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Abstract: Milk phospholipids (MPLs) have been used as ingredients for food fortification, such as
bakery products, yogurt, and infant formula, because of their technical and nutritional functionalities.
Starting from either buttermilk or beta serum as the original source, this review assessed four typical
extraction processes and estimated that the life-cycle carbon footprints (CFs) of MPLs were 87.40,
170.59, 159.07, and 101.05 kg CO2/kg MPLs for membrane separation process, supercritical fluid
extraction (SFE) by CO2 and dimethyl ether (DME), SFE by DME, and organic solvent extraction,
respectively. Regardless of the MPL content of the final products, membrane separation remains the
most efficient way to concentrate MPLs, yielding an 11.1–20.0% dry matter purity. Both SFE and solvent
extraction processes are effective at purifying MPLs to relatively higher purity (76.8–88.0% w/w).

Keywords: milk phospholipids; buttermilk; life-cycle assessment; carbon footprint; supercritical
fluid extraction; membrane separation

1. Introduction

Milk phospholipids (MPLs) consist of a subclass of polar lipids, namely glycerophospholipids and
sphingolipids [1]. Glycerophospholipids comprise a glycerol moiety with two fatty acids esterified at
positions sn-1 and sn-2 and a hydroxyl group at sn-3 position, linked to a phosphate group and a polar
moiety [1]. The molecular structure of the latter determines the types of glycerophospholipids,
namely phosphatidylcholine (PC), phosphatidylserine (PS), phosphatidylethanolamine (PE),
phosphatidylinositol (PI), phosphatidyl-glycerol (PG), and phosphatidic acid (PA) [2]. Sphingolipids
consist of a sphingosine backbone (2-amino-4-octadecene-1,3-diol) connected to a fatty acid via an
amide bond and a polar head. Sphingomyelin (SM), a prominent subclass of sphingolipids, has a
phosphocholine residue [1]. In raw bovine milk, the diameters of milk fat globules (MFGs) are around
0.2–15 µm; these MFGs are enveloped by an approximately 15-nm thick tri-layer MFG membrane
(MFGM) [3,4]. The composition of MFGM is 30–75% polar lipids, and 25–70% protein, respectively [5].
MPLs lie within the MFGM constructing its backbone. MPLs represent 0.4–1% of the total milk
lipids [6], which change with season, lactose stage, and feed [7].
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MPLs have exhibited nutraceutical properties due the unique composition of this group of
phospholipids. MPLs contain high proportions of SM [8] and PS [9] (24% and 12%, respectively),
subclasses which are virtually absent in other sources, such as soy (0% and 0.5%, respectively) and egg
yolk lecithin (1.5% and 0%, respectively) [10]. PS is associated with cognitive function and releasing
stress, and is replaced by inactive cholesterol as the brain ages [11,12]. SM has been found to be effective
in inhibiting colon tumors [13]. Also, MPLs have been implicated in mitigating the risks of Alzheimer’s
disease and repairing cognitive ability [14], restoring immunological defenses, reducing the incidence
of cardiovascular diseases [15,16], and reducing cholesterol absorption and total liver lipids [17].
In addition, MPLs may narrow the gap between formula-fed and breastfed infants concerning
neurodevelopment, infectious diseases, and cholesterol metabolism [18,19]. Phospholipid-coated fats,
e.g., human breast MFGs, will be properly digested and absorbed, not only due to the size of the MFGs,
but also due to the ratio of MFGM proteins to phospholipids [20]. Bovine MPL-enriched ingredients
may be used to produce breast milk analogs. For instance, one formula recipe consists of subclasses
according to a weight-relative ratio of SM > PC > PE > PS > PI, with 21.1–29.7% SM and 10.2–13.3% PS
(both based on total MPLs, similar to those of human breast milk (37.5% and 9%, respectively) [21].
Another infant formula comprises 150 mg/L MPLs [22], mimicking that of breast milk (15–20 mg/dL
milk [21] and 0.3–1.0% of the total lipids [23]).

Aside from nutritional value and health benefits, MPLs may provide technical functionalities in
food systems, for example, MPLs have been used in the preparation of liposomes [24] and constructing
vesicles of bioactive compounds [25]; they are also food emulsifiers and surfactants, foaming agents,
texture improvers for bakery goods, and may improve moisture retention for yogurt [26,27].

Many research works and reviews are available on fractionation from buttermilk (BM) and beta
serum (BS) [26], isolating MFGs by washing and centrifugation [5], and the membrane separation
of polar lipids [8]. However, there is no standard large-scale manufacturing process adopted by the
dairy industry. This is due to many reasons. First, the native MFGM is fragile. Shear and turbulent
fluid flow can cause damage to the MFGM [28]. These treatments are commonly involved in handling
raw milk on farms, in transportation, in silos at manufacturing plants, and during cream separation.
Damage to the MFGM may cause associated materials, including MPLs, to deplete from the native
MFGs to the aqueous phase of milk. Therefore, more than half of MPLs in raw milk remains in skim
milk [29,30]. Second, uncertainties and variables are involved in the MPL fractionation processes.
For example, cream washing for removing non-MFGM associated proteins may be performed before
butter churning for increased yield or the concentration of MPLs in the resulting BM, or in the retentate
of BM after tangential filtration. However, the cream washing procedure may cause a significant
change to the MPL composition in BM from unwashed cream [31,32]. Although the mechanism is
not clear, it may relate to the physicality of different washing processes. Zheng’s group revealed that
different washing procedures induce various degrees of damage to MFGM. Therefore, washing may
alter the composition of MPL in the fat phase of the washed cream [4,33]. This review aimed to assess
different dairy streams rich in MPLs, to evaluate their extraction processes, compare their process
intensity and efficiency, and to estimate their life-cycle carbon footprints (CFs) using ISO 14067 and
greenhouse gas (GHG) protocols.

2. Milk Phospholipid Extraction from Dairy Products

2.1. Dairy By-Products Rich in Phospholipids

Commercial MPL products are usually derived from dairy products, such as BM [34], BS [8],
acid cheese whey BM [35,36], whey protein phospholipids concentrate (WPPC) [37], or whey BM [38].
The dairy streams in Table 1 comprise 2.29%–26.02% MPLs on a dry matter (DM) basis, varying with
sources and processes.

BM is the product that remains after the removal of butter by churning cream, which may
have been concentrated and/or dried as butter milk powder [39], as illustrated in Figure 1. Acid
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BM, a by-product of lactic butter, is made by churning cultured cream. Furthermore, whey BM is
produced via the churning of whey cream during cheese making [40]. WPPC is a by-product produced
during the microfiltration (MF) of whey for manufacturing whey protein isolate (WPI). The permeate
phase (milk-fat-discriminated phase) from this process goes forward for WPI manufacturing and the
fat-remaining phase (retentate phase) containing residual whey proteins is further concentrated for
producing WPPC. A typical WPPC is comprises more than 12% fat and 50% protein (DM), and less
than 8% ash and 6% moisture [37].

BM, the serum phase resulting from the churning of cream, comprises milk proteins and residual
fat [34]. In terms of protein, lactose, ash, and DM contents, BS and BM are very similar to those of
cream products (Table 1) [41]. For instance, BM (FDC ID 454974) protein content is 3.33%, which is the
same as that of cream (FDC ID 495516). Though the fat content of BM is only one-tenth of cream, MPLs
of BM are 4–27-fold that of raw milk, as shown in Table 1. The empirical equation MPL = 0.0137 × FC
provides an estimation of the MPL content (g/L) of a dairy product, where FC is the fat content of
cream [42]. For instance, the estimated BM MPL content of anhydrous milk fat (AMF) from 80% cream,
and of butter from 40% cream, is 1.1 and 0.55 g/kg, respectively. Whey BM, a by-product of whey
butter, comprises sixfold the MPL content of raw milk, as seen in Table 1 [38].

BM and BS, the most abundant source of MPLs [43], have been underexplored or even treated
as a waste stream [44]. For instance, a New Zealand-based dairy manufacturer used two-thirds of
their BM for standardization, only one-tenth for BM powder (BMP), and their annual output of MPL
concentrate is 320 metric tons [44]. The annual BM output in Canada was 14.1 metric kilotons (18% of
butter and 0.5% of bulk liquid [45]), compared to 20 kilotons in Belgium, 16 kilotons in Denmark, and
124.5 kilotons in Germany [46]. In 2013, approximately 5.2 million tons of BM was produced worldwide,
similar to that of butter [34]. Worldwide, the annual BMP production was estimated at 410 kilotons
(≈9.5% of butter), which has downstream applications for producing ice cream, ingredients-baked
foods, low-fat Cheddar cheese, reduced-fat cheese, pizza cheese [40], or in the replacement of skim
milk powder for low-fat yogurt [47].
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Table 1. Dairy product composition (g/100 g).

Product Total MPLs DM MPLs Fat MPLs DM Protein DM Fat Total Solid DM Ash Reference

WPPC 1.60 7.92 29.10 65.00 27.00 20.20 7.92 [48]
WPPC 1.78 1.78 11.63 56.64 ± 0.05 24.23 ± 0.02 97.02 2.57 ± 0.02 [49]
WPPC 2.20 2.20 14.57 64.82 ± 0.12 18.71 ± 0.09 96.40 2.32 ± 0.01 [49]
WPPC 2.20 2.20 14.38 65.00 ± 0.06 18.46 ± 0.01 95.96 2.27 ± 0.03 [49]
BMP 1.30 1.30 ± 0.00 19.01 31.40 ± 0.57 6.84 ± 0.17 - - [34]
BM 0.14 ± 0.04 - - 25.01 ± 0.76 12.22 ± 1.56 - 5.60 ± 0.16 [50]
BM 0.13 ± 0.00 1.43 ± 0.00 25.50 3.46 ± 0.05 0.51 ± 0.02 9.12 ± 0.17 - [32]
BM 0.16 ± 0.02 1.78 ± 0.17 15.1 ± 0.5 32.44 ± 0.83 11.78 ± 0.53 9.02 ± 0.23 - [6]
BS 0.97 ± 0.05 8.78 ± 0.41 38.6 ± 2.3 32.41 ± 1.01 22.71 ± 1.04 11.05 ± 0.43 - [6]
BS 0.93 ± 0.07 8.42 ± 0.63 34.57 3.55 ± 0.11 2.69 ± 0.14 11.05 ± 0.40 - [8]
BM 0.12 ± 0.01 1.36 ± 0.07 25.36 32.68 ± 0.93 4.87 ± 0.12 8.63 ± 0.26 - [51]
BS 0.97 ± 0.17 8.8 ± 1.1 40 ± 7 33 ± 3 25 ± 8 11.0 + 0.8 - [43]
BM 0.11 ± 0.01 1.2 ± 0.1 14 ± 5 33 ± 2 10 ± 5 8.7 ± 0.8 - [43]

Whey BM 0.16 ± 0.01 2.01 ± 0.16 12.04 ± 0.8 24.89 ± 2.02 16.27 ± 2.06 8.05 ± 0.32 7.01 ± 0.47 [38]
BM454974 a - - - 3.33 b 3.33 b - 5 c [41]
BM336087 a - - - 3.21 b 3.31 b 12.09 0.69/4.88 c [41]
BM171274 a - - - 34.3 5.78 97.03−BMP 7.95 [41]
CM495516 a - - - 3.33 36.67 - 3.33 c [41]
CM336519 a - - - 2.84 36.08 42.19 2.74 c [41]

MPLs, milk phospholipids; BS, beta serum; BM, buttermilk; BMP, BM powder; WPPC, whey protein phospholipid concentration; CM, cream; DM, dry matter; a United States Department
of Agriculture (USDA) FoodData Central ID [41]; b wet basis; c lactose; Ref., reference.
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Figure 1. Buttermilk (BM) and beta serum (BS) production process [26]. AMF, anhydrous milk fat. % indicates the fat content. 
Figure 1. Buttermilk (BM) and beta serum (BS) production process [26]. AMF, anhydrous milk fat. % indicates the fat content.
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2.2. Commercialized Milk Phospholipid Products and Concentrate

Phosphoric 500/600/700 and Gangolac 600 (products manufactured by Fonterra) comprise 34%,
75%, 62%, and 15% MPLs, respectively, representing one source of highly-purified MPLs [52,53].
Arla Foods Amba have developed phospholipid-rich, concentrated dairy milk commodities for infant
milk formulas and skin care. It has been claimed that Lacprodan® MFGM 10 supports physiological
development of the infant gut and provides infants with similar health benefits to breast milk because
of their similarities in fatty acid profile [54]. Arla dairy products PL 20/75 consist of 20% and 75%
MPLs, respectively [55].

As illustrated in the patents in Table 2, both filtration and solvent extraction are validated processes
for manufacturing MPLs. Acetone and supercritical CO2 are effective solvents for de-fatting. Tatua [56]
and Synlait [57] have concentrated MPLs to 5–12.8% (w/w, DM basis). Lecico has used membrane
separation to produce Lipamine M20 (20% purity) [58].

Table 2. Proprietary/patented manufacturing technologies of milk phospholipids (kg/100 kg products).

Applicant Input Technology Used MPL Content Reference

Fonterra BSP SFE CO2 defat, hi-pressure DME extract 65.7–75.5 [59]
Meggle BSP SFE CO2 defat, hi-pressure ethanol extract ≈98.5 [60]

Owen John BSP SFE CO2 defat, ethanol co-solvent extract PI/PS lost [61]
Arla BSP MF, ethanol extraction 16–19 [9]

Merchant & Gould Cream UF, DF 27.7–38.8 [62]
Marc Boone BM UF 5–20 kDa ≈2.84 [63]

Land O’Lakes BM, BS UF, defat using SFE CO2 >30 [64]
Morinaga Whey BM MF 0.2 µm, defat using SFE CO2 ≈22 [65]

Snow Brand - Extract using acidic ethanol, defat - [66]
Enzymotec - Extract using ethanol & hexane, acetone defat ≈24 [21]

Cargill - Extract using alcohol (C1–C3), acetone defat - [67]
Svenska BMP Extract using ethanol & n-heptane, acetone defat ≈70 SM [68]

MPLs, milk phospholipids; BM, buttermilk; BMP, BM powder; BS, beta serum; BSP, BS powder; MF/UF,
micro/ultra-filtration; DME, dimethyl ether; PI, phosphatidylinositol; PS, phosphatidylserine; SM; sphingomyelin;
SFE, supercritical fluid extraction.

2.3. Laboratory Extraction of Milk Phospholipids

Intact MFGM makes up 2–6% of the total mass of MFG [26]. However, MFGM represents 60%–70%
of the total milk phospholipids [69]. Raw bovine milk comprises 0.2–0.4 g MPLs/kg, and raw milk is
generally a laboratory source of MPLs [5,70]. Intact MFGs can be isolated with low-speed centrifugation.
The cream layer from raw milk skimming can be washed with phosphate buffered saline (PBS; pH 6.8,
0.1 M, 1:10, v/v) and centrifuged at 390 g for 10 min at 10 ◦C. The final cream layer after three washes is
the large MFG fraction [71]. Different from isolating intact MFGM, Sanches-Juanes et al. [72] ruptured
MFGM and recrystallized milk lipids, and starting from raw milk, they washed cream with a 0.15 M
NaCl solution and precipitated casein using centrifugation at 5000× g.

Cream washing is a step used to remove casein and other non-MFGM materials from cream [44].
After centrifugation, casein will precipitate, with lipid stratification at the top layer [73]. Also, calcium,
naturally present in casein micelles, can form a complex between MFGM and the casein micelles
through its binding to the phospho-casein and phospholipids of MFGM, leaving impurities with
MPLs [74]. In addition, washing causes a severe loss of phospholipids, almost 60% per wash [32].
Hence, washing facilities for separating MPLs are costly and energy-intensive [44], thereby they are
mainly only used for laboratory purposes [5,73,75].

In addition to washing and centrifugation, the microfiltration of raw milk has been applied
to produce MFGM material. It has been found that a 1.4-µm ceramic membrane was superior to
0.8 µm, yielding a high-purity MFGM material, which was composed of 7% phospholipids and 30%
protein [76].

For analysis purposes, MPL samples are usually prepared using solvent extraction. The Folch [77]
and Bligh [78] methods use chloroform and methanol to dissolve lipids. Other lipophilic extraction
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formulas include the Mojonnier solvents [79], dichloromethane [80], and the ammoniacal ethanolic
solution of lipids with dimethyl ether and light petroleum in the Röse–Gottlieb extraction [81,82].
The total lipid content in samples can be determined with a gravimetric assay, Gerber-van Gulik
butyrometer, infrared spectroscopy according to an International Dairy Federation (IDF) method [81],
or gas chromatography equipped with a flame ionization detector [83].

To determine the MPLs and their subclasses, solid-phase extraction can fractionate polar lipids from
non-polar lipids. Silica-gel-bonded cartridges or silica gel plates can be used for such a purpose [84].
The obtained MPLs can be solvent dried using a vacuum and stored at −20 ◦C before using [85].
In addition, chloroform and methanol are also valid elution solvents [86]. Total MPLs can be measured
using the IDF molybdate assay [87], Fourier transform infrared spectroscopy [88], or a fluorescence
assay on cleaved choline group [89]. Both nuclear magnetic resonance of 31P and chromatography can
quantify MPLs and their subclasses [90,91]. High-performance liquid chromatography coupling with
detectors as a charged aerosol detector, evaporative light-scattering detector, and mass spectroscopy is
more acceptable than thin layer chromatography [92].

3. Processes for Industrial Manufacturing of Milk Phospholipids

3.1. Solvent Extraction

Many kinds of polar solvents have been used to extract MPLs, such as ethanol and alkanes [21,66].
To separate casein from MPLs, proteins can also be thermally denatured or in an acid solution (pH
4.6) [48,81], the aggregated particles are subsequently filtrated. Regarding fractionation of MPL from
WPPC, ethanol (70% v/v) at 60–80 ◦C denatures proteins; after filtration the MPL concentration is
≈45.8% in the filtrate in Figure 2a [48]. This notable method uses no toxic solvent. However, the
incompleteness of the phospholipid recovery may be a concern [48].
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Figure 2. Process flow diagram of solvent extraction unit: (a) adapted from Price et al. [48], (b) Ota
et al. [93], and (c) Shulman et al. [21]. BMC, buttermilk concentrate; MPL, milk phospholipid; AI,
acetone insoluble; WPPC, whey protein phospholipid concentrate (liquid, reconstituted from powder).

Compared to 58.1% recovery by ethanol, the tertiary amine CyNMe2 (N,N-dimethylcycloexylamine)
yielded a 99.96% recovery rate of MPLs. At various solvent–sample weight ratios, the lipid extraction
was conducted at ambient temperature. The dissolved MPLs in the amine were released by bubbling
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CO2 at atmospheric pressure, which converts CyNMe2 into the carbonate salt in Figure 2b. By injecting
nitrogen and removing CO2, the carbonate salt regenerated into the amine form for reuse (Figure 2b).
Though the recovery rate for BM was as high as 99.96± 1.2%, the extraction rates for BS and concentrated
BM were only 7.57 ± 0.59% and 77.27 ± 4.51%, respectively. Aside from the input sensitivity, the amine
may interact with dairy components and cause toxic consequences [93], and the chemical facilities
required may be incompatible in a dairy factory setting.

MPLs can be dissolved in ethanol and alkanes [21,67,68], and may not dissolve in acetone, ethyl
acetate, and 2-pentanone [21,67,68]. Lipid BMP (100 g) dissolved in ethanolic hexane (1:4 v/v, 800 mL)
under constant agitation at 45 ◦C for 2 h will produce an extract. The permeate of vacuum filtration
(repeated twice) can then be vacuum-dried at 1 kPa (Figure 2c). The residue (≈20 g) is then defatted
twice with 120 mL acetone, and the resulting acetone is insoluble (AI, ≈7 g), composed of mainly polar
lipids, and in the final step vacuum, is dried again at 1 kPa [21]. However, acetone poses a degree of
toxicity, as acetone residue in defatted MPLs may reach 5–10 ppm. Further, acetone can form a mesityl
oxide via a condensation reaction, causing an off flavor [94]. Hence, toxic residues in acetone-insoluble
fractions need analysis and monitoring.

3.2. Supercritical Fluid Extraction

Supercritical CO2 with ethanol as a co-solvent can be used to extract MPLs effectively, yielding
purities of 26.26% and 16.88% from WPPC and BMP extractions, respectively (Figure 3a). The SFE
operation can be conducted at 50–60 ◦C [95] and 350–550 bar [49]. The SFE co-solvent (CO2 and
20% ethanol) allowed for complete extraction of PE, PC, and SM. However, neither PS (i.e., the vital
compounds for cognitive function) nor PI were extracted [61,96]. Therefore, the co-solvent method may
be an invalid industrial process due to the incompleteness of PS/PI recovery. In addition to co-solvents,
dimethyl ether near the critical point (DME, 20%–30% solubility, 333 K, 40 bar) and supercritical CO2

are able to dissolve polar and neutral lipids, respectively [59].
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Figure 3. Process flow diagram of a supercritical fluid extraction (SFE) unit: (a) adapted from Li [49]
and (b) Kala et al. [97]; WPPC, whey protein phospholipid concentrate; BS, beta serum; BM, buttermilk;
BMP, buttermilk powder; DME, dimethyl ether.

Supercritical fluid DME has been used to extract polar lipids, resulting in a yield of 69.1–77.8%.
The SFE process shown in Figure 3b can accept both liquid and powder inputs [59,97]. This unit can
work with CO2 and DME in two-stages, extracting neutral and polar lipids, separately. In addition
to a two-step operation, this unit can also operate a single extraction with DME. Near-critical DME
dissolves both polar and non-polar lipids in the SFE chamber. Through a two-stage de-pressurization,
lipids are separated from the protein fraction, whereas vaporized DME is compressed and condensed
for reuse (Figure 3b). This method features properties such as non-toxicity, a compact skid, feeding
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flexibility, and a high content of MPLs (65.7–75.5 g MPLs per 100 g DM). However, the MPL recovery
rate (69.1–77.8%) needs further improvement.

3.3. Enrichment of Milk Phospholipids via Filtration

BM or BS is composed of milk fat, casein and whey protein, lactose, and ash. The particle sizes
range from 0.4–4 µm for MFGM fragments or phospholipid micelles [98], 0.02–0.3 µm for casein,
0.03–0.06 µm for whey protein, and 0.002 µm for lactose and ash, respectively [99]. The size of MFG is
around 0.2–15 µm [3]. As illustrated in Figure 4, the MF unit removes lactose and whey protein, and
UF separates the smaller casein proteins from MPLs. Due to the size overlap of casein micelles and
MPL particles, their separation is usually incomplete. Casein micelles disintegrate into peptides and
amino acids in the proteolysis unit [34,42], and hydrolysates enter into the permeate stream during the
subsequent UF operation [42,96]. Alcalase (E.E. 3.4.21.62), a serine-type endoprotease with esterase
activity, catalyzes amino esters at pH 7.5 and 35–60 ◦C [96], while tryptic and peptic hydrolysis may be
carried out at 42 ◦C for 2–16 h, at a pH of 7.7 and 2.0, respectively [42].
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Figure 4. Filtration to enrich milk phospholipids (MPLs): (a) microfiltration (MF) [98] and (b) ultrafiltration
(UF) [96]. BM, buttermilk; BMC, BM concentrate; TS, total solid; R, retentate.

Membrane filtration is a typical process for enriching BM (Figure 4a). Proteolytic treatment plus
UF, as illustrated in Figure 4b, successfully differentiates MFGM from protein particles and yields
product purities of 14 ± 3.4% (DM) [42] and 11.05 ± 0.02% (DM) [96]. The combined process of
proteolysis and membrane separation can yield a 100% recovery rate of MPLs from BM, as illustrated
in Table 3. Considering membrane units exist in most dairy factories [99,100], the process remains the
most effective method for concentrating MPLs, requiring less investment than the other processes [101].
As illustrated in Table 3, this method [96] recovered more MPLs than the other processes.
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Table 3. Process to purify MPLs and achieved purity (g MPLs/100 g dry product).

Reference Input Technology Used Purity Recovery (%)

[97] BSP SFE: CO2, 300 bar, 40 ◦C, DME 12.9→ 75.7 (5.9-fold) 69.1
[97] BSP SFE: DME, 40 bar, 50 ◦C 12.9→ 66.8 (5.2-fold) 62.9
[49] WPPC SFE: 350 bar, CO2, 20% ethanol, 60 ◦C 2.2→ 26.3 (11.9-fold) PS/PI lost
[49] BMP SFE: 550 bar, CO2, 15% ethanol, 60 ◦C 2.0→ 16.9 (8.6-fold) PS/PI lost
[50] BMC SFE: CO2 defat 2.2→7.8 (3.5-fold) 100
[50] BMC SFE: CO2 defat 2.2→ 9.2 (4.2-fold) 100
[98] BMC SFE: CO2 defat 9.6→ 19.7 (2.1-fold) 100
[38] BMC SFE: CO2 defat 7.2→ 12.0 (1.7-fold) 100
[93] BM Solvent: BM (6:1 v/v) extraction - 87.5
[93] BM Solvent: BM (12:1 v/v) extraction - 99.9
[93] BS Solvent: BS (12:1 v/v) extraction - 7.6
[42] Whey BM Proteolysis, UF/DF, 300 kDa, 40 ◦C 0.3→ 8.6 (28.7-fold) 95–99
[42] Whey BM Proteolysis, UF/DF, 300 kDa, 40 ◦C 0.4→ 11.4 (27.1-fold) 95–99
[42] Whey BM Proteolysis, UF/DF, 300 kDa, 40 ◦C 0.5→ 14.0 (26.4-fold) 95–99
[96] BMP Proteolysis, UF/DF, 50 kDa, 50 ◦C 1.3→ 11.1 (8.5-fold) 100
[34] BMP Proteolysis, UF/DF, 50 kDa, 50 ◦C 0.8→ 6.2 (7.8-fold) 100

[102] BM MF, 0.2 µm 1.5 67
[98] BM MF, 0.8 µm 9.6 -
[32] BM MF/DF, 0.5 µm, 50 ◦C 1.4→ 2.5 (1.8-fold) 88.8
[32] BM MF/DF, 0.5 µm, 50 ◦C 1.4→ 4.1 (2.9-fold) 89.7
[50] BMP MF/DF, 0.45 µm, 9 ◦C 1.2→ 2.2 (1.8-fold) 60.87
[50] BMP MF/DF, 0.45 µm, 9 ◦C 1.5→ 2.2 (1.5-fold) 87.34
[50] BMP MF/DF, 0.45 µm, 9 ◦C 0.5→ 0.9 (1.7-fold) 90.12
[50] BMP MF/DF, 0.45 µm, 9 ◦C 0.3→ 0.7 (2.3-fold) 80.24
[35] CWBM UF, 0.15 µm cellulose acetate 1.8→ 2.3 (1.3-fold) 41.9
[35] CWBM UF, 0.15 µm cellulose acetate, TA 1.8→ 4.7 (2.7-fold) 98.4
[38] CWBM UF/DF, 10 kDa 2.0→ 7.2 (3.6-fold) -
[36] CWBM TA, wash at pH 7.25, UF/DF, 55 ◦C 2.0→ 10.7 (5.4-fold) >90

BM, buttermilk; BS, beta serum; BMP, BM powder; BSP, BS powder; CWBM, cheese whey BM; WPPC, whey
protein phospholipid concentrate; BMC, BM concentrate; DME, dimethyl ether; SFE, supercritical fluid extraction;
MF/UF/DF, micro/ultra/dia-filtration; TA, thermal aggregation.

3.4. Available Processes for Extracting Milk Phospholipids

In brief, there are three options for the large-scale manufacturing of MPLs, including
solvent extraction [21,68], SFE [59,97], and proteolysis plus membrane concentration [34,42,82,96].
The membrane concentration of MPLs have yielded a 20% (w/w, DM basis) purity, as achieved by
Lecico [58] and Arla [10]. Tatua [56] and Westland and Synlait [44] have extracted MPLs from BS powder
(2.28%, w/w, DM basis), achieving approximately 12.8% (w/w, DM basis) purity using membrane
filtration. The proteolysis and UF unit recovers MPLs completely [34,82,96] and cost-effectively [44].
This process is more efficient than SFE and solvent extraction, whereas SFE and solvent extractions
are effective steps for manufacturing high purity MPLs. Therefore, the three processes have features
of a high recovery rate, facility availability, and food compatibility, representing current industrial
practices (in Table 3).

4. Carbon Footprint

4.1. Life-Cycle Accessment Method of Carbon Footprint

The ISO 14,040 life-cycle assessment (LCA) is an internationally accepted methodology used
to calculate a product’s environmental footprint [103]. Life-cycle carbon footprints (CFs) of dairy
products cover the direct emission from the dairy factory (scope 1); the energy carrier footprint for
factory operations (natural gas, steam, power, nitrogen, and compressed air in scope 2); and the raw
material, packaging, and logistics in scope 3. In addition, the life-cycle CF comprises the emissions
from the dairy farm (upstream) and distribution center (downstream) [104]. The boundaries are set as
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shown in Figure 5a. The CFs of MPL products were reported as equivalent CO2 emission for one kg of
MPLs, according to the ISO 14,067 reporting standards [105].
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Figure 5. (a) Boundary definition of the life-cycle carbon footprints (CFs) of dairy products and
exemplary emissions from scope 1 (direction emission), scope 2 (energy carriers), and scope 3
(raw material procured, packaging material, and transportation). (b) Cascade of CFs of BMP,
BMC, and MPLs using the following processes: “CO2-DEM” (supercritical CO2 and DME), “DME”
(supercritical DME), and “Solvent” (hexane and ethanol extraction and acetone de-fatting, kg equivalent
CO2/products). Scopes of BM CFs: adapted from References [45,106–109]. MPLs, milk phospholipids;
BM, buttermilk; BMC, BM concentrate; DME, dimethyl ether; SFE, supercritical fluid extraction. * Ultra
High Temperature processing.

The CF of BM (baseline CF, 1.10 kg CO2/kg BM powder) was cited directly from data derived from
the Unified Livestock Industry and Crop Emissions Estimation System (ULICEES) model in Canada [45].
The data abides by the Intergovernmental Panel on Climate Change (IPCC) methodology [106]; it covers
emissions like methane [45], nitrous oxide [107], and carbon dioxide using the F4E2 model [108]; and
uses an allocation matrix to partition six inventory flows (i.e., fuel, power, raw milk transportation,
alkaline/acid, water, and waste water) into 11 major dairy products [109].

In this study, BM was assumed as the starting material for producing MPLs. Therefore, the CF
for producing BM was set as the baseline. The CF of MPLs in Figure 5b and Table 4 is a sum of the
CF of BM (as the baseline) and the CF for extracting MPLs from BM at dairy factories. The starting
amount of BM was assumed to be 100 kg (1.3%, w/w, DM basis). Since MPLs are considered as the
target products, CF of protein in the MPL fractions was not included in the estimations.

The CF of BM concentrate (BMC) via membrane separation (MS) was calculated using the equation:
CFBMC = CFBM + CFMS, where CFBMC, CFBM, and CFMS were the CF of BMC, BM, and MS, respectively.
The CF of MPL products using SFE or solvent extraction was calculated using the equation CFMPLs =

CFBMC + CFSFE or CFMPLs = CFBMC + CFSol where CFMPLs, CFBMC, CFSFE, and CFSol were the CF for
the MPL product, BMC, SFE, and solvent extraction process, respectively, as illustrated in Figure 5b.
The CF for BMP (1.5% purity) was 1.10 kg CO2/kg MPL, and the CF of BMC (11.0% purity) was
87.40 kg CO2/kg MPL, as calculated in Table 5. Starting from BMC, the CFs of MPL products were
170.59, 159.07, and 101.05 kg CO2/kg MPL for processes of CO2-DME supercritical fluid extraction,
DME SFE, and organic solvent extraction, respectively.
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Table 4. Normalized carbon footprints of milk phospholipids (kg CO2/kg MPLs).

Process Membrane SFE
(CO2/DME) SFE (DME) Solvent Extract Unit

Reference [96] [59,97] [59,97] [21] -
Input BMP BMC BMC BMC -

Input amount 100.00 100.00 100.00 100.00 kg
Input purity 1.3 5.7 6.8 12.3 g/100 g DM

Product BMC MPLs MPLs MPLs -
Product amount 11.76 5.13 6.56 13.98 kg
Product purity 11.05 76.80 66.80 88.00 g/100 g DM

MPL yield 100.00 69.10 67.40 100.00 %
Power 17.48 512.85 655.68 - kWh

Material used Alcalase 0.03 CO2 1000.00
DME 200.00 DME 200.00 C6/ethanol 552.00

Acetone 189.60
kg
kg

Thermal energy 13.10 - - - MJ
Power CF factor 0.1567 0.1567 0.1567 0.1567 kg CO2/kWh

Material CF factor 5.00 CO2 0.05
DME 0.16

CO2 0.05
DME 0.16

C6/ethanol 0.16
Acetone 0.42

kg CO2/kg
kg CO2/kg

Thermal CF factor 0.06 - - - kg CO2/MJ
CF of power 2.74 80.36 102.74 - kg CO2

CF of material 0.16 82.00 32.00 167.95 kg CO2
Thermal CF 0.72 - - - kg CO2
Utility CF 3.62 162.36 134.74 167.95 kg CO2

BM/BMC baseline 110.00 498.17 594.31 1074.99 kg CO2
Product CF 9.66 128.80 111.19 88.93 kg CO2/kg

Normalized CF 87.40 170.59 159.07 101.05 kg CO2/kg
MPLs

BM, buttermilk; BMC, BM, concentrate; MPLs, milk phospholipids; C6, hexane; DME, dimethyl ether; SFE,
supercritical fluid extraction; UF/DF, ultra/dia-filtration; CF, carbon footprint. Membrane filtration power
consumption: 1.486 kWh/kg products [110]; Canada power CF factor: 0.1567 kg CO2/kWh [111]; CF of reusable
solvents (DME, hexane and ethanol): 0.16 kg CO2/kg solvent; reused acetone CF: 0.42 kg CO2/kg solvent [112]; DME
CF 1.01 kg/kg; 84% reuse [113]; baseline of BM: 1.1 kg CO2/kg BMP [45]; SFE CO2 reuse 95% [114]; SFE CO2/DME
power cost estimation 100 kWh/kg extract [115].

4.2. Carbon Footprint Estimation

In Table 4, four MPL enrichment processes were used as references for estimating and comparing
the total CFs. The membrane separation process was used to concentrate MPL from the original
BM. The resulting product was a BM concentrate (BMC), which may be further processed to yield
MPL products by either using an SFE technique or a solvent extraction method. The CF of “utility”
consumed for the three individual MPL enrichment methods was obtained by multiplying the utility
amount and CF conversion factor, which represents the amount of carbon emission for a unit weight
of utility. Normalized CF: CFNormalized = CF/CMPLs, where CMPLs was the MPL purity (g MPLs per
100 g product).

The normalized CF of the product uisng membrane separation was as high as 87.4 kg CO2/kg
BMC since the BMC comprised of only 11.05% MPLs. The CFs for products using SFE and solvent
extraction were much higher than their baseline (CFBMC) because of the intensive process during
purification. As shown in Table 4, the CFs of fractions using SFE were 170.59 and 159.07 kg CO2/kg
MPLs for CO2/DME co-extraction and DME extraction, respectively. CO2/DME co-SFE exhibited a
higher environmental impact compared to supercritical DME extraction due to direct emissions from
co-SFE. Solvent extraction demonstrated a lower environmental impact and a higher MPL recovery
rate than SFE. However, the products obtained using solvent extraction were less food-compatible
than SFE unit-extracted products.

MPLs from proteolysis and filtration processes carry 87.40 kg equivalent CO2/kg product, much
higher than all the milk fat products (Table 5). With less CF than SFE and solvent extraction, membrane
separation is the most efficient process in terms of process intensity, energy consumption, and
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environmental impact. In addition, this process is compatible with most dairy factories. Membrane
separation is a necessary step for concentrating BM into BMC. BMC can then be purified using SFE
(DME). The relevant processes with a significant MPL CF include membrane filtration, evaporation and
spray drying, SFE, and solvent recovery, the improvement of which offer opportunities to reduce the
CF of the final products. For example, 0.1-µm polymeric spiral-wound MF membranes have been used
to separate casein from milk, exhibiting a higher energy efficiency at 0.024 (MF) and 0.015 (DF) kWh/kg
permeate than that of graded permeability membrane (0.143 and 0.077 kWh/kg permeate for MF
and DF, respectively [110]. Furthermore, permeate flux, volume concentration ratio, transmembrane
pressure, and temperature all had an impact on the energy efficiency of membrane UF, ranging from
0.26–0.33 kWh/kg retentate [116]. Another approach toward reducing the environmental impact is
to improve the purity of MPLs during filtration by differentiating the particle size of casein micelles
(i.e., hydrolysis) from the fragmented MFGM and subsequent application of membrane filtration.

Table 5. Comparison of the carbon footprint of milk phospholipids in commercial dairy products
(kg CO2/kg product).

Dairy Products CF Scope 1 Scope 2 Scope 3 Country Reference

Raw milk 1.10 - - - Canada [45]
Bulk liquid 1.00 0.870 0.065 0.065 Canada [45]

Yogurt 1.50 1.083 0.252 0.165 Canada [45]
Whole milk 1.12 0.843 0.173 0.104 China [117]

Powder milk 10.10 - - - Canada [45]
Butter 7.30 - - - Canada [45]

BM 1.10 - - - Canada [45]
Cheese 12.40 - - - Italy [104]
Cheese 5.30 - - - Canada [45]
Cheese 8.80 - - - Sweden [118]

BM→ BMC: UF/DF 87.40 - - - - [96]
BM→ BMC→MPLs: SFE CO2/DME 170.59 - - - - [97]

BM→ BMC→MPLs: SFE DME 159.07 - - - - [97]
BM→ BMC→MPLs: Solvent extract 101.05 - - - - [45]

MPLs, milk phospholipids; BM, buttermilk; BMC, BM concentrate; DME, dimethyl ether; SFE, supercritical fluid
extraction; UF/DF, ultra/dia-filtration; CFs, carbon footprints.

5. Conclusions

This paper identified three dairy streams for milk phospholipid (MPL) manufacturing at an
industrial scale: buttermilk, beta serum, and whey protein phospholipid concentrate. The life-cycle CFs
of the MPLs were 87.40, 170.59, 159.07, and 101.05 kg CO2/kg MPLs for the membrane separation process,
CO2/DME supercritical fluid extraction, SFE by DME, and organic solvent extraction, respectively.
The extracted products comprised 11.1, 76.8, 69.9, and 88.0% MPLs, with recovery rate of 100, 69.1,
67.4, and 100%, respectively. In conclusion, to improve the efficiency of an MPL concentration process,
casein in BM needs to be proteolyzed before running UF/DF processes. By doing so, it is possible to
achieve full recovery of MPLs from BM; moreover, this method may result in a relatively low CF. SFE
using dimethyl ether is the most effective method for the production of high-purity (≈66.8%) MPL
products, albeit at the cost of a high CF. This study provided insights into the best available industrial
practices for extracting MPLs and estimating their life-cycle CFs.
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