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Abstract: Snacks were produced by extruding blends of partially-defatted soybean flour with flours
from milled or parboiled African-grown rice. The interplay between composition and processing in
producing snacks with a satisfactory sensory profile was addressed by e-sensing, and by molecular
and rheological approaches. Soybean proteins play a main role in defining the properties of the protein
network in the products. At the same content in soybean flour, use of parboiled rice flour increases
the snack’s hardness. Electronic nose and electronic tongue discriminated samples containing a
higher amount of soybean flour from those with a lower soybean flour content.
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1. Introduction

Changes in eating patterns in West Africa are occurring at an increasing rate due to urbanization,
globalization, economic, and demographic trends. This is further fueled by changes in the social
structure as a result of the increase in the number of mothers working outside their home and
in the increasing demand for convenience foods [1]. These changes in eating patterns include an
increasing consumption of snacks (cookies, nuts, extruded snacks) in all age groups. Snacks provide a
significant part of the nutrient and calorie intake for many African consumers [2]. Currently, high snack
consumption in Ghana is associated to their widespread presence in open markets, supermarkets, petty
trading, and restaurants in both urban and rural areas [3]. Extrusion-cooking has found widespread
application in the cereal-based snack food industry, because of its ease of operation and of its ability to
produce a number of consumer-appealing textures and shapes [2]. Though wheat- and corn-based
snacks are the most popular products in Ghana, rice flour has become an attractive ingredient for
the production of extruded snacks due to its bland taste, hypoallergenicity, availability, and high
digestibility [4].

Rice has become a staple in most West African countries [5], including both rural and urban
areas [6,7]. The strong increase in the local rice production is yet not sufficient to meet the increasing
demand. In addition, African consumers prefer imported rice to locally-produced rice, due to low
grain quality, low head yield, high chalkiness, poor cooking performance, and taste of locally-grown
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rice [8]. In this frame, the Africa Rice Center (AfricaRice, Cotonou, Benin) and the Global Rice Science
Partnership (GRiSP) are pioneering programs aimed at the development of new added-value products
based on flour from local rice. These products include pasta, baby food, puddings, and extruded
snacks. Since rice has a relatively low protein content, the development of nutritious snacks (i.e., being
valuable sources of protein and energy) requires the combination of rice with other protein sources.
In this frame, soybean is an excellent and relatively inexpensive source of proteins [9]. Blending of
soybean with rice should provide a good and well-balanced protein intake, along with other functional,
nutritional, and health-related beneficial effects [10].

Therefore, this study aimed at developing soybean-enriched rice-based extruded snacks,
and at addressing their properties by a combination of physical, molecular, and instrumental
sensory approaches.

2. Experimental Section

2.1. Rice and Soybeans

A locally-grown African rice variety (Togo Marshall), was provided by the Ghana Rice
Inter-Professional Body (GRIB, Accra, Ghana). Parboiling, when required, was carried out at the
Food Research Institute of the Council for Scientific and Industrial Research (CSIR-FRI, Accra, Ghana),
and milling was performed at a local rice mill. Rice flour with a particle size distribution centered at
500 µm was obtained from either raw or parboiled rice.

Soybean (Nangbaar variety) was provided by Crops Research Institute of the CSIR, Ghana. Seeds
were cleaned, dried in an oven at 50 ˝C for 45 min, and dehulled by using a disc attrition mill.
Cotyledons were separated from the coats by winnowing, partially defatted via a screw press, and
milled into flour to a particle size distribution centered at 850 µm.

2.2. Production of Soybean-Enriched Extruded Rice Snacks

Various formulations were prepared in several (n ě 6) replicate batches by using flour from either
untreated rice (U) or parboiled rice (P), and 10% or 25% (w/w) of partially-defatted soybean flour. These
formulations represent the ones with high preference of local consumers for rice-based products, as
reported in other studies on rice products in the African market [3]. Formulations containing more than
25% partially-defatted soybean flour scored very low with the panel as for mouth feel and aftertaste,
as reported for other soybean-enriched foods [11].

Each of the four formulations (labeled as U-10, U-25; P-10, P-25) was extruded through a circular
die (4 mm diameter) by an intermeshing co-rotating twin screw extruder (CLEXTRAL BC 21, Firminy,
France) into 4 cm long pellets, by using the same conditions: constant screw speed 1000 rpm; barrel
temperature 200 ˝C; and feed moisture 25%.

2.3. Protein Characterization

The nature of interactions stabilizing protein aggregates in the extruded products was addressed
by measuring soluble proteins from extruded products in various buffers as described in [12]. Proteins
were extracted in triplicate by dispersing 0.15 g of finely ground samples (<250 µm) in 5 mL of 0.05 M
sodium phosphate buffer, pH 7.0, containing 0.1 M NaCl. After stirring at room temperature for 60 min,
suspensions were centrifuged at 10,000ˆ g for 20 min at 20 ˝C, and the protein content in the
supernatant was assessed by a dye-binding method [13]. Where indicated, protein extraction was
carried out as above but in the presence of 6 M urea or of 6 M urea and 10 mM dithiothreitol (DTT).

SDS-PAGE was performed according to [14]. A volume of the proteins solutions resulting from
solubilization in the various buffers was treated with an equal volume of denaturing buffer (0.125 M
Tris-HCl, pH 6.8, 50% glycerol, 1.7% SDS; 1% 2-mercaptoethanol; 0.01% Bromophenol Blue). Samples
were boiled for 10 min, and volumes corresponding to 0.015 mg protein were loaded onto a fixed
porosity gel (12% monomer). SDS-PAGE was carried out in a MiniProtean apparatus (Bio-Rad,
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Richmond, VA, USA), and gels were stained with Coomassie Brilliant Blue. Molecular mass markers
covered the range between 14 and 96 kDa.

Accessible thiol groups (expressed as µmol thiols (g sample)´1) were determined in triplicate as
described in [15], with slight modifications. A 0.15 g aliquot of a finely ground sample was suspended
in 5 mL of 0.05 M sodium phosphate, 0.1 M NaCl, pH 7.0, 0.2 mM 5,51-dithiobis-(2-nitrobenzoate)
(DTNB), in the presence or in the absence of 6 M urea as indicated. After 60 min stirring at 25 ˝C, the
suspension was centrifuged (10,000ˆ g, 20 min, 15 ˝C) and the absorbance of the supernatant was read
at 412 nm against a proper blank.

2.4. Physical Properties of the Products

A portable colorimeter CR-300 (Minolta, Osaka, Japan) was used to assess the color of
extruded products in terms of L* (lightness), a* (redness), and b* (yellowness) values in the CIELAB
color space [16]. L*, a*, and b* were measured directly on finely ground samples (<250 µm)
homogenously distributed in a Petri dish. The values reported in Table 1 are the average of 16
independent measurements.

Table 1. Physical characteristics of extruded snacks.

Sample Color

L* a* b* Hardness, N Expansion Ratio

U-10 87.37 ˘ 0.51 a ´0.63 ˘ 0.06 a 15.14 ˘ 0.24 a 3.8 ˘ 0.74 a 3.6 ˘ 0.14 a

U-25 84.10 ˘ 0.21 b 0.11 ˘ 0.02 b 19.72 ˘ 0.29 b 5.9 ˘ 0.83 b 3.3 ˘ 0.24 b

P-10 82.61 ˘ 0.56 c 0.31 ˘ 0.06 c 19.31 ˘ 0.35 b 5.9 ˘ 0.62 b 3.1 ˘ 0.34 b

P-25 81.74 ˘ 0.92 d 0.62 ˘ 0.11 d 21.25 ˘ 0.63 c 8.8 ˘ 0.92 c 2.4 ˘ 0.44 c

Values are means ˘ standard deviations (n = 20 for physical measurements, n = 16 for color measurements).
Different letters in the same column indicate significant differences (p ď 0.05). Samples are identified by letters
(indicating the use of untreated (U) or parboiled (P) rice) and digits (10, 25) indicating the percent content in
soybean flour.

Texture analysis on the extruded products was carried out on samples punctured by using a Zwick
Z005 testing machine equipped with a 100 N load cell (Zwick GmbH and Co., Ulm, Germany) fitted
with a 4-mm diameter cylindrical flat-faced probe, at a test speed of 1 mm/s. Twenty measurements
were carried out for each product and force-deformation curves were recorded until 50% of sample
penetration. Work values (N ˆmm) were normalized to the sample diameter (mm). Expansion ratios
were calculated as the ratio between the average sample diameter (mm) and the extruder circular die
diameter (mm).

2.5. E-Sensing: Electronic Nose and Electronic Tongue

Volatile profile analyses were performed by using a Portable Electronic Nose (PEN2, Win Muster
Airsense Analytics Inc., Schwerin, Germany). It consists of a sampling apparatus, a detecting unit
containing the sensor array, and an appropriate pattern-recognition software (Win Muster version
1.6, Airsense Analytics Inc., Schwerin, Germany) for data recording and elaboration. For electronic
nose (e-nose) measurements, the sample headspace is exposed to sensors and the interaction between
sample and sensors provides a signal pattern that depends on the sensors selectivity and sensitivity
to volatile compounds in the sample headspace [17]. The sensor array is composed of 10 metal
oxide semiconductor (MOS) type sensors: W1C (aromatic); W5S (broadrange); W3C (aromatics);
W6S (hydrogen); W5C (aromatics-aliphatics); W1S (broad-methane); W1W (sulphur-containing
compounds); W2S (broad-alcohol); W2W (sulphur-containing and chlorinated compounds); W3S
(methane-aliphatics). For the determination of the aroma profiles of the extruded products, 0.2 g of
sample was placed in a 40 mL airtight glass vial fitted with a pierceable silicon/Teflon® disk in the cap.
After 1 h equilibration at room temperature, headspace measurements were performed according to



Foods 2016, 5, 38 4 of 11

the following conditions: flow rate 300 mL¨min´1, injection time 60 min, flush time 180 min (during
which the surface of the sensors was cleaned with air filtered through active carbon). All samples were
analyzed twice and the sensor response averages were used for subsequent statistical analysis.

Electronic tongue (e-tongue) measurements were performed by a Taste-Sensing System SA 402B
(Intelligent Sensor Technology Co. Ltd., Atsugi, Japan). For this study a total of five detecting sensors
and two reference electrodes were used, separated in two arrays according to membrane charge:
hybrid (CT0; CA0; AAE) and positive (C00; AE1). Measurements are based on the capability of
tasty compounds to modify sensor potential through electrostatic or hydrophobic interactions [18].
Extruded products were milled into fine flour, of which 3 g were suspended into 30 mL of distilled
water. Suspensions were vortexed for 2 min and centrifuged at 5000ˆ g for 5 min at room temperature.
Supernatants were filtered through a 0.45 µm filter (Millipore, Vimodrone, Italy) and diluted 1:4 (w/w)
with distilled water to get the solution to be tested. Prior to the measurement, the detecting sensors and
reference electrodes were dipped into a reference solution (30 mM potassium chloride, 0.3 mM tartaric
acid) and the electric potential was measured for each sensor (Vr). The sensors were then dipped for
30 s into the solution obtained from the extruded products, and a potential (Vs) was measured. For
each sensor the “relative value” (Rv) was calculated as the difference between the potential of the
sample and that of the reference solution (Vs-Vr). Sensors were rinsed with fresh reference solution
for 6 s and then dipped into the reference solution again. The new potential of the reference solution
was defined as Vr’. For each sensor, the difference between the potential of the reference solution
before and after sample measurement (Vr’-Vr) is the CPA (change of membrane potential caused by
absorption) value (CPAv) and corresponds to the e-tongue “aftertastes”. Before a new measurement
cycle started, electrodes were rinsed for 90 s with water and then for 180 s with the reference solution.
Each sample was evaluated in duplicate and sensor output were converted to taste information.

The “taste values” were calculated by multiplying sensor outputs for appropriate coefficients
based on the Weber-Fechner law, which gives the intensity of sensation considering the sensor property
for tastes [19]. In particular, the “taste values” were estimated as:

Sourness “ 0.3316ˆRvpCA0q (1)

Saltiness “ ´0.252ˆRvpCT0q (2)

Bitterness “ ´0.140ˆRvpC00q ` 0.084ˆRvpCT0q (3)

Aftertaste´ bitterness “ ´0.210ˆCPAvpC00q (4)

Astringency “ 0.1575ˆRvpAE1q ` 0.1575ˆRvpCT0q (5)

Aftertaste´ astringency “ ´0.252ˆCPAvpAE1q (6)

2.6. Statistical Analysis

E-nose and e-tongue data were elaborated by using the MINITAB 14, version 12.0 software
(Minitab Inc., State College, PA, USA) package. Principal Component Analysis (PCA) was applied as
an exploratory tool to uncover aroma and taste characteristics. For all other measurements, ANOVA
was performed on the data adopting the least significant difference (LSD). Data were processed by
Statgraphic Plus for Windows version 5.1. (StatPoint Inc., Warrenton, VA, USA).

3. Results and Discussion

3.1. Overall Protein Organization

Structural features of proteins in soybean-enriched rice-based extruded snacks were evaluated by
extracting proteins in buffers with different dissociating ability towards covalent and non-covalent
inter-protein bonds. This approach provides useful information on the nature of bonds that stabilize
aggregation and/or association in protein-based polymers [12,14,15].
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As shown in Figure 1, the amount of proteins soluble in buffered saline (i.e., albumins and
globulins) is very low and comparable in all snacks. Addition of a denaturing agent (urea) to the
extraction buffer results in an increase of the amount of soluble proteins, due to dissociation of
aggregates stabilized by hydrophobic interactions [20]. A further increase in solubilized proteins
was evident when both urea and the disulfide-reducing agent dithiothreitol were present. In these
conditions, disulfide linkages are reduced, allowing the destabilization of aggregates involving proteins
of different origin, as previously reported for other cereal-based enriched foods [21,22]. The data in
Figure 1 makes it evident that the amount of proteins solubilized from snacks prepared with parboiled
rice (P-10 and P-25) is higher—under otherwise comparable conditions as for the extractant and
soybean flour content—than what is obtained from those prepared with milled rice (U-10 and U-25).
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Figure 1. The amount of proteins solubilized from the various samples in different buffer systems.
Aliquots of the various samples were suspended under stirring in 0.05 M sodium phosphate, 0.1 M
NaCl, pH 7.0, in the presence/absence of 6 M urea and 10 mM DTT, as indicated. Different letters
for results obtained with each buffer system indicate significant differences (p ď 0.05). Samples are
identified by letters (indicating the use of untreated (U) or parboiled (P) rice) and digits (10, 25)
indicating the percent content in soybean flour.

All together, these results suggest the presence in all extruded snacks of a structured protein
network stabilized by both hydrophobic interactions and inter-protein disulfide bonds, although each
product shows peculiar formulation-related features. Indeed, the amount of soluble proteins in all
buffers depends on both the soybean flour content and on the parboiling of rice prior to the extrusion
process. A higher amount of soluble proteins was detected with increasing soybean flour content.
When comparing products with the same soybean flour content, the amount of soluble proteins was
higher when samples were prepared with parboiled rice. This may suggest that previously parboiling
of rice prevents some of the interactions between rice and soybean proteins taking place during the
extrusion process, thus affecting the properties of the protein network in the final product.

Proteins solubilized from the extruded snacks in the various buffer systems used in the studies
presented in Figure 1 were separated by SDS-PAGE, thus allowing a comparison among samples in
terms of representative protein families and an estimation of their size. The results of SDS-PAGE
carried out in the absence/presence of 2-mercaptoethanol—a disulfide reducing agent—are presented
in Figure 2. As expected from the conditional solubility results, the number and the intensity of bands
increase when urea or urea/DTT are used for protein extraction, confirming the presence of protein
aggregates stabilized by hydrophobic interactions and disulfide bonds. However, the tracings obtained
for extrudates containing various levels of soybean flour and flour from differently treated rice do not
offer evidence for the involvement of specific polypeptides and proteins in the aggregation events
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made evident by the conditional solubility studies (see above). In other words, the differences related
to formulation or pre-treatment are not associated with a particular protein.Foods 2016, 5, 38 6 of 11 
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Figure 2. SDS-PAGE profile of proteins solubilized from the various samples in different buffer systems.
Aliquots of the various samples were suspended under stirring in 0.05 M sodium phosphate, 0.1 M
NaCl, pH 7.0, in the presence/absence of 6 M urea and 10 mM DTT, as indicated. Separations were run
on protein samples denatured in the absence (top) or in the presence (bottom) of 2-mercaptoethanol.
Samples are identified by letters (indicating the use of untreated (U) or parboiled (P) rice) and
digits (10, 25) indicating the percent content in soybean flour.
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Thiol-disulfide exchange reactions are among the major contributors to the formation of a
covalently-linked protein network in many foods, where disulfides represent the most “natural” type
of inter-protein covalent bond [14]. In this frame, it may be pointed out that thiol-disulfide exchange
reactions occur as a function of the accessibility of the involved thiols which, in turn, depends on
structural features of the proteins.

The degree of structural “stiffness” of the protein network in individual samples was evaluated
through thiol accessibility studies in the presence/absence of urea. These studies were carried out on
protein suspensions [12,23], and the measurements provide two separate parameters, namely, the total
content in readily accessible thiols (measured under non-denaturing conditions on both the soluble and
insoluble fraction) and the increment in thiol accessibility due either to urea-induced protein unfolding
and/or to urea-dependent breakdown of hydrophobic interactions among aggregated proteins.

Results in Figure 3 show that the amount of detectable thiols in all the extruded products is low,
and increases only slightly in the presence of a denaturing agent. The amount of accessible thiols
increases with the soybean flour content, and is significantly higher—at least at high soybean levels—in
extruded snacks prepared from untreated rice than in samples based on parboiled rice. This suggests
that reticulation of soybean proteins to give a sturdy protein network (with limited accessibility of the
protein thiols) is somewhat occurring to a larger extent when using parboiled rice.
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Figure 3. Accessible thiols content of proteins in the various products. Thiols were assessed
on finely-ground samples suspended in 0.05 M sodium phosphate, 0.1 M NaCl, pH 7.0, in the
presence/absence of 6 M urea as indicated. Different letters for results obtained with each buffer
system indicate significant differences (pď 0.05). Samples are identified by letters (indicating the use of
untreated (U) or parboiled (P) rice) and digits (10, 25) indicating the percent content in soybean flour.

3.2. Physical Properties

Color is one of the most important quality factors directly related to the acceptability of food
products [24]. In extruded-cooked products, color analysis can provide hints about the extent of
occurrence of Maillard-type reactions, as well as on the degree of pigment degradation occurring
during the extrusion process.

As shown in Table 1, a decrease in lightness (L*), and an increase in redness (a*) and yellowness
(b*), was detected as the soybean flour content increased in snacks produced from either untreated
or parboiled rice. This is due to the increased protein content of the formulations, which favors
Maillard-type browning reactions in carbohydrate-rich matrices, as described in a number of
studies [25,26]. Snacks prepared with parboiled rice flour show lower lightness (L*) values and
higher redness (a*) and yellowness (b*) parameters than samples from milled rice flour. This results
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from a darker color of the parboiled rice, which depends on the heat-related browning events and on
the diffusion of husk pigments into the endosperm during the parboiling treatment.

The textural properties of snack were investigated. Hardness and expansion ratio are fundamental
quality parameters of extruded snacks, that depend on the size and number of gas bubbles within the
snack rigid matrix, and may be conveniently addressed by using a dynamometer [27,28]. Additionally,
as shown in Table 1, the puncture force significantly increases with increasing soybean flour content,
favoring formation of a compact protein network.

The rigid network formed at high protein content may affect product expansion, as well as
changes in the structure of starch [27]. However, we confirm that—as reported in many studies—starch
was completely gelatinized in all extrudates, as indicated by thermal analysis and pasting properties
measurements (not shown). Thus, product expansion is governed mostly by the protein component,
and is expected to be inversely related to the rigidity of the protein network. Accordingly, the rigid
protein network consequent to the parboiling treatment resulted in increased sample hardness. In
other words, the parboiled rice seems to be unable to develop a matrix that entraps the water vapor
and forms bubbles.

3.3. E-Sensing

E-sensing investigation of the selected extruded products was initially performed by using the
e-nose for the assessment of the volatiles profile. E-nose data were elaborated by PCA in a covariance
matrix, and the two first principal components accounted for 99.6% of the total variance (Figure 4).
The score plot (Figure 4a) allows the discrimination of the extruded samples on the basis of the rice
treatment prior to extrusion, and on the amount of soybean in the formulation. Samples are distributed
on the first principal component (PC1) from the right to the left according to the soybean content. In
particular, products with a low soybean content are located on the right of the plot, whereas those
with high soybean content are placed to the left. With respect to rice treatment, milled rice samples are
clustered in the lower part of the second principal component (PC2), and parboiled rice samples are
located in the upper part of PC2.
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Figure 4. E-nose PCA score plot (a) and loading plot (b). Samples are identified by letters (indicating
the use of untreated (U) or parboiled (P) rice) and digits (10, 25) indicating the percent content in
soybean flour.

By considering the loading plot (Figure 4b), it is possible to notice that one sensor of broad range
sensitivity (W5S) is relevant in the discrimination of samples on the PC1 according to their soybean
content. On the PC2, sensors of the WS series (W6S, W1S, and W2S, of broad sensitivity and sensitive
to alcohol and methane) were able to discriminate samples on the basis of rice treatment.

The influence of a different soybean content on the electronic nose responses may result from the
different lipid content of the final products which might affect snacks aroma profile (and any possible
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off-odors caused by lipid oxidation) during their shelf-life [29]. Reportedly, rice parboiling results in
starch gelatinization and in transfer of volatiles from the rice husks to the rice endosperm. This may
have a strong influence on the aroma of the resulting products, and may explain the similar behavior
of samples from parboiled rice on PC2 [30].

The e-sensing investigation was completed by e-tongue measurements. An e-tongue is a liquid
analytical device that mimics the taste-sensing mechanism of the gustatory system and comprises
sensor arrays specific for liquid samples. With respect to consumer acceptability and compliance to
quality standards, taste is one of the major factors determining the market penetration and commercial
success of food products such as snacks [31]. The taste values collected by e-tongue were analyzed by
PCA in correlation matrix, and the two first principal components accounted for 96.9% of the total
variation in the taste of the extruded samples under investigation (Figure 5). Considering the score
plot (Figure 5a), extruded snacks are discriminated on PC1 (accounted for 76.6% of the total variance)
on the basis of the soybean content in the formulation, regardless of rice treatment. Snacks with a high
soybean content clustered to the left (negative) side of PC1, whereas those with low soybean content
were located in the right side of the plot. The loading plot (Figure 5b) shows that a high soybean
content results in umami and salty tastes, whereas products with a low soybean content tasted bitter,
sour, and astringent, as reported in studies, where soybean flours or isolates were used to fortify
bread [11] and a number of other food products [32].
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Figure 5. E-tongue PCA score plot (a) and loading plot (b). Samples are identified by letters (indicating
the use of untreated (U) or parboiled (P) rice) and digits (10, 25) indicating the percent content in
soybean flour.

4. Conclusions

The combination of biochemical and physical approaches has allowed the authors to address
the molecular properties of soybean-enriched rice-based extruded snacks and to correlate them with
products’ macrostructures. Both the extent of soybean addition and the rice parboiling before extrusion
play a key role in defining the molecular, textural and sensory properties of the final products.

In particular, the soybean levels affect sensory traits (as detected by e-nose and e-tongue), whereas
the use of parboiled rice affects the network-forming ability of the proteins in the system. As a
consequence, at a given soybean content, snacks prepared from parboiled rice are harder and less
expanded than those from untreated rice.

This information can offer some guidelines with regards to designing and producing snacks
conforming to the local consumers’ expectations. Hopefully, the approaches and the data presented
here about the significance of interactions among nutritionally complementary ingredients may be
used to add value to Africa-grown raw materials.
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