
wastewater sludge, and sediment; methanol or acetonitrile yielded substantially lower
recoveries [76]. While WWTPs discharge wastewater that is high in PFASs, which further
contaminates rivers, lakes, and agricultural areas, e-waste contains PFASs that leak out into
the groundwater, soil, and air. Additionally, PFASs absorption in plants, animals, and soil
biota leads to ecotoxicity, and biosolids generated during the treatment process at WWTPs
are frequently employed in agricultural areas as soil supplements [77].
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6. Effect of PFASs on Humans

Although air and air-suspended dust, food packaging, and cookware all contribute
to the human body’s overall PFAS burden, water and food intake are typically regarded
as the two main sources of PFASs in humans [78]. When there are high ambient concen-
trations of PFASs, humans can become exposed by consuming contaminated food and
drink, agricultural goods, or game and fish. At polluted locations, PFAS environmental
concentrations and exposures to humans and wildlife are often greatest. PFAS exposure can
happen in a number of ways, but the severity of the exposure is influenced by the distance
from the exposure source, the concentration of the source, and the frequency of exposure.
Numerous investigations have shown that PFASs are present in samples of human blood
as well as samples of aquatic and terrestrial flora and fauna. Because exposure to PFAS in
low quantities can still have negative impacts on human health, it is crucial to find them as
soon as possible. Some PFAS can induce reproductive and developmental abnormalities
even at low quantities, according to epidemiological research [79]. Understanding PFAS
exposure in humans requires careful assessment of PFASs in consumer items. Some investi-
gations on particle-induced gamma-ray emission spectrometry (PIGE), X-ray photoelectron
spectroscopy (XPS), and instrumental neutron activation analysis (INAA) have examined
the fluorine concentration at the material surface or subsurface, while others take into
account the average concentrations across the sample under study [80]. Understanding the
total fluorine analysis in human tissues is made possible by the unknown organofluorine
content. Numerous studies have demonstrated that behavioural and dietary heterogeneity
accounts for the difference in PFAS exposure between children and adults. Based on the
different composition of PFASs detected in blood, research from the Faroe Islands revealed
that hand-to-mouth contact with automobile petting was a significant exposure source for
children but not for adults. PFAS exposure pathways and their toxicological effects on
human health has been given in Figure 6. In areas where it had previously been hidden,
toxicity is now obvious because of evolving regulatory requirements. The Environmental
Protection Agency (EPA) ultimately released a health alert for PFOA and PFOS in drink-
ing water in 2016 at a concentration of 0.07 ppb (or 70 ppt) [81]. Many toxicologists and
environmentalists have pushed for a 1 ppt safety threshold for PFOA and PFOS in recent
years. Moreover, many states in the United States have proposed exposure levels that are
significantly lower than the EPA’s existing guidelines after testing for dozens of additional
PFAS [82]. The amount of PFASs detected in human plasma and serum varies depending
on the population, ranging from single- or double-digit micrograms per litre in the general
population to hundreds or even thousands of micrograms per litre in occupationally ex-
posed workers and humans living close to contaminated sites [83]. Geographical location,
PFAS type, sex, and age also affect observed concentrations. Due to the widespread usage
of PFASs in several consumer items, exposure to humans and wildlife has occurred as a
result of environmental discharges. PFASs were formerly thought to be biologically inert,
but over time it was learned that they might have hazardous effects on organisms. They
have extremely long elimination half-lives (3–5 years) in humans and animals due to their
unusual binding mechanisms in biological tissues, which are a result of their oleophobic
nature (they bind to proteins instead of adipose tissue), and this gives them plenty of time
to accumulate in concentrations in humans and wildlife and potentially cause negative
side effects [84]. PFASs can enter the umbilical cord blood during pregnancy through
the placenta of the mother, albeit various PFASs have varying degrees of ability to do so.
For example, formula made with contaminated water, breast milk from PFAS-exposed
mothers, and the more common hand-to-mouth actions of young children when crawling
and playing on the floor can all result in toddlers and babies ingesting PFASs [85].
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7. Potential Molecular Mechanism of PFASs

The primary mechanism of hepatotoxicity, according to the study’s authors, is the
disruption of the expression of genes regulating lipid homeostasis. The outcomes obtained
by Rosen et al. [86] may lend weight to that view. The study showed that short-chain
PFASs, such as PFNA and PFHxS, activated the peroxisome proliferator-activated receptors
(PPARs) transcription factor receptor, increasing apolipoprotein I (apo A1) levels and fatty
acid metabolism. Additionally, a decrease in lipoprotein lipase (LPL) and an increase in
the high-density lipoprotein (HDL) fraction result in lower serum triglyceride levels and
disturbances in sterol transport. Additionally, it was shown that, in comparison to PFOA,
PFOS, and PFNA, the short-chain perfluorohexanesulfonic acid (PFHxS) induced an almost
10-fold greater expression of oxidoreductase, one of the regulators of lipid metabolism, and
stearoyl coenzyme A desaturase (Scd) [87]. Additionally, it was demonstrated that PFBS
induced adipogenesis in 3T3-L1 cells via activating the pathway mediated by extracellular
signal-regulated kinases MAPK/ERK (mitogen-activated protein kinases). It appears that
the process of inducing adipokinesis begins with receptors on the surface of cells, from
which the signal is sent to the nucleus.

8. Conclusions and Future Perspectives

In the current review, we have outlined the effects of PFASs on the entire ecosystem,
with a focus on the aquatic environment. We have also discussed how toxicity is understood,
experienced, and imagined; the factors influencing regulatory action and ignorance; and
how PFASs have been the focus of competing forms of knowledge production. Lack of
efficient chemical control shifts the burden of demonstrating harm to exposed individuals,
causing popular epidemiology cycles in which people organize and try to link their health
issues to hazardous exposure [88]. Toxicity is frequently the result of the spatially scattered
and chronologically accumulating “attritional catastrophes”, which describe a sort of harm
that develops gradually over time. The impact of PFASs in humans has been outlined by
many authors. At present, little is known about the environmental exposure, transport,
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and fate of these compounds, particularly PFOA in aquatic organisms. Based on current
understanding of the developmental effects of PFOS and PFOA in aquatic organisms,
several avenues of research are suggested that would further support the risk assessment
of these perfluorinated organic chemicals.

The availability of analytical methods and instrumentation that can rapidly assess
PFAS exposure in the field is limited. Research on techno-economic assessment, life cycle
assessment, and multi criteria decision analysis systems for screening PFAS-containing
samples is one of the priority area, and new innovative methods requires further develop-
ment to reach detection at the regulatory permissible limits. Mission mode international
collaboration to find out the pathways of widespread aquatic organism exposure in trans-
boundary water bodies, which will reduce the exposure to humans via the food chain.
Pharmacokinetic characterization of perfluoroalkyl compounds, especially during early
stages of gametogenesis, reproduction and embryology in aquatic organisms, will greatly
facilitate our understanding of chemical disposition and potential cellular targets. Cellular
and molecular mechanistic findings of developmental toxicity will be instrumental in ex-
trapolating the health risk potential of these compounds for aquatic organisms and humans.
Research on public policies aimed at reducing PFAS exposure that could contribute to
reductions in impact on primary and secondary food chain in aquatic ecosystem.
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Acronym Definition
ACh Acetylcholine
Acox1 Acyl-CoA oxidase 1
AFFF Aqueous film forming foam
ATP Adenosine triphosphate
ATSDR Agency for Toxic Substances and Disease Registry
BAFs Bioaccumulation factors
BCFs Bioconcentration factors
CAT Catalase
CECs Chemicals of emerging concern
EPA Environmental Protection Agency
ER Estrogen receptor
GABA Gamma-aminobutyric acid
GST Glutathione S-transferase
HSI Hepatosomatic index
INAA Instrumental neutron activation analysis
ITRC Interstate Technology and Regulatory Council
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JNK1 Jun N-terminal kinase 1
KOA Octanol-air partition coefficient
KOW Octanol/water partition coefficients
LDL/VLDL Low/Very-low-density lipoprotein
LPL Lipoprotein lipase
MDA Malondialdehyde
MSRB Methionine sulfoxide reductase B
OBS Oxybenzene sulfonate
PBTK Physiologically based toxicokinetic
PDB Protein Data Bank
PDK4 Pyruvate dehydrogenase kinase 4
PFAAs Perfluoroalkyl acids
PFAS Poly- and Perfluoroalkyl substances
PFBA Perfluorobutanoic acid
PFBS Perfluorobutane sulfonic acid
PFCAs Perfluoroalkyl carboxylic acids
PFDA Perfluoro-N-decanoic acid
PFDoA Perfluorododecanoic acid
PFECA Perfluoroether carboxylic acid
PFHXA Perfluorohexanoic acid
PFNA Perfluorononanoic acid
PFOA Perfluorooctanoic acid
PFOPA Perfluorooctylphosphonic acid
PFOS Perfluorooctane sulfonate
PFSAs Perfluoroalkane sulfonic acids

PIGE
Particle-induced gamma-ray emission
spectrometry

PPARs Peroxisome proliferator-activated receptors
PRX Peroxiredoxin
RMSD Root-mean-square deviation
ROS Reactive oxygen species
SOD Superoxide dismutase
TBARSs Thiobarbituric acid reactive substances
TC Total cholesterol
TG Triglycerides
TMF Trophic magnification factors
USEPA United States Environmental Protection Agency
WWTPs Wastewater treatment plants
XPS X-ray photoelectron spectroscopy
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