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Abstract: Bivalve shellfish readily bioconcentrate pathogenic microbes and substance, 

such as algal and dinoflagulate toxins, fecal viruses and bacteria, and naturally present 

vibrio bacteria. High pressure processing (HPP) is currently used as an intervention  

for Vibrio vulnificus bacteria within molluscan shellfish and its potential to inactivate  

food-borne viruses and bacteria are discussed. Mechanisms of action of high pressure 

against bacteria and viruses, as well as how time of pressure application, pressure levels, 

and pre-pressurization temperature influence inactivation are described. Matrix influences 

such as ionic strength are noted as important additional considerations. The potential of 

HPP to influence spoilage and enhance shelf-life of shucked shellfish is also discussed. 
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1. Introduction 

High pressure processing (HPP) is an increasingly popular method of separating shellfish meat from 

the shell for molluscan shellfish (i.e., oysters and clams) as well as crustacea (i.e., crabs and lobsters). 

HPP shucking of shellfish results in completely intact meat and can be a considerable labor saving 

method [1]. Also HPP-treated shellfish can be opened easily by restaurant staff and does not require  
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a dedicated onsite shucker (i.e., raw bar). Furthermore a consumer survey has demonstrated that while 

consumers are not particularly knowledgeable about the concept of high pressure processing, they are 

apparently not resistant to eating foods treated by high pressure [2].  

The pressures ordinarily used for food processing range from 200 to 600 megaPascals (MPa).  

One MPa is approximately equal to 9.87 atms of pressure and approximately 145 pounds per square 

inch (PSI). By comparison, the pressure at the bottom of the Marianas Trench in the Pacific is 

approximately 100 MPa. Essentially, HPP is a non-thermal process in that foods are not specifically 

heated. Bivalve shellfish have a number of potential food safety issues associated with their ability to 

bioconcentrate toxic chemicals and pathogens from water. These include human intestinal viruses and 

some fecal bacteria from wastewater and sewage, bacteria that are naturally present in estuarine 

waters, and toxins derived from plankton and dinoflagulates, which can have serious neurologic 

consequences for shellfish consumers.  

1.1. Toxins 

Harmful algae blooms and ocean dinoflagulates can produce a number of chemical toxins that can 

have rather nasty neurological properties. Examples include saxotin, paralytic shellfish poisoning, and 

amnesiac shellfish poisoning [3–11], the net result of which can be brain or motor nerve  

damage or even death. Testing for these agents is performed using GC-mass spectrophotometry [12] or 

bioassay using mice [10]. These toxins are thermally resistant, so even thorough cooking will not 

inactivate them. Unfortunately HPP is not believed to have any discernable effect on these toxins since 

HPP does not alter chemical bonds [13]. 

1.2. Vibrio 

These bacteria are naturally found in abundance within warm tropical waters year round and in 

temperate waters during the summer season [14,15]. The most serious of these is Vibrio vulnificus (Vv) 

which is a substantial problem for the oyster industry. For ordinary persons with no underlying health 

issues, this bacterium does not pose a serious threat. However for the approximately 7% of the US 

population that have liver problems due to excessive alcohol consumption, hepatitis, or have diabetes, 

are immunocompromised, or have elevated blood iron levels, contracting a Vv infection carries a  

50% risk of mortality [16–18]. While perhaps less than one hundred people contract this annually in 

the US by various routes of infection, there are as many as 10–20 mortalities associated with 

consumption of shellfish contaminated with Vv [19]. A second bacterium, Vibrio parahaemolyticus (Vp) 

is associated with oyster consumption, typically causes mild to moderate gastrointestinal illness which 

ordinarily persists for a few days but can last for several weeks [20]. While quite unpleasant, Vp is not 

associated with a high mortality rate. 

Risk of contracting Vv and Vp by consumption of raw shellfish becomes substantially greater as 

increasing amounts of these of bacteria are consumed. Vibrio levels are known to increase 

dramatically after harvest in response to the shellfish being out of the water and in a warm 

environment [21–25]. As a result, many regulatory authorities require that loads of harvested shellfish 

be shaded from direct sunlight, harvested at cooler times of the day or even after dark, and mandate 

cooling protocols that cool shellfish to less than 10 °C within a few hours of harvest to reduce 
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outgrowth of Vibrio bacteria [26,27]. These efforts have reduced the incidence of oyster-associated 

illness but these measures have not completely eliminated them. As an additional precaution,  

post-harvest processing is now required for Vv in some jurisdictions. [28]. Post-harvest Vv interventions 

used currently include irradiation [29], quick-freeze [30,31], flash heat [32] and HPP [33,34].  

2. Fecal Bacteria and Sanitary Standards for Shellfish 

Oysters were first recognized as vectors for typhoid fever in New York around the turn of  

the 20th century when market shellfish were being exposed to sewage effluent from the city [35].  

Today, typhoid fever associated with raw shellfish consumption is virtually unheard of due to sewage 

treatment, institution of fecal coliform (FC) standards, and its limited circulation among the general 

public. Currently two separate, but conceptually similar FC standards are used in the US and  

EU [36,37]. The US classifies its shellfish growing waters based on regular testing to determine  

the levels of FC bacteria in waters, essentially measuring hygienic water quality. Other localities,  

such as the EU, measure the amount of fecal coliforms found directly within shellfish from different 

harvest locations, essentially measuring the quantity of FC bacteria found directly within oysters. With 

some caveats, these standards do a reasonable job of measuring human and animal fecal impact on 

growing areas and identifying areas where shellfish can be and should not be harvested [38]. That said, 

the potential to contract Salmonella enterica infections from raw oysters remains a qualified concern. 

In the US, one report indicated salmonella bacteria in US market shellfish had an incidence of  

7.8% [39], but a subsequent report put this number at about 1% [40]. In addition, a recent report seems 

to indicate that salmonella is able to persist within live shellfish more efficiently than other coliform  

bacteria [41]. 

3. HPP as a Microbiologic Intervention 

3.1. Bacteria and Spoilage 

Generally Gram-negative spoilage bacteria are more sensitive to HPP than Gram-positive bacteria. 

For example, the Gram-positive bacterial population fraction within oysters were reported to increase 

from 56% to 84% Gram-positive after a 500 MPa treatment and storage at 2 °C for 28 days [42,43]. 

Because much of the typical off-odor associated with spoilage is due to the growth of Gram-negative 

bacteria, HPP is capable of extending the refrigerated shelf-life of oysters [44]. After HPP, a prominent 

reduction of bacterial diversity also occurs. For example after a 500 MPA treatment of oysters 

(Crassostrea gigas) and 28 days of storage at 7 °C Linton et al. [42] reported that 96% of bacterial 

isolates were limited to Bacillus, Acintobacter/Moraxella and lactic acid bacteria. 

3.2. Spores and Fungi 

He et al. [44] report that many fungi are inactivated by pressures ranging from 300 to 600 MPa. 

Bacterial spores are a challenge for HPP, although spore reduction has been noted by double-cycle 

HPP treatment in which pressure is applied, the pressure is released for a brief period to permit spore 

germination, and then reapplied to kill germinated spores [45]. Unfortunately some viable spores are 

able to survive these double-cycle treatments. 
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3.3. Vibrio 

HPP is highly effective in reducing Vv in oyster meat to “non-detectable levels” when 

approximately 275–300 MPa are applied for 3 min at ambient temperatures [33,34]. While processing 

interventions are not currently mandated for Vp in the US, indications are that pressures slightly above 

300 MPa can be effective as an intervention for raw shellfish [33,46,47].  

3.4. Fecal Bacteria 

Current commercial HPP treatments for oysters are not thought to be high enough to substantially 

reduce salmonella, but treatments >350 MPa in culture media did generally show 3-log10 reductions of 

Salmonella enterica [48], suggesting HPP has potential for inactivating this bacteria in shellfish. Other 

bacteria such as campylobacter [49], and shigella [50] are occasionally implicated in oyster-vectored food 

outbreaks. HPP is capable of inactivating these bacteria, but like salmonella, exact conditions required 

for inactivation within live shellfish have yet to be defined. Many of the food-borne bacteria found in 

shellfish are Gram-negative, which as stated earlier, are more susceptible to pressure inactivation than 

Gram-positive bacteria [51]  

3.5. Viruses 

Viruses remain a vexing problem for the shellfish industry. There are a large number of pathogenic 

viruses that can be shed from the human gastro-intestinal tract [52]. These viruses can enter shellfish 

growing areas as a result of sewage overflows and floods, defective septic systems, overboard waste 

discharge, or even as a result of a vomiting event [53]. Enteric viruses are shed at high levels, perhaps 

billions of particles per illness, and are typically highly infectious, with only a handful of particles 

required to establish an infection [54]. Viruses are very stable in the environment, and can persist in 

shellfish growing waters and even within shellfish for extended periods [55,56]. Because these viruses 

require a human gut to replicate, they do not grow, or amplify, within shellfish as a result of 

temperature abuse as can occur for bacteria. Rather they simply contaminate shellfish as a result of 

filter feeding activities, typically sequestering themselves at relatively low levels. Because direct 

testing for viruses is currently impractical, classification of shellfish harvest areas are regulated based 

on the levels of fecal bacteria in growing waters or directly within the shellfish meats, as described 

previously. While this classification system prevents a great deal of unsanitary shellfish from 

potentially reaching the dinner table, it is now recognized that low FC levels in growing waters,  

or within shellfish meats, do not necessarily indicate that there are no viruses present [57]. This is 

principally due to the fact that viruses can persist within shellfish tissues for longer periods than  

FCs [55,56,58]. Presumably this is due to virus’ resistance of the acidic digestive processes of  

shellfish [56]. Thus, a suitable intervention for viruses potentially sequestered within raw shellfish 

would be of key significance. 

Cooking and depuration, two traditional means of sanitizing shellfish, are of limited effectiveness 

against viruses. Depuration is a method in which live shellfish are placed in clean water for 2–3 days 

to permit the bivalves to pump and purge pathogens. This method is generally effective against fecal 

bacteria which can be reduced by several orders of magnitude, but it is accepted that pathogenic 
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human viruses do not purge efficiently enough to make the process a viable intervention for virus 

contamination. Cooking is thought to inactivate viruses to a substantial degree, but it is unclear what 

temperatures and cooking times are completely effective against these viruses within shellfish. In fact, 

several documented outbreaks have been associated with “properly cooked shellfish” [59–61]. 

Furthermore, consumers often prefer uncooked or lightly-cooked shellfish. 

Although there are many different types of fecal viruses that can be potentially transmitted by 

shellfish, the two principal shellfish-borne virus threats are recognized to be human norovirus 

(HuNoV) and hepatitis A virus (HAV). Human norovirus is now arguably considered to cause the 

majority of food-borne incidents worldwide [19,62]. Approximately half of the food-borne incidents 

associated with shellfish are due to norovirus and the overall fraction of food-borne noroviruses 

attributed to molluscan shellfish is approximately 13% [63,64]. 

Initial research on the potential of HPP to inactivate norovirus focused on genetically-related 

surrogate research viruses, such as feline calicivirus [65–68] and murine norovirus [69], because 

human norovirus strains have not been reproducibly propagated in the laboratory [70,71] and there are 

no suitable small animal research models for the virus. Surrogate work pointed to reasonable prospects 

for inactivation of norovirus. Feline calicivirus was found to be highly sensitive to HPP with 5 min 

room temperature treatments of 275 MPa being sufficient to inactivate 7-log10 of the virus [68,72].  

The subsequent isolation and discovery of murine norovirus, which was propagable, made it possible 

to evaluate a closer genetic relative of human norovirus [73]. Results indicated that higher pressures, 

on the order of 400 MPa, were needed to inactivate substantial quantities of this virus [69]. However 

successful inactivation of murine norovirus within oysters was demonstrated at this pressure level [69,74]. 

Also work with immunocompromised mice confirmed that inactivation by HPP in vitro, as assessed by 

tissue culture and in vivo, as assessed using mice were essentially equivalent [75].  

More recent work has looked at the potential of HPP to inactivate human norovirus. A human 

volunteer study evaluated conditions required to inactivate the prototype norovirus strain (GI.1 Norwalk). 

Four-log10 PFU of Norwalk virus was injected into oysters and three 5-min pressure treatments were 

performed at 400 MPa, 22 °C; 400 MPa, 6 °C; and 600 MPa, 6 °C. Unfortunately only the 600 MPa  

treatment was sufficient to protect all volunteers [76]. Based on a reduced illness frequency, it was 

postulated that the 400 MPa, 6 °C treatment may have inactivated some norovirus virus. Subsequent 

investigations using the newly developed porcine gastric mucin binding assay (PGM-MB) binding 

assay, which can assess norovirus inactivation, have confirmed that norovirus is sensitive to HPP  

at about 400 MPa [77–79]. 

HAV contamination of shellfish is now uncommon in most parts of the developed world due to 

improved hygienic standards and vaccination campaigns [80] but it remains a problem in the developing  

world and the Mediterranean region [81]. HAV illness can be quite serious, often resulting in 

hospitalization and occasionally in mortality. Morbidity and mortality due to HAV is often age related, 

with persons over the age of 50 being more prone to mortality and with young children often having 

only unapparent infections [82,83]. Considering that exposure induces immunity that is generally 

thought lifelong, HAV vaccination campaigns are often not given much emphasis in endemic regions 

since the local populations largely become immune at young ages. Unfortunately shellfish and 

uncooked fruits and vegetable products grown in endemic regions and sold in developed countries can 

become vectors for HAV outbreaks [84,85]. A tissue culture-adapted strain of HAV has been 



Foods 2014, 3 341 

 

evaluated for sensitivity to HPP. Results indicate that a 5 min room temperature treatment at 450 MP is 

sufficient to inactivate 7-log10 of HAV virus stock [68]. Evaluation of HAV-contaminated oysters 

demonstrated a 3-log10 reduction after a 1 min-400 MPa treatment at 9 °C [86].  

It was hoped that HPP would also inactivate other pernicious viruses which could potentially 

contaminate shellfish such as Aichi virus [87], hepatitis E virus (HEV; [88]), coxsackie viruses, etc. 

HEV has yet to be evaluated but Aichi and a number of other members of the picornavirus family have 

proven more tolerant to high pressure, requiring either pressures well above 400 MPa, or even being 

completely as resistant to 600 MPa treatments [89,90].  

3.6. Parameters 

Research has shown that there are a number of considerations for inactivating bacteria and viruses 

with HPP. Of course the primary determinant for pathogen inactivation is the pressure level applied, 

which generally follows first-order kinetics since plotting log10 pathogen reduction versus increasing 

pressure applied gives a straight line. Beyond pressure levels applied, time under pressure and  

pre-pressurization temperature can have a considerable influence on inactivation levels. For all 

pressure-sensitive viruses tested to date, increased application time does increase the amount of virus 

inactivation observed but the amount of increase observed asymptotically decreases, matching  

log-logistic or weibull kinetics [43,52,91]. Solutes, such as salt and sugar generally decrease the 

effectiveness of HPP inactivation for viruses and bacteria [43,51,67,68,92]. Formally speaking the 

reason for this is unknown, but presumably, the presence of solutes may tend to prevent compression 

and addition of more water molecules into the solvation cage surrounding the protein. Although 

currently undefined, this may be an important consideration for shellfish grown in different salinities, 

since the salt content of bivalves mimics the waters from which they have been harvested. Also, 

generally speaking, bacteria that are actively growing in exponential phase are more sensitive to 

pressure than bacteria in stationary phase [51]. 

Perhaps more intriguing is the concept that temperature has a substantial influence on inactivation. 

For vegetative bacteria, pressure applied above and below room temperature generally appears to 

enhance inactivation [51]. For viruses, the temperature effect is variable since different viruses react 

differently for HPP at different temperatures. For noroviruses and all caliciviruses tested to date, 

refrigeration temperatures dramatically enhance inactivation, often by several logs [52,69]. Curiously, 

HAV is the reverse. Room temperature and above dramatically enhance inactivation by HPP as 

compared to refrigeration temperatures [92,93]. Unlike the Caliciviridae, other picornaviruses have 

shown variable inactivation with respect to temperature [90]. Why viruses behave differently under 

pressure at different temperatures is currently unknown. 

Presumably, HPP-treated shellfish would have a neutral pH, but for other food matrices, pH is 

another important consideration. Low pH generally enhances HPP inactivation of vegetative bacteria, 

but viruses respond differently to low pH under pressure. For human norovirus, low pH appears to be 

inhibitory for HPP inactivation [78]. For HAV, a virus that is known to be tolerant of pH 1, lower pH 

actually enhances HPP inactivation [92,94]. It is also important to note that weak organic acids, such 

as acetic acid, become stronger acids under pressure. Why HAV and HuNoV behave differently under 

pressure in acidic pH is currently unknown. 
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There can be a substantial temperature increase associated with the application of pressure.  

As anyone who has ever filled a scuba tank knows, when air inside the tank is compressed, heat is 

generated, making the tank warm. Likewise, anyone who has fully opened the valve of a pressured 

tank knows that as the pressure is released, the tank becomes quite cold. These effects are due to a 

principle called adiabatic heating and cooling [95]. Although the incremental amount of 

heating/cooling does vary somewhat with the initial temperature at which pressure is applied,  

the temperature increase is approximately 3–3.5 °C per 100 MPa for water-based commercial units.  

Also, the degree to which this heat dissipates to the environment varies with the size of HPP units, 

with smaller units dissipating heat to the environment more rapidly due to increased surface area to  

volume ratio. 

3.7. Inactivation Mechanisms 

HPP is not known to directly damage nucleic acids. However high pressure is thought to either 

distort or destroy lipid membranes in bacteria by causing phase inversion. Leakage of cytosolic 

contents as a result of membrane integrity loss accounts for much of vegetative bacterial inactivation. 

A second mechanism of inactivation is via protein denaturation. On a molecular level, water forms a 

solvation cage around proteins. When high pressure is applied, more water is forced into this solvation 

cage resulting in changes in the tertiary and quaternary structure of proteins disrupting function.  

Non-enveloped viruses, such as norovirus and HAV, by definition do not have lipids associated with 

them. Therefore inactivation of food-borne viruses is via protein denaturation.  

3.8. Organoleptic Considerations 

The color, taste, texture, appearance and smell of raw oysters are of paramount concern to the 

industry and consumers alike. Currently there is a perception by industry that pressures above  

300 MPa result in undesirable changes to oyster quality. It is true that the degree to which HPP 

changes a raw oyster’s characteristics is a function of the pressure applied and the temperature at 

which pressure is applied. Some whitening or blanching occurs when treating oysters at 600 MPa at 

room temperature but this is minimized when 600 MPa is performed at 5 °C. Overall appearance of 

oysters and clams on-the-half-shell is much better when shucked by HPP [96], since the bivalve meat 

is completely intact (see Figure 1). This differs from a hand-shucked oyster which can often be sliced 

by the shucking knife. There are reports that HPP can induce some firmness or chewiness in seafoods, 

but this change is relatively subtle and may be considered desirable, since firmness can be considered 

an attribute of freshness [13]. Juiciness and flavor are enhanced by HPP, since shellfish take up liquid 

from the surrounding liquor within the shell [44,97,98]. This attribute results in a “yield” increase since 

the shucked oyster becomes more voluminous due to absorption of liquor fluid. One drawback is that 

liquid taken up does not remain within the bivalve tissues over time. Thus an originally full jar of 

HPP-shucked oysters will be reduced in volume a week later. Also depending on what the oysters were 

feeding on when harvested, sometimes this liquid in the jar can be an unappealing yellow or greenish color. 
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Figure 1. A hand-shucked clam (left; Mercenaria mercenaria) is compared to a high 

pressure processing (HPP)-treated clam (right). Note: this figure is reprinted with 

permission from [9]. Copyright Elsevier B.V. 2014. 

 

Studies clearly indicate that HPP-treated oysters are well received after treatments at pressures  

that are higher than are currently used commercially to shuck oysters and inactivate vibrio [99].  

For example, recent results (shown in Table 1) from an organoleptic study evaluating the taste of 

oysters has shown that oysters treated at 400–600 MPa at 6 °C and 300–500 MPa at 22 °C are actually 

preferred to manually-shucked oysters [100]. Another challenge for HPP-treated oysters is time 

between processing and consumption may be several days which may compromise their perceived 

quality as compared to a fresh-shucked oyster. 

Table 1. Organoleptic analysis of HPP-treated 
#
 oysters * using untrained volunteers. 

 
Control 

300 MPa 

22 °C 

400 MPa 

22 °C 

500 MPa 

22 ° C 

400 MPa 

6 °C 

500 MPa 

6 °C 

600 MPa 

6 °C 

F value  

(Sig p value) 

Appearance 4.11 ± 1.6 5.46 ± 1.5 5.39 ± 1.4 5.20 ± 1.6 5.39 ± 1.5 5.45 ± 1.4 5.22 ± 1.7 5.78 (0.000) 

Texture 4.54 ± 1.9 5.23 ± 1.7 5.36 ± 1.8 5.55 ± 1.6 5.20 ± 1.6 5.47 ± 1.5 5.43 ± 1.7 2.46 (0.024) 

Flavor 4.64 ± 1.7 5.04 ± 1.8 5.05 ± 1.7 5.13 ± 1.7 4.86 ± 1.6 5.35 ± 1.6 5.27 ± 1.6 1.24 (0.287) 

Aroma 4.90 ± 1.4 5.27 ± 1.3 5.04 ± 1.2 5.30 ± 1.3 5.27 ± 1.4 5.33 ± 1.3 5.33 ± 1.4 0.94 (0.469) 

Acceptability 4.64 ± 1.6 5.14 ± 1.6 5.13 ± 1.6 5.28 ± 1.6 5.02 ± 1.5 5.53 ± 1.4 5.38 ± 1.6 2.05 (0.058) 

# All HPP treatments were for 5 min; * analysis performed using triploid oysters (Crassostrea virginica) 

obtained from Cape May NJ August 2013; ± represents standard deviation. 

3.9. Challenges and Future Directions 

There are a number of challenges to the widespread application of HPP to the shellfish industry. 

First HPP is relatively expensive with the minimal cost for a commercial scale unit being several 

hundred thousand US dollars. Thus to be economically viable, shellfish harvesters and processors must 



Foods 2014, 3 344 

 

be relatively large in scale. Currently most shell aquaculture and fishing operations are too small to 

successfully amortize this expense. Development of a low cost pressure unit for limited shellfish 

quantities that is suitable for use near or at the point of consumption would be a boon for the shellfish 

industry and consumers alike. Another challenge is consumer resistance and regulations regarding in 

shell-shellfish. A closed shell is often used to judge that shellfish are alive and fresh. HPP kills 

shellfish, so consumers must be educated to the concept that these are safe and good to eat. In most 

jurisdictions, there are no longer prohibitions against sale of in-shell HPP-treated shellfish but 

regulations against theses may remain in some places. 

Another potential challenge is that shellfish must be HPP-treated relatively quickly after harvest. If 

the liquor inside the shell dries out or is reduced in volume permitting air within the shell, as can 

happen after a day or two of cold storage, the shells may be cracked, or even crushed when pressure is 

applied due to air pockets under the shell (personal observation). Lastly, should HPP treatment become 

mainstream as a pathogen intervention technique for shellfish, it will be important that current 

hygienic quality standards for safe harvest remain in place. HPP should only be applied in addition to 

current hygienic standards, not in lieu of these standards or as a way to utilize shellfish grow under 

non-hygienic conditions. 

4. Conclusions 

High pressure processing is a viable nonthermal intervention for prominent food-borne pathogens 

associated with raw bivalve shellfish. 
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