Supplementary Material: Concentration of Immunoglobulins in Microfiltration Permeates of Skim Milk: Impact of Transmembrane Pressure and Temperature on the IgG Transmission Using Different Ceramic Membrane Types and Pore Sizes

Hans-Jürgen Heidebrecht ^{1,*}, José Toro-Sierra ^{1,2}, Ulrich Kulozik ^{1,3}

Figure S1. Casein transmission as function of time at 50 °C, 1 bar TMP, using ceramic gradient membranes.

Figure S2. Comparison of flux as function of time at 50 °C, 1 bar Δp_{TM} using standard membranes (A) and gradient membranes (B).

Figure S3. Comparison of flux as function of time at 50 °C, using gradient membranes at $\Delta p_{TM} = 1$ bar (A) and $\Delta p_{TM} = 2$ bar (B).

Figure S4. Comparison of β -Lg and case in transmission at 10 °C and 50 °C at $\Delta p_{TM} = 1$ bar (A) and $\Delta p_{TM} = 2$ bar (B) as function of pore size at steady state conditions.

Figure S5. Comparison of IgG (A) and β -Lg (B) transmission as function of time at 10 °C, using gradient membranes at $\Delta p_{TM} = 1$ bar

Figure S6. Comparison of IgG (A) and β -Lg (B) transmission as function of time at 10 °C, using gradient membranes at $\Delta p_{TM} = 2$ bar.

Figure S7. Comparison of flux as function of time at 10 °C, $\Delta p_{TM} = 1$ bar (A) and $\Delta p_{TM} = 2$ bar (B) using gradient membranes .