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Abstract: Liquid chromatography tandem mass spectrometry (LC-MS/MS) has been used 

historically in proteomics research for over 20 years. However, until recently LC-MS/MS 

has only been routinely used in food testing for small molecule contaminant detection, for 

example pesticide and veterinary residue detection, and not as a replacement of 

microbiological food testing methods, specifically allergen analysis. Over the last couple of 

years, articles have started to be published which describe the detection of allergens by 

LC-MS/MS. In this article we will describe how LC-MS/MS can be applied in the area of 

gluten detection and how it can be used to specifically differentiate the species of gluten used 

in food, where specific markers for each variety of gluten can be simultaneously acquired 

and detected at the same time. The article will discuss the effect of variety on the  

peptide response observed from different wheat grain varieties and will describe the sample 

preparation protocol which is essential for generating the peptide markers used  

for speciation.  
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1. Introduction 

Gluten is known to produce an allergic response, and intolerance to gluten leads to celiac disease. 

Levels of intolerance to gluten often vary with gluten variety; this is especially relevant to the use of oats 

which has a low effect on celiac suffers. Most current ELISA methodology, with the exception of assays 

based on the R5 antibody [1], detect the presence of barley, rye and wheat but also oats. Assays based on 

the R5 antibody are not sensitive to oats, but this assay still cannot differentiate barley, wheat and rye. 

Also, all the ELISA methods that detect gluten are based on one section of the gluten protein (for example, in 
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the case of the R5 assay, the peptide sequence glutamine-glutamine-proline-phenylalanine-proline (QQPFP) 

peptide epitope) and as such are susceptible to false positives and false negatives. Liquid chromatography 

tandem mass spectrometry (LC-MS/MS) has the ability to detect species based on multiple markers with 

multiple points of confirmation which makes it far less susceptible to producing false negatives and 

positives, and gives far more confirmation in detection. Due to its very specific nature, it is also capable 

of distinguishing species by using multiple peptide markers as shown previously [2–5]. A suitable 

LC-MS/MS method that could offer the possibility to differentiate between gluten species with a high 

degree of specificity would be beneficial to both grain producers and consumers. 

In addition, legislation is changing with respect to gluten and, in the UK, one of the first allergen 

limits came into effect on 1 January 2012 [6,7]. On this date the laws governing food labeling were 

changed such that three different terms can now be used:  

1. Gluten-free—is covered by the law and applies only to food which has 20 parts per million (ppm) 

or less of gluten. 

2. Very low gluten—is covered by the law and is for foods which have between 21 and 100 ppm. 

3. No gluten-containing ingredients—this is not covered by the law and is for foods that are made 

with ingredients that do not contain gluten and where cross contamination controls are in place. 

These foods will have very low levels of gluten, but have not been tested to the same extent as 

those labeled gluten-free or very low gluten. 

These changes in the food labeling law have recently been followed in the US by the FDA [8]. Some 

initial studies using LC-MS/MS in gluten profiling were presented in 2012 [9]. In these studies trypsin 

was used as the enzyme for digestion, even though gluten proteins do not undergo a large level of trypsin 

digestion (due to a low number of lysine and arginine residues) some unique marker peptides were 

found. Recently, chymotrypsin has also been used as an alternative to trypsin [10] to generate a large 

number of peptides for the improved detection of wheat gliadin proteins, but this method used longer 

digestion times and labelling chemistry to better characterise the gluten proteins.  

The purpose of this study was a follow up to the original poster presentation in 2012 [9] to investigate 

a simpler approach to preparing extracts and use recent advances in LC technology to help reach 

detection limits below the requirements of the current labelling legislation. One of the main purposes of 

this work was to develop an approach which could analyse a sample in one day using inexpensive 

available chemicals. In this study single varieties of grain which have not been first milled were ground 

into flour using a commercial coffee grinder. These samples, together with commercial samples of 

self-raising flour, gluten-free flour and some gluten and gluten-free foods, were extracted and then the 

allergenic proteins were reduced, alkylated and digested using trypsin. In this study the extracts 

produced were simply diluted into 0.1 % formic acid prior to injection and separation by reverse phase 

chromatography and LC-MS/MS detection. The LC used was a Eksigent ekspert™ microLC 200 

UHPLC system (Eksigent, Redwood City, CA, USA) which had been previously evaluated for the 

detection of egg and milk allergens in wine [11] and had been shown to offer a 5-fold improvement in 

sensitivity. The mass spectrometry methods utilised Scheduled MRM™ (an algorithm which allows the 

independent monitoring of MRM transitions with a defined window around the expected retentions time 

for each MRM transition which is available in the Analyst
®

 software version 1.5 and onwards from  
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AB SCIEX) for multiple peptides for each gluten species, so that presence of allergen can be 

unambiguously confirmed.  

2. Experimental Section 

The method described is based on the classic proteomics sequencing approach which involves first 

the extraction of the protein from a matrix. Once extracted, the proteins are reduced, alkylated and 

digested. The extracts were finally diluted and analyzed by LC-MS/MS using an AB SCIEX QTRAP
®

 

4500 LC/MS/MS system (AB SCIEX, Warrington, UK). 

2.1. Preparation of Tryptic Digests 

2.1.1. Extraction of Proteins  

Markers proteins from wheat, oats, barley and rye were extracted by placing powdered sample  

(0.5 g of flour or cookie which had been ground using a commercial coffee grinder) into a falcon tube 

(15 mL) with extraction buffer [5 mL of a 50:50 mixture of ethanol containing 2 M urea and  

50 mM 2-amino-2-hydroxymethyl-propane-1,3-diol (Tris)]. This mixture was shaken by hand  

(30 s) and then heated and shaken in an orbital water bath (40 °C, 60 min). 

2.1.2. Reduction and Alkylation of Proteins  

Once extracted the samples were centrifuged (2500 rpm, 5 min, 20 °C). The supernatant (0.5 mL) was 

then reduced by the addition of TCEP [tris(2-carboxyethyl)phosphine, 0.2 M, 50 µL, 60 °C, 60 min in a 

thermal mixer] and cooled to room temperature. MMTS (methyl methanethiosulfonate, 0.2 M, 100 µL) 

was added and the sample left in the dark (30 min) to alkylate the free cysteine residues. 

2.1.3. Tryptic Digestion of Proteins  

Once the proteins had been alkylated the sample were diluted with buffer (1.35 mL, 0.1 M ammonium 

bicarbonate solution) and trypsin (80 µL, 0.5 mg/mL, Sigma Aldrich part number 93614) was added. 

The proteins were then digested for one hour (Eppendorf thermal mixer model number 21516-170,  

40 °C, Eppendorf, Stevenage, UK). The digestion was quenched by taking the digest extract (100 µL) 

and adding 0.1% formic acid (300 µL). The sample was centrifuged (13,000 rpm, 5 min) and then the 

supernatant was injected into the LC-MS/MS system. 

 

2.2. LC-MS/MS Analysis of Tryptic Digests  

All analyses was done using an Eksigent ekspert™ microLC 200 UHPLC system (Eksigent, 

Redwood City, CA, USA). The extracts (10 µL injection, full loop fill mode) were separated on  

a reversed-phase Triart C18 column (100 × 0.5 mm, 2.7 μm, YMC, Dinslaken, Germany) at a 

temperature of 40 °C using the gradient conditions shown in Table 1 where A was water, B was 

acetonitrile with both phases containing 0.1% formic acid. Micro LC was used as it had previously 

been shown to improve responses in peptide analysis using electrospray ionization by over 5 fold [11]. 
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Table 1. Gradient elution used for analysis of extracts. 

Step Time (mins) Flow rate % A % B 

1 1 25 μL/min 95 5 

2 6 25 μL/min 75 25 

3 8 25 μL/min 5 95 

4 9 25 μL/min 5 95 

5 9.2 25 μL/min 95 5 

6 12 25 μL/min 96 5 

All analyses were performed on an AB SCIEX QTRAP
®

 4500 LC/MS/MS system (AB SCIEX, 

Warrington, UK) using electrospray ionization (ESI). The initial method development was carried out 

using the MIDAS™ workflow (MRM-initiated detection and sequencing [12]) and for microLC 

analysis the electrode was changed to a microLC hybrid electrode (25 μm ID) designed for  

microLC [13]. For MIDAS a set of predicted MRM transitions from the known protein sequence were 

used as a survey scan to trigger the acquisition of EPI spectra (acquired at a scan speed of 10,000 

amu/s with dynamic fill time and rolling collision energy active and Q1 resolution set to low) an 

example of this is shown in Figure 1.  

Figure 1. Example of a MIDAS experiment where the top pane shows a MRM trace for a 

wheat peptide from a flour extract and the bottom pane shows the triggered enhanced product 

ion (EPI) spectra for the peptide which contains sequence data confirming its identity. 
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This MIDAS data was submitted to a database search engine for confirmation of peptide 

identification and to test the feasibility of the MRM transitions for gluten and species identification. 

With this workflow MRM transitions were designed without the need for synthetic peptides. In the 

final micro LC method the Turbo V™ source conditions used were gas 1, gas 2 and the Curtain Gas™ 

interface set to 30 psi, the temperature of the source was set at 350 °C and the IS voltage was 5500 V. 

The peptides were analyzed using the Scheduled MRM™ algorithm with an MRM detection window 

of 60 s and a target scan time of 0.30 s. Q1 resolution was set to low and Q3 resolution was set to unit. 

MRM transitions shown in Table 2 were evaluated for rye, oats, wheat and barley, and each MRM 

transition used the same declustering voltage (80 V) and entrance potential (10 V). These MRM 

transitions corresponded to the peptides shown in Table 3. 

Table 2. MRM transitions used for triggers for generating EPI spectra and peptide detection. 

Peptide 

ID 

Q1 mass 

(amu) 

Q3 Mass 1 

(amu) 

Q3 Mass 2 

(amu) 

Q3 Mass 3 

(amu) 

RT 

(mins) 
CE (V) CXP (V) 

Wheat 1 557.3 886.5 548.7 787.4 4.2 32 12 

Wheat 2 579.4 897.6 711.5  7.5 33 12 

Wheat 3 458.8 730.4 560.3 458.8 3.9 28 12 

Wheat 4 594.8 792.4 978.5 538.9 7.1 34 12 

Wheat 5 663.8 850.5 779.4 951.7 6.4 37 12 

Wheat 6 538.3 547.3 776.4 705.4 4.1 34 12 

Barley 1 835.4 947.5 1096.5 1227.6 7.4 47 10 

Barley 2 336.2 515.3 554.3 497.3 5.5 13 10 

Barley 3 820.4 1096.5 548.3 713.4 7.4 43 10 

Barley 4 499.3 785.5 575.3 393.3 6.3 24 10 

Barley 5 855.6 980.5 642.4  7.3 38 10 

Oats 1 989 997.6 1084.7 1233.7 7.5 54 10 

Oats 2 777.4 984.4 1112.5 1225.6 6.1 38 10 

Oats 3 627.3 642.4 1012.5  5.8 33 10 

Oats 4 365.1 601.2 473.1  3.8 23 10 

Rye 1 937 1177.6   7.5 46 10 

Rye 1 625 941.6   7.5 24 10 

Rye 2 851.7 1199.7 1071.6 1210.2 7.3 43 10 

Rye 3 997 1225.6   7.4 46 10 

Rye 3 665 1225.6 1128.5  7.4 29 10 

Rye 4 988 1197.7 1100.6  7.5 45 10 

Rye 4 659 1197.7   7.5 29 10 
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Table 3. Marker peptides and sequence information used for gluten species markers (the 

peptide information was taken from searches of the Swiss-Prot database [14]). 

Species Peptide Protein 
Entry 

number 
Peptide sequence 

Hordeum vulgare 

(barley) 

1 B1-hordein P06470 TLPMMCSVNVPLYR 

2 B1-hordein P06470 GVGPSVGV 

3 B3-hordein P06471 TLPTMCSVNVPLYR 

4 B3-hordein P06471 IVPLAIDTR 

5 B3-hordein P06471 
SQMLQQSSCHVLQQ 

QCCQQLPQIPEQLR 

Avena sativa 

(oats) 

1 Avenin-3 P80356 QFLVQQCSPVAVVPFLR 

2 Avenin-3 P80356 SQILQQSSCQVMR 

3 Avenin-3 P80356 QLEQIPEQLR 

4 Avenin-3 P80356 QQCCR 

Secale cereale 

(rye) 

1 
75k gamma 

secalin 
E5KZQ3 NVLLQQCSPVALVSSLR 

2 
75k gamma 

secalin 
E5KZQ4 

EGVQILLPQSHQQHVGQGAL 

AQVQGIIQPQQLSQLEVVR 

3 
75k gamma 

secalin 
E5KZQ5 SLVLQNLPTMCNVYVPR 

4 
75k gamma 

secalin 
E5KZQ5 QCSTIQAPFASIVTGIVGH 

Triticum aestivum 

(wheat) 

1 
Glutenin, subunit 

DY10 
P10387 QVVDQQLAGR 

2 
Glutenin, subunit 

PW212 
P08489 IFWGIPALLK 

3 
Glutenin, subunit 

DY10 
P10387 SVAVSQVAR 

4 
Glutenin, subunit 

DY10 
P10387 LPWSTGLQMR 

5 Beta-amylase P93594 YDPTAYNTILR 

6 
Alpha-amylase 

inhibitor 0.19 
P01085 EHGAQEGQAGTGAFPR 

3. Results 

To test this approach, several samples of grain from single varieties of wheat, rye, barley and oats, 

together with commercial samples of gluten-free flour, oats cookies, gluten free cookies, wheat cookies 

and a self-raising flour (from a local supermarket in the UK) were collected. Each sample of grain was 

milled in a commercially available coffee bean grinder to make single variety flour, and all these 

samples were extracted and analyzed using the described method. Figure 2 shows the comparisons of the 

four different grain flours using a beta amylase marker peptide.  
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Figure 2. The comparison of separate extracts from barley, wheat, rye, oats and gluten free 

flour. Here the chromatograms for three MRM transitions for a specific marker peptide from 

beta amylase (wheat 5 in Table 3) have been shown for each species. 

 

Separate marker peptides were also tested for oats, barley, wheat and rye, which were specific for 

each species; these are shown in Figures 3–6. 
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Figure 3. The comparison of separate extracts from barley, wheat, rye, oats and gluten free 

flour. Here the overlaid chromatograms for oats marker peptides (obtained from the 

theoretical digestion of avenin) have been shown for flour extract for each sample. 
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Figure 4. The comparison of separate extracts from barley, wheat, rye and oats flour. Here 

the overlaid chromatograms for barley marker peptides (obtained from the theoretical 

digestion of hordein) have been shown for flour extracts for each sample. 
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Figure 5. The comparison of separate extracts from barley, wheat, rye and oats flour. Here 

the overlaid chromatograms for rye marker peptides (obtained from the theoretical digestion 

of secalin) have been shown for flour extracts for each sample. 
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Figure 6. The comparison of separate extracts from barley, wheat, rye, oats and gluten-free 

flour. Here four separate peptide chromatograms for wheat marker peptides (obtained from 

the theoretical digestion of glutenin) have been shown for the extracts of each sample. 

 

To further evaluate this approach, three samples of single varieties of wheat grain were obtained and 

extracted and compared with an extraction of gluten-free flour (a mix of tapioca, buckwheat, rice, maize 

and potato flour), as well as a sample of self-raising flour obtained from a local supermarket (Figure 7). 

The method was further evaluated by applying the same extraction and analysis method to a sample of 

gluten-free cake mix and cookies, as well as samples of oats and wheat cookies, to see if it could be 

applied to processed food (Figure 8). To assess linearity and sensitivity, samples of gluten-free flour 

were spiked at different levels with gliadin protein from wheat, which had been purchased from Sigma 

Aldrich (part number G3375, Figure 9). 
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Figure 7. The comparison of separate extracts of several samples of wheat obtained from 

single variety grain samples, as well as a sample of gluten-free flour and self-raising flour 

obtained from a local supermarket using the wheat peptides in Table 3. 
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Figure 8. The comparison of extracts from several samples of food collected from a local 

supermarket and analyzed for gluten markers for oats and wheat. 
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Figure 9. The calibration line obtained from the spiking of gliadin into gluten-free wheat 

from the range of 5–200 ppm for wheat peptide 3. Inlayed in the calibration line is the 

chromatogram for the 10 ppm spike of gliadin into gluten-free flour. The calibration line was 

a linear 1/x fit with r = 0.9944. 

 

4. Discussion  

Similar to current R5 antibody based ELISA methods, LC-MS/MS marker peptides can be found 

which are present in all gluten varieties, with the exception of oats as shown in Figure 2, where the use of 

a tryptic peptide from the protein beta amylase was present in wheat, barley and rye, but absent in oats. 

This marker gave a consistent MRM ratio for the three peptide MRM transitions across all three species 

and is a good marker to replicate the results of R5 antibody ELISA based methods which are positive to 

only wheat, rye and barley. However, LC-MS/MS differs to ELISA in that specific markers from the 

individual species of oats, rye, barley and wheat can also be developed. Figures 3–6 show how 

individual markers for each of these species can be used to distinguish different species by LC-MS/MS 

and specifically confirm whether oats had been used as a replacement to wheat. LC-MS/MS offers an 

advantage over ELISA based methods in that you can use multiple peptide markers with multiple MRMs 

for each peptide to confirm the presence of the gluten species in the sample. One question that had been 

asked was that if LC-MS/MS was so specific, would it be affected by the variety of the species in the 

sample? To test this hypothesis, several single varieties of wheat grain were obtained from a grain 

supplier. These were then ground and the resulting flour extracted to test the effect of variety of wheat on 

the peptides detected. In Figure 7 the comparison of four peptide markers for wheat, across different 

samples of flour, were compared. What is immediately apparent is that all the peptides are seen in all the 

samples with the exception of the gluten-free flour. These wheat varieties included commercial 

self-raising flour obtained from a supermarket, as well as hard and soft wheat varieties. From the peptide 

responses, you can also see that the relative responses are the same for three out of the four, with only 

one marker significantly higher in variety 3, but this may have been as a result of the change in matrix 

interference for this particular sample. This clearly indicates that the majority of LC-MS/MS markers 
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which have been found are independent of variety used to produce the wheat flour and are just  

species specific. 

One of the important tests for the feasibility of the use of LC-MS/MS was its ability to detect gluten in 

processed food. In processed food, ELISA kits have been shown to fail to pick up allergens due to 

processing changes in the protein structure which then prevent the antibody binding and this leads to 

false negatives [15]. Also, due to the fact that ELISA methodology just relies on one protein region, 

unspecific binding has also been shown which has led to false positives in some instances [16]. In this 

work, the LC-MS/MS method was applied to some cookies as well as gluten-free flour to determine its 

ability to detect the markers in processed food. In Figure 8 it can clearly be seen that LC-MS/MS can 

detect the markers in the processed food and distinguish between varieties. In the case of the oats cookie, 

wheat and oats had been used in its manufacture and markers for both varieties were detected (barley and 

rye were not present in any sample, although not shown in this figure). However, in the wheat cookie, 

only wheat was used and this is the only species detected. In the gluten-free products, no gluten markers 

were detected. 

A final test was linearity of response and the sensitivity of the method. To test both of these, 

gluten-free flour was spiked with gliadin (wheat protein obtained commercially) from a range of  

5–200 ppm. A calibration line, shown in Figure 9, for one of the peptides clearly shows that the 

LC-MS/MS response obtained for this wheat marker was linear—this was typical of the other markers 

used for wheat—and for this marker a 10 ppm spike could be easily detected. Marker peptides therefore 

could be detected at 5–10 ppm levels in the spiked sample of gluten-free flour even though the current 

sample preparation used an 80-fold dilution of the original sample. 

5. Conclusions 

This work has demonstrated that LC-MS/MS can be used to detect gluten in processed food and food 

ingredients. The work demonstrated that markers can be obtained which are specific for each individual 

species of gluten. The presence of these multiple markers for individual species were not variety 

dependent, as shown in a test of several single varieties of wheat flour (where all the same markers were 

detected), but some were species-dependent. As well as species dependent markers, markers for proteins 

that are present in rye, wheat and barley, but absent in oats, can also be added to the method to mimic the 

behavior of the R5 antibody based ELISA method to generally pick up the species that are high in gluten 

and affect people who suffer from Celiac disease. The method has been shown to detect levels of  

5–10 ppm gluten proteins in gluten-free flour and offers an extended linear response which is envisaged 

to be a lot larger than that normally obtained for ELISA assays. Further to this, as the current method 

actually involves an 80-fold dilution of the sample, before injecting onto the LC-MSMS system, it offers 

the potential of detecting low ppm (0.5–5 ppm) when an SPE protocol is used to collect concentrate and 

purify the peptide markers. 

The presence of multiple markers for each gluten variety and the potential of acquiring MRM 

triggered product ion scans [12], offers multiple points for confirmation of gluten contamination and 

provide confidence in the results, and reduces the risk of false positives and false negatives which can 

occur in ELISA assays. 
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