Next Article in Journal
Encapsulation of Citrus By-Product Extracts by Spray-Drying and Freeze-Drying Using Combinations of Maltodextrin with Soybean Protein and ι-Carrageenan
Previous Article in Journal
The Proportion of Fermented Milk in Dehydrated Fermented Milk–Parboiled Wheat Composites Significantly Affects Their Composition, Pasting Behaviour, and Flow Properties on Reconstitution
Article Menu
Issue 7 (July) cover image

Export Article

Open AccessCommunication
Foods 2018, 7(7), 114; https://doi.org/10.3390/foods7070114

Evaluation of Commercial Prototype Bacteriophage Intervention Designed for Reducing O157 and Non-O157 Shiga-Toxigenic Escherichia coli (STEC) on Beef Cattle Hide

Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, USA
*
Author to whom correspondence should be addressed.
Received: 5 June 2018 / Revised: 4 July 2018 / Accepted: 13 July 2018 / Published: 16 July 2018
(This article belongs to the Special Issue Microbiology Research in Meat and Meat Production)
View Full-Text   |   Download PDF [1183 KB, uploaded 20 July 2018]   |  

Abstract

Microbiological safety of beef products can be protected by application of antimicrobial interventions throughout the beef chain. This study evaluated a commercial prototype antimicrobial intervention comprised of lytic bacteriophages formulated to reduce O157 and non-O157 Shiga-toxigenic Escherichia coli (STEC) on beef cattle hide pieces, simulating commercial pre-harvest hide decontamination. STEC reduction in vitro by individual and cocktailed phages was determined by efficiency of plating (EOP). Following STEC inoculation onto hide pieces, the phage intervention was applied and hide pieces were analyzed to quantify reductions in STEC counts. Phage intervention treatment resulted in 0.4 to 0.7 log10 CFU/cm2 (p < 0.01) E. coli O157, O121, and O103 reduction. Conversely, E. coli O111 and O45 did not show any significant reduction after application of bacteriophage intervention (p > 0.05). Multiplicity of infection (MOI) evaluation indicated E. coli O157 and O121 isolates required the fewest numbers of phages per host cell to produce host lysis. STEC-attacking phages may be applied to assist in preventing STEC transmission to beef products. View Full-Text
Keywords: Shiga-toxigenic E. coli; bacteriophages; beef safety; biocontrol; cattle hides; pre-harvest Shiga-toxigenic E. coli; bacteriophages; beef safety; biocontrol; cattle hides; pre-harvest
Figures

Figure 1

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Tolen, T.N.; Xie, Y.; Hairgrove, T.B.; Gill, J.J.; Taylor, T.M. Evaluation of Commercial Prototype Bacteriophage Intervention Designed for Reducing O157 and Non-O157 Shiga-Toxigenic Escherichia coli (STEC) on Beef Cattle Hide. Foods 2018, 7, 114.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Foods EISSN 2304-8158 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top