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Abstract: A concentrated form of cell free extract (CFE) derived from attenuated 

Lactococcus lactis supsb. lactis 303 CFE was encapsulated in liposomes prepared from 

two different proliposome preparations (Prolipo Duo and Prolipo S) using 

microfluidization. Entrapment efficiencies of 19.7 % (Prolipo S) and 14.0 % (Prolipo Duo) 

were achieved and the preparations mixed in the ratio 4 (Prolipo Duo):1 (Prolipo S). 

Cheddar cheese trials were undertaken evaluating the performance of CFE entrapped in 

liposomes, empty liposomes and free CFE in comparison to a control cheese without any 

CFE or liposomes. Identical volumes of liposome and amounts of CFE were used in 

triplicate trials. The inclusion of liposomes did not adversely impact on cheese composition 

water activity, or microbiology. Entrapment of CFE in liposomes reduced loss of CFE to 

the whey. No significant differences were evident in proteolysis or expressed PepX activity 

during ripening in comparison to the cheeses containing free CFE, empty liposomes or the 

control, as the liposomes did not degrade during ripening. This result highlights the 

potential of liposomes to minimize losses of encapsulated enzymes into the whey during 

cheese production but also highlights the need to optimize the hydrophobicity, zeta 

potential, size and composition of the liposomes to maximize their use as vectors for 

enzyme addition in cheese to augment ripening. 
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1. Introduction 

Acceleration of cheese ripening has been proposed as a way to produce a fast ripening curd for 

processed cheese or to reduce costs associated with cheese manufacture [1]. Different strategies for 

acceleration of cheese ripening have been described with the addition of exogenous enzymes being the 

most studied technique [1–3]. The addition of exogenous enzymes is an accepted method to accelerate 

Cheddar cheese ripening, however significant amounts of enzyme are lost to the whey and can have 

adverse effects on whey quality [1]. Hence, the use of encapsulated enzymes has evolved as a method 

to combat losses to whey [4] and improve enzyme retention in the curd [5]. Previous studies have 

identified liposomes as suitable vectors for the inclusion of enzymes into cheese as they have a high 

affinity for milk fat and can encapsulate sufficiently large quantities of water soluble material [6]. 

Previous studies have described the acceleration of cheese ripening with enzymes encapsulated in 

liposomes [7–13]. Food-grade water soluble enzymes can be encapsulated in liposomes using milk fats 

or different food-grade proliposomes [6,14], and losses to whey may be minimized as liposomes 

partition with the fat globules and the casein matrix when added to the milk [1]. Microfluidization, is a 

homogenization method based on the use of relatively high pressures, and has been described in the 

manufacture of liposomes [7,14–16]. In contrast with other liposome preparation methods, 

microfluidization does not require organic solvents and is easy to scale up, making it suitable for large 

scale food grade applications [7,15,17]. 

The objectives of this study were to evaluate the impact of the addition of cell-free extracts (CFE) 

of Lactococcus lactis subsp. lactis 303 and liposome-encapsulated CFE of Lactococcus lactis subsp. 

lactis 303 on the ripening of Cheddar cheese. CFE of Lactococcus lactis subsp. lactis 303 was 

produced by microfluidization and subsequently encapsulated in two liposome preparations with 

different phospholipid compositions. Losses of key intracellular enzymes were monitored during 

production and ripening together with, microbiological analyses and physico-chemical characteristics 

of the cheeses (composition, water activity and microscopy). Descriptive sensory analysis and volatile 

profiling were also determined at 112 days ripening. 

2. Results and Discussion 

2.1. Lactococcus lactis subsp. lactis 303 CFE Manufacture and Encapsulation in Liposomes 

Total cell counts in 10% reconstituted skim milk (RSM) before tyndallization were  

1.0 × 10
3 

CFU/mL after which bacteria were not detected (data not shown). Lactococcus lactis subsp. 

lactis 303 cells were grown to 1.1 × 10
10

 CFU/mL (Table 1) and following microfiltration (MF) the 

retentate was processed through the microfluidizer and subsequently freeze-dried. There was a small 

decrease in cell numbers post microfluidization (9.0 × 10
9
 CFU/mL) (Table 1). 
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Table 1. Total cell counts and enzyme activities of post-proline dipeptidyl aminopeptidase 

(PepX) and lactate dehydrogenase (LDH) determined at the different stages of the cell free 

extract (CFE) preparation. 

Sample 

Total cell counts 

(CFU/mL or 

CFE/g) * 

PepX 

(mM AMC/min·mL or 

CFE/g) * 

LDH 

(units/mL or 

CFE/g) * 

In RSM after inoculation 5.0 × 106 b nd nd 

In RSM after growth 1.1 × 1010 c 3.77 ± 0.01 a 0.00 ± 0.00 a 

After microfluidization (4000 psi) 9.0 × 109 c 25.20 ± 0.01 b 1.31 ± 0.14 b 

Freeze-dried microfluidized cells ** 4.2 × 1010 c 208.69 ± 14.75 c 13.8 ± 0.37 c 

Freeze-dried CFE ** 0 a 1333.1 ± 116.07 d nd 

* Within each column, values with different superscript letters are significantly different (p < 0.05); ** Values for  

freeze-dried samples are expressed per g of freeze-dried powder, all other values are expressed per mL; nd: Not 

determined; RSM: Reconstituted skim milk; CFU: Colony-forming units; AMC: 7-Amino-4-methyl coumarin. 

In the RSM after growth, low level of PepX activity was determined but no LDH activity was 

detected indicating minimal lysis of the bacterial cells at this stage (Table 1). After one pass through 

the microfluidizer, there was a significant increase in both PepX and LDH activities (p < 0.05) and 

~18% reduction of viable cells due to cell disruption of Lactococcus lactis subsp. lactis 303 cells. The 

total cell counts, PepX and LDH activity increased in the microfluidized cells after freeze drying due 

to a concentration effect and additional cell lysis as cell counts and enzyme activities are expressed on 

weight basis rather than on a volume basis. No viable cells were present in the freeze dried CFE as 

anticipated and the level of Pep X activity was very high due to the fact that it was concentrated in the 

cell extract (Table 1). This result also highlights the fact that it is possible to freeze dry CFE and 

maintain peptidase activity. 

Encapsulation of Lactococcus lactis subsp. lactis 303 CFE was undertaken in two types of 

proliposomes (Duo and S). The amount of PepX activity in the water soluble 303 CFE used to 

manufacture the Cheddar cheese samples is given in Table 2. The Prolipo Duo preparation has a lower 

zeta potential than Prolipo S (Table 2) preparation because it contains more negatively charged 

phospholipids. Lower zeta potential values are associated with greater liposomal stability. A liposome 

with a low zeta potential can cause electrostatic repulsions, which in turn may prevent destabilization 

processes, such as coalescence and aggregation [6]. During the encapsulation process, a substantial 

amount of CFE remained unbound to the liposomes (>70%). The encapsulation efficiency of 303 CFE 

was 19.7% for Prolipo S and 14.0% for Prolipo Duo (Table 2) which was not significantly different  

(p ≥ 0.05). Encapsulation efficiency of CFE in liposomes made with Prolipo S up to 58.4% has been 

reported for a cell free extract of Lactobacillus casei subsp. pseudoplantarum [12] and lower 

encapsulation efficiency in liposomes of 12.7% for cryopsin has been described [13].  

Nongonierma et al. [14] reported enzyme entrapment efficiencies of 62.7% in Prolipo C and 29.2% in 

Prolipo S for Debitrase DBP20. In Prolipo VPF 012, encapsulation efficiencies of 32%–36% have 

been reported for bacterial and fungal proteinases [8], 35.9% for Palatase M and 40.3% for  

Lipase 50 [10]. Liposomal encapsulation as low as 12.7% for cryopsin was shown to accelerate 

proteolysis in Manchego cheese [13], therefore the encapsulation efficiencies achieved in this study 
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were deemed appropriate to positively influence acceleration of proteolysis and thus flavor in  

Cheddar cheese. 

Table 2. Zeta potential and enzyme activity of post-proline dipeptidyl aminopeptidase 

(PepX) from Lactococcus lactis ssp. lactis 303 cell-free extract (CFE) encapsulated in the 

liposomes S and Duo at the levels which were used for the cheese trials. Each value is the 

average of triplicate determinations (n = 3). 

 Zeta 

potential 

Total activity Unbound Encapsulated 

 PepX activity * % total activity PepX activity * % total activity PepX activity * % total activity 

Prolipo S −17.0 822.1 ± 273.1 100.0 610.4 ± 216.1 74.2 a 162.2 ± 33.4 19.7 b 

Prolipo Duo −39.3 3275.0 ± 1073.8 100.0 2448.4 ± 905.6 74.8 a 459.4 ± 144.5 14.0 b 

* PepX activity is expressed in µmol pNA/min·mL; Values with different superscript letters are significantly different (p < 0.05). 

The final preparation used in the cheese-making trials contained a mixture of both Proliposome 

preparations at a ratio of 4 parts Prolipo Duo and 1 part Prolipo S. This mixture was utilized as the 

Prolipo Duo liposomes are more hydrophobic than the Prolipo S and should partition better with the 

milk fat globule membrane and the casein matrix during cheese production increasing retention in the 

cheese curd [1,6]. It has been suggested that liposomes are distributed in the curd in the same fashion 

as bacterial cells [3], where liposomes behave as a carrier for different enzyme activities similarly to 

bacterial cells. However, it is believed that enzyme release from liposomes occurs at a faster rate than 

from bacterial cells [3,18]. Although the mechanisms of enzyme release from liposomes in cheese are 

poorly understood [5]. It has been suggested that enzyme release from liposomes in cheese may 

involve various parameters including temperature, pH and ionic strength [9]. In addition, it is thought 

that liposome degradation in cheese may occur following aggregation processes which are favored at 

low pH values. It has been shown that a decrease from pH 7 to 5 was responsible for the release of 

active agent (calcein) encapsulated in liposomes [19]. Several studies have demonstrated the potential 

of liposome encapsulated enzymes as a means to accelerate cheese ripening [10–12], by reducing 

losses to whey [4]. 

2.2. Influence of CFE and Encapsulated CFE on the Composition and Water Activity of the Cheeses 

The composition of the cheeses was determined at day 14 (Table 3). No significant differences  

(p ≥ 0.05) were evident for moisture, fat, protein, salt or pH between the four cheeses (Table 3). This 

suggested that addition of encapsulated or non-encapsulated 303 CFE did not adversely impact on the 

composition of the cheese, which is in agreement with Bainville et al. [20]. 
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Table 3. Composition of the cheese samples determined at day 14 of ripening. Each value 

is the average of triplicate determinations (n = 3). Cheese 1, Control; Cheese 2, cheese with 

empty liposomes S and Duo; Cheese 3, cheese with liposomes S and Duo containing the 

encapsulated Lactococcus lactis ssp. lactis 303 cell-free extract (CFE); Cheese 4, cheese 

with Lactococcus lactis ssp. lactis 303 CFE. 

 Moisture 

(% w/w) 

Fat 

(% w/w) 

Protein 

(% w/w) 

Salt 

(% w/w) 

Water  

activity 

pH 

Cheese 1 39.19 ± 1.03 a 29.63 ± 0.68 a 24.95 ± 0.62 a  1.79 ± 0.23 a 0.967 ± 0.002 a 5.12 ± 0.11 a 

Cheese 2 39.29 ± 0.96 a 29.78 ± 0.65 a 24.87 ± 0.44 a  1.72 ± 0.17 a 0.972 ± 0.005 a 5.08 ± 0.07 a 

Cheese 3 39.31 ± 0.83 a 29.67 ± 0.68 a 24.82 ± 0.32 a  1.74 ± 0.12 a 0.969 ± 0.002 a 5.12 ± 0.09 a 

Cheese 4 38.68 ± 0.89 a 29.92 ± 0.58 a 25.19 ± 0.61 a  1.95 ± 0.22 a 0.970± 0.002 a 5.16 ± 0.12 a 

Within the same column, values with similar superscript letters are not significantly different (p ≥ 0.05). 

Some textural defects have also been associated with addition of liposomes into cheeses, which is 

thought to be due to an increase in cheese moisture [7,8,10–12]. An increase in the cheese moisture has 

been associated with water binding at the liposome surface [12]. In addition to the increased moisture, 

the associated decrease in the protein content can lead to a less firm and more brittle cheese  

structure [8]. In contrast, Lariviere et al. [7] showed that apart from increased moisture levels, cheeses 

with liposomes did not have any negative textural issues in comparison to a control cheese without 

liposome addition. No significant differences (p ≥ 0.05) were noted in water activity between the 

cheeses, highlighting that not only was there no differences in moisture, but that water activity was not 

altered by the inclusion of liposomes. Lower water activity is known to reduce rates of proteolysis in 

cheese [21]. 

2.3. Enumeration of Starter and Non-Starter Lactic Acid Bacteria and Enzyme Activities during 

Cheese Ripening 

Evolution of LAB and NSLAB were monitored during the ripening in each cheese (Figure 1). As 

anticipated, LAB counts (Figure 1a) decreased and NSLAB increased during ripening (Figure 1b). The 

decrease in LAB has been attributed to the changes in the cheese matrix including reduction in pH, 

lactose content and an increase in salt concentration [5]. There were no significant differences in the 

cell counts determined for the four cheeses both for LAB and NSLAB (p ≥ 0.05). 
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Figure 1. Microbiological count in different cheeses for (a) lactic acid bacteria (LAB) and 

(b) non-starter lactic acid bacteria (NSLAB) as a function of ripening time. Each point is 

the average of three determinations (n = 3). Cheese 1, Control; Cheese 2, cheese with 

empty liposomes S and Duo; Cheese 3, cheese with liposomes S and Duo containing the 

encapsulated Lactococcus lactis ssp. lactis 303 cell-free extract (CFE); Cheese 4, cheese 

with Lactococcus lactis ssp. lactis 303 CFE. 

(a) 

 

(b) 

 

PepX and LDH activities were measured in the curd and whey samples during production of each 

cheese. Only residual activities for LDH from starter LAB were found as anticipated (data not 

reported), as cell lysis does not normally occur in the early stages of cheese making [22]. There were 

no significant differences between PepX activities of the different curd samples (p ≥ 0.05), but there 

were significant differences (p < 0.05) in PepX activity in the whey samples (Figure 2). 
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Figure 2. Post-proline dipeptidyl aminopeptidase (PepX) in the curd and whey from the 

different cheese samples. Each point is the average of three PepX determinations (n = 3). 

For the whey or curd samples, figures with different letters are significantly different  

(p < 0.05). Cheese 1, Control; Cheese 2, cheese with empty liposomes S and Duo;  

Cheese 3, cheese with liposomes S and Duo containing the encapsulated Lactococcus lactis 

ssp. lactis 303 cell-free extract (CFE); Cheese 4, cheese with Lactococcus lactis ssp. lactis 

303 CFE. 

 

Significantly higher PepX activities were measured in the whey in Cheeses 3 and 4, compared to 

Cheeses 1 and 2 (p ≥ 0.05). As Cheeses 1 and 2 did not contain additional CFE it was anticipated that 

levels should be similar and lower than Cheeses 3 and 4. The fact that levels of Pep X are significantly 

higher (p < 0.05) in Cheese 4 highlights that significant amounts of the added free CFE were lost to the 

whey at drainage. The fact that additional levels of PepX activity were not found in curds and that 

lower levels were in the whey in Cheese 3 in comparison to Cheese 4 indicates that additional CFE is 

incorporated into the curd within the liposome preparations. 

PepX and LDH activities were monitored in the different cheeses over 112 days of ripening. There 

were no significant (p ≥ 0.05) differences between the four cheese for PepX or LDH activity. Both 

LDH and PepX (Figure 3a,b) activities increased numerically during ripening. LDH levels increased 

up to day 56 and then dropped up to day 84 and increased again up to day 112 in all cheeses  

(Figure 3a). The initial increase in LDH activity is likely related to lysis of starter LAB (Figure 1a), 

and the later increase presumably due to a combination of continued lysis of starter LAB and lysis of 

NSLAB. Even though NSLAB were seen to numerically accumulate (Figure 1b) at this time point, it is 

anticipated that a percentage will also autolyse [23]. PepX activity increased rapidly between day 0 

and 28 and then leveled off (Figure 3b). 
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Figure 3. (a) Lactate dehydrogenase (LDH) activity in the different cheese samples as a 

function of ripening time. (b) Post-proline dipeptidyl aminopeptidase (PepX) activity in the 

different cheese samples as a function of ripening time. Each point is the average of three 

determinations (n = 3). Cheese 1, Control; Cheese 2, cheese with empty liposomes S and 

Duo; Cheese 3, cheese with liposomes S and Duo containing the encapsulated  

Lactococcus lactis ssp. lactis 303 cell-free extract (CFE); Cheese 4, cheese with 

Lactococcus lactis ssp. lactis 303 CFE. 

(a) 

 

(b) 

 

2.4. Evolution of Proteolysis in Cheeses over Ripening 

No significant differences (p ≥ 0.05) could be determined for pH 4.6 water soluble nitrogen/total 

nitrogen (WSN/TN%) (Figure 4a), or total free amino acids (TFAA) (Figure 4b), between all four 

cheeses during ripening. No difference in primary proteolysis as measured by pH 4.6 WSN/TN% was 

anticipated, as the CFE added in Cheeses 3 and 4 contained only peptidase activity and as the added 

liposomes in Cheeses 2 and 3 did not influence composition or water activity, levels of primary 

proteolysis should not be different between these cheeses. However, it was anticipated that levels of 

secondary proteolysis would have been significantly higher in Cheese 3 and maybe Cheese 4 due to 

additional levels of added CFE in encapsulated or in free form, respectively. As no TFAA differences 

were evident and no statistical differences were found in PepX activity between the cheeses this 
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indicates that the concentration of CFE added in Cheeses 3 and 4 was either (1) insufficient to 

influence secondary proteolysis, (2) most PepX activity was lost at whey drainage (Figure 2), a definite 

factor in Cheese 4, or (3) in the case of Cheese 3, the liposomes remained intact throughout ripening 

and did not release sufficient additional Pep X activity (Figure 3b). It is notable that as differences of 

PepX lost to the whey were significantly less in Cheese 3, and levels within the curd in Cheese 3 and 4 

were similar, this suggests that the liposomes in Cheese 3 did not rupture significantly during ripening. 

Figure 4. (a) pH 4.6 Water soluble nitrogen/total nitrogen (WSN/TN) as a function of 

ripening time of the different cheeses. (b) Average total free amino acids (TFAA). Each 

point is the average of three determinations (n = 3). Cheese 1, Control; Cheese 2, cheese 

with empty liposomes S and Duo; Cheese 3, cheese with liposomes S and Duo containing 

the encapsulated Lactococcus lactis ssp. lactis 303 cell-free extract (CFE); Cheese 4, 

cheese with Lactococcus lactis ssp. lactis 303 CFE. 

(a) 

 

(b) 

 

2.5. Cryo SEM of Liposomes within Cheese Curd up to 28 Days of Ripening 

Cryo SEM was utilized to visualize the liposomes after manufacture and to determine their presence 

and location in the cheese. The liposomes had a heterogonous size as seen in the micrographs on 

Figure 5a,b. Similar results have already been reported with liposomes manufactured with Prolipo S 

and C showing a bimodal distribution made of populations of small (30–40 nm) and large vesicles 

(300–700 nm) [14]. 
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Figure 5. (a) and (b), cryogenic-scanning electron micrography (Cryo SEM) of liposomes. 

Cryo SEM of the control cheese (Cheese 1) and the cheese with liposomes S and Duo 

containing the encapsulated Lactococcus lactis ssp. lactis 303 cell-free extract (Cheese 3). 

Cryo SEM at day 1 for (c) Cheese 3 and (d) Cheese 1 and at day 28 for (e) Cheese 3 and  

(f) Cheese 1. Some liposomes are circled on micrographs. 

(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

 

(f) 

 

Analysis of cheeses with (Cheese 3) and without (Cheese 1) liposomes was carried out to visualize 

the liposomes in the cheese at day 1 and 28. Granular particles seen in Cheese 3 (Figure 5c) and absent 

from Cheese 1 (Figure 5d) at day 1 were identified as liposomes. At day 28, liposomes could be clearly 

seen on the micrograph of Cheese 3 (Figure 5e) which again were absent in Cheese 1 (Figure 5f), as 

expected. The micrographs confirmed that liposomes partitioned with the curd during cheese 
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production. The liposomes could still be visualized as intact particles within the cheese mass after  

28 days ripening, we did not analyze any cheese samples later in ripening as we were anticipating early 

rupture based on previous studies [7,8]. In agreement with previous findings, the liposomes seen on the 

micrographs were located at the fat-casein interface and also existed as single particles which were 

distributed throughout the cheese curd, but were fully intact at day 28. 

2.6. Descriptive Sensory Analysis and Volatile Profiles of Cheeses at Day 112 

The sensory attributes and volatile profiles of each cheese were studied at day 112. The relative 

concentrations of identified aroma compounds in each cheese are reported in Table 4. 

Table 4. Concentration of volatile compound in the different Cheddar cheeses relative to 

the internal standard 2-methyl-3-heptanone. Cheese 1, Control; Cheese 2, cheese with 

empty liposomes S and Duo; Cheese 3, cheese with liposomes S and Duo containing the 

encapsulated Lactococcus lactis ssp. lactis 303 cell-free extract (CFE); Cheese 4, cheese 

with Lactococcus lactis ssp. lactis 303 CFE. 

Volatiles 
Concentration of volatiles (µg/kg) in the different cheese samples * 

Cheese 1 Cheese 2 Cheese 3 Cheese 4 

Methanethiol 2.18 a 3.80 a 3.86 a 3.02 a 

Ethyl alcohol 196.78 b 347.96 a, b 350.35 a 248.24 a, b 

Propanol 355.71 a, b 373.39 a, b 55.58 b 686.59 a 

Carbon disulfide 24.73 a 15.69 a 21.22 a 17.24 a 

2-Butanone 641.36 a 654.36 a 400.35 a 977.05 a 

2-Butanol, (R)- 736.40 a 776.54 a 1597.63 a 1096.35 a 

2-Pentanone 13.95 b 28.24 b 86.34 a 33.04 b 

Acetoin 39.43 a 148.11 a 134.13 a 54.22 a 

Methyl butanoate 5.60 a 7.17 a 9.02 a 6.26 a 

Ethyl butanoate 42.24 b 374.76 a 145.41 a, b 184.72 a, b 

Pentanoic acid 3.94 a 6.17 a 7.47 a 5.20 a 

2-Heptanone 17.63 b 38.24 a 25.44 a, b 26.69 a, b 

Heptanal 1.87 b 4.32 a 2.88 a, b 2.75 a, b 

2,6-Dimethyl-pyrazine 0.00 b 0.00 b 0.00 b 0.23 a 

Methyl hexanoate 5.47 a 7.95 a 8.46 a 5.85 a 

Dimethyl trisulfide 10.25 a 20.27 a 14.98 a 8.90 a 

Ethyl hexanoate 7.13 a 11.79 a 11.22 a 9.38 a 

Benzeneacetaldehyde 2.50 a 5.13 a 5.05 a 2.54 a 

2-Nonanone 2.95 b 6.63 a 3.99 a, b 4.84 a, b 

Nonanal 5.73 a 16.30 a 4.04 a 8.73 a 

2-Ethyl-hexanoic acid 0.73 a 1.07 a 1.42 a 0.68 a 

Methyl octanoate 0.96 a 1.11 a 0.93 a 0.70 a 

Hexanoic acid 10.17 a 14.85 a 9.16 a 7.48 a 

2,5-Dihydro-3-methyl-furan 4.35 a 5.45 a 4.20 a 2.87 a 

Ethyl octanoate 0.65a 1.26 a 1.18 a 1.15 a 

* Within the same row, compound concentration with a different superscript letter are significantly different  

(p < 0.05).  

(e) 

(f) 
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The different volatile compounds originate from free fatty acids, carbohydrates and amino  

acids [24,25]. Similar volatiles have previously been identified in Cheddar cheese [26]. Many volatile 

compounds were found at the same concentration in all cheeses, but some significant (p < 0.05) 

differences were apparent. Significant differences (p < 0.05) in sensory attributes were also apparent 

between the cheeses at day 112. Figure 6 is a PCA biplot that best discriminates each cheese at  

day 112 based on both their sensory attributes and volatile compounds. Cheeses 2 and 3 were closely 

associated with each other, but not with any particular sensory attributes. However, they were 

associated with the most volatiles compounds; acid (2-ethyl hexanoic acid), esters (methyl butanoate 

and methyl hexanoate), ketones (2-pentanone and acetoin), aldehydes (nonanal and 

benzeneacetaldehyde), alcohol (2-butanol) and sulphur (di-methyl tri-sulphide) compounds. Cheese 4 

was associated with the sensory attributes “cowy”, “mothball” and “catty”, some of which are 

associated with more aged Cheddar cheese [27,28] and the volatiles; alcohol (propanol),  

ketone (2-butanone), pyrazine (2,6-di-methyl pyrazine) and furan (2,5-di-hydro-3-methyl furan). 

Cheese 1 was associated with the sensory attribute “sour” and the sulphur compound Carbon 

disulphide and clearly had the least developed flavor. 

Figure 6. Principal component plot of cheese volatile compounds and of descriptive 

analysis of cheese flavors (PC1 and PC2) evaluated at day 112. Numbers refer to cheeses: 

1, Control; 2, cheese with empty liposomes S and Duo; 3, cheese with liposomes S and 

Duo containing the encapsulated Lactococcus lactis ssp. lactis 303 cell-free extract (CFE); 

4, cheese with Lactococcus lactis ssp. lactis 303 CFE. 
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3. Experimental Section 

3.1. Preparation of Lactococcus lactis subsp. lactis 303 CFE  

A volume of 15 L of 10 % (w/v) reconstituted skimmed milk (RSM-Kerry Ingredients, Co. Cork, 

Ireland) was prepared by dispersing skimmed milk powder in deionized water at room temperature. 

This was transferred to a sterile 18 L fermentor (Braun Biostat ED, Melsungen, Germany). The milk 

was sterilized using a tyndalization procedure where the 10% RSM was heated 3 times at 100 C for 

15 min and cooled down to 23 C, over 3 days. This heat treatment did not cause any visible change in 

the media. Samples were analyzed for total cell counts 24 h after heat treatment. The 10% RSM was 

aseptically inoculated with Lactococcus lactis subsp. lactis 303 strain at 0.1%, v/v (i.e., 15 mL of  

Lactococcus lactis subsp. lactis 303 culture in the 15 L RSM). The Lactococcus lactis subsp. lactis 

303 cells were grown in 10% RSM until the pH reached 5.2 (~17 h) without agitation at 23 C. The 

grown culture was agitated at 100 rpm and an aqueous solution of NaOH 1 M (Fisher Scientific 

Ireland, Dublin, Ireland) was aseptically added until pH 7.0 was achieved. The culture was 

concentrated by microfiltration (Techsep PS3R, Novasep, Pompey, France) using a ceramic membrane 

M14 (0.14 µm pore diameter). The inlet and outlet pressures of the microfiltration unit were set at  

2.5 and 2.0 bars, respectively. Microfiltration was carried out for ~6 h with a final retentate volume of 

~3.5 L and a permeate volume of ~5.5 L. The concentrated culture was microfluidized using a 

Microfluidics M-110-EH-30 (Microfluidics, Newton, MA, USA) equipped with a Y interaction 

chamber at 4000 psi at 16 C under aseptic conditions. The microfluidized mixture was freeze-dried 

using a Labconco Freezone 12 Plus dryer (Fisher Scientific). The freeze dried powder was vacuum 

packed sealed and stored at −20 C until required. 

3.2. Preparation of Lactococcus lactis subsp. lactis 303 CFE 

A water soluble extract of Lactococcus lactis subsp. lactis 303 (303) cells was prepared by 

suspending the freeze-dried 303 in 25 mM Tris-HCl buffer at pH 7.4 to a final concentration of  

10% (w/w) at room temperature. The insoluble part of the enzyme preparation was removed by 

centrifugation using a Sorvall 5U (Unitech, Dublin, Ireland) at 3500× g, 15 min at 21 °C and the 

supernatant was recovered. 

3.3. Encapsulation of CFE in Liposomes 

Two different food grade Proliposome preparations were studied: Prolipo S and Prolipo Duo (Lucas 

Meyer Cosmetics, Champlan, France). Prolipo S contains 30% (w/w) of unsaturated soybean 

phospholipids and 70% (w/w) of aqueous media (a mixture of ethanol or water and glycerol).  

Prolipo Duo contains 50% (w/w) of unsaturated soybean phospholipids and 50% (w/w) of aqueous 

media [14,29]. The liposomes were prepared according to the procedure of Dufour et al. [9] and as 

described in Nongonierma et al. [14]. Briefly, 64 g of Prolipo Duo or 16 g of Prolipo S were mixed 

with 256 mL or 64 mL, respectively of the 10% (w/v) 303 CFE solution under agitation with an 

overhead stirrer RW 20DZM (Janke and Kunkel, Staufen, Germany) at 300 rpm for 15 min. A volume 

of 480 mL and 120 mL of 25 mM Tris-HCl at pH 7.4 was added to the Prolipo Duo/CFE and the 
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Prolipo S/CFE preparations, respectively and agitated at 500 rpm for 15 min using the overhead stirrer. 

Each preparation was processed in one pass through the M-110-EH-30 Microfluidizer (Microfluidics) 

equipped with a Y interaction chamber at 4000 psi, at 16 °C. Liposomes without CFE were prepared in 

the same fashion as described above using an equivalent volume of 25 mM Tris-HCl buffer at  

pH 7.4 in place of the CFE. The zeta potential of the liposomes was measured at 21 °C, with photon 

correlation spectrometry using a Zetasizer Nano ZS (Malvern Instruments, Worcestershire, UK) as per 

Nongonierma et al. [14]. 

3.4. Cheese Manufacture 

The starter cultures used for the production of all cheeses was Lactococcus lactis ssp. lactis 303 

(Chr. Hansen Ireland Limited, Little Island, Ireland). The culture was maintained in 10% RSM at  

−80 C and grown overnight at 23 C in heat-treated RSM until the pH reached ~4.9. The inoculum 

level was 1.5% (v/v) of Lactococcus lactis ssp. lactis 303 per 250 L of cheesemilk. 

The liposome preparations, were mixed in the following ratio; 4 (Prolipo Duo):1 (Prolipo S) (Lipo) 

and 1 L was added to 250 L of the milk immediately after the addition of the starter. An experimental 

design was used to study the impact of the addition of 303 CFE and encapsulated 303 CFE on cheese 

ripening. The experimental design was as follows; Cheese 1 did not have any 303 CFE or Lipo added; 

Cheese 2 contained only Lipo, Cheese 3 contained Lipo plus encapsulating 303 CFE and Cheese 4 

contained only 303 CFE. The volume of added material was identical in all cases. Cheddar cheeses 

were manufactured in triplicate using a standard cheese making procedure described by  

Wilkinson et al. [30]. The rennet ChyMax Plus (Chr. Hansen) was used at a rate of 18 mL per 100 L of 

milk. Cheddar cheeses were produced in triplicate at pilot scale and the vats were rotated for each 

cheese trial to avoid contribution from any vat-related factors. On the day of production, bulk whey 

and bulk curd were sampled for microbiology, enzymology and proteolysis. Cheddar cheeses were 

packed under vacuum at day 1 and ripened at 8 C for 112 days. The cheeses were sampled at day 1, 

14, 28, 56 and 112 for determination of enzyme activities and microbiological analyses. Composition 

of the cheese was assessed at day 14. 

3.5. Determination of the Enzyme Activity 

3.5.1. Determination of Enzyme Activities in the CFE Samples 

For the samples generated during the manufacture of the CFE, two enzyme assays were carried out: 

post-prolyl di-peptidyl aminopeptidase (PepX) and lactate dehydrogenase (LDH). The enzyme activity 

was measured in the inoculated RSM before and after Lactococcus lactis subsp. lactis 303 growth, in 

the microfiltration permeate and retentate and in the different microfluidized samples. PepX activity 

was measured in curd or whey samples based on their ability to hydrolyse Gly-Pro-7-amino-4-methyl 

coumarin (AMC) (Bachem, Bubendorf, Switzerland). The assay was carried out as modifications of 

the methods described by Habibi-Najafi and Lee [31] and Kilcawley et al. [32]. The substrate  

was made up to 0.111 mM in 50 mM Tris-HCl buffer pH 7.0. A standard curve was prepared  

0–1000 nM AMC. The reaction mixture consisted of 50 μL of microfluidized sample which was added 

with 450 μL of substrate and 500 μL of 50 mM Tris-HCl buffer pH 7.0. The reaction was carried out at  
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37 °C for 15 min. The release of AMC was monitored by fluorometry (Varian Cary Eclipse 

Fluorometer, JVA Analytical Ltd., Dublin, Ireland) at the excitation 370 nm and emission 440 nm. 

Each sample was assayed in triplicate, with a blank consisting of 50 µL of 50 mM Tris-HCl buffer  

pH 7.0. The reaction was terminated by the addition of 250 µL of 1.5 M acetic acid (Sigma Aldrich, 

Dublin, Ireland). The fluorescence reading of the blank was subtracted from that of the samples. The 

release of AMC was calculated by reference to the standard curve where the fluorescence of the 

sample was converted to nmol of AMC. PepX activity was expressed as µmol/min·mL of sample. 

LDH activity was measured as per Cogan et al. [33] by following the rate of change in absorbance 

at 340 nm due to the enzymatic oxidation of pyruvate in the presence of nicotinamide adenine 

dinucleotide (NADH, Sigma Aldrich). LDH activity was determined by mixing 2.7 mL of Tris-maleate 

buffer, pH 7.0 (Sigma Aldrich) with 0.1 mL of 4.5 mM NADH, 0.1 mL of 30 mM  

Fructose 1,6 bis-phosphate (Sigma Aldrich) and 0.1 mL of sample. The reaction was started by the 

addition of 0.1 mL of 300 mM pyruvate (Sigma Aldrich) and the absorbance at 340 nm  

(Varian Cary Bio-100 UV/Vis Spectrometer, JVA Analytical Ltd.) was monitored for 90 s. One unit of 

LDH was defined as the amount of enzyme required to catalyze the oxidation of 1 µM of 

NADH/min·mL of sample. 

3.5.2. Determination of PepX Activity in the Liposomes 

For the liposomes, the encapsulated enzyme was separated from the unbound CFE by 

ultracentrifugation (Discovery 90 SE, rotor T1270, Fisher Scientific, Loughborough, England) at 

85,000× g, at 4 °C over 1 h as described by Nongonierma et al. [14]. PepX activity was quantified 

using H-Gly-Pro-pNA (Bachem) as described by Nongonierma et al. [14]. The enzyme activity PepX 

was measured in the supernatant (unbound enzymes) and in the liposomes which were disrupted using 

the following procedure: 200 μL of liposomes vesicles resuspended in 25 mM Tris-HCl buffer at  

pH 7.4 were mixed with 600 μL of a 2% (v/v) aqueous solution of phospholipase (Novozyme, 

Bagsvaerd, Denmark) and Triton X-100 (Fisons Scientific, Loughborough, England). The enzyme 

encapsulation was determined as per Nongonierma et al. [14]. 

3.5.3. Determination of Enzyme Activities in the Cheese Samples 

Curd and cheese extracts were prepared to measure various enzyme activities (PepX and LDH). An 

amount of 20 g of fresh curd or cheese was mixed with 40 mL of 0.05 M potassium phosphate buffer 

at pH 7.0 in a sterile stomacher bag. This was homogenized in a Stomacher (IUL, Barcelona, Spain) 

for 5 min or until homogenous and 10 mL was centrifuged at 4 °C for 10 min at 10,000× g (Sorvall 5U 

centrifuge, Unitech, Dublin, Ireland). Then the resultant supernatant (1 mL) was added to an eppendorf 

tube and re-centrifuged at 13,000× g for 5 min (Eppendorf 5417C, VWR International, Dublin, 

Ireland). The final supernatant was subsequently diluted as required and assayed for various enzyme 

activities. The whey samples were directly diluted in the adequate buffer used for the enzyme assay. 

All enzyme assays (PepX and LDH) were carried out in triplicate for each cheese trial on the three 

different days of manufacture. 
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3.6. Microbial Analyses 

Total cell counts were estimated in the RSM after inoculation of 303, after growth, in the permeate 

and the retentate and after microfluidization and freeze-drying. Plating was carried out on an LM17 

medium (Merck, Darmstadt, Germany) to determine the total cell count and samples were incubated at 

30 C during 72 h. 

Microbiological analysis of cheese extracts (see Section 3.5.3.) were carried out in duplicate at each 

sampling point. Starters and non-starter lactic acid bacteria (NSLAB) were enumerated as described in 

Hickey et al. [34]. 

3.7. Physicochemical Analysis of the Cheese Samples 

3.7.1. Cheese Composition at Day 14 

Cheese composition for pH, fat, protein, NaCl (salt) and moisture was determined at day 14 as 

described by Hickey et al. [34]. 

3.7.2. Determination of Individual Free Amino Acids 

Individual free amino acids (FAA) were determined on 24% trichloroacetic acid (TCA) filtrates 

prepared directly from the whey or from a pH 4.6 water soluble nitrogen fraction of the curd as per 

Kuchroo and Fox [35]. Analysis was carried out using a Jeol JLC-500/V Amino Acid Analyzer (Jeol 

Ltd, Herts, UK) fitted with a Jeol sodium high performance cation exchange column and the results 

were expressed as μg/g cheese or whey. All analyses were carried out in duplicate. 

3.7.3. Measurement of the Water Activity of the Cheese Samples 

Water activity of the cheese samples was determined in triplicate during ripening. Water activity  

of ~5 g grated cheese was measured at room temperature (21 °C) with an AquaLab Series 3T (Labcell, 

Hampshire, UK). 

3.8. Cryogenic Scanning Cryogenic-Scanning Electron Micrography 

Cryogenic-scanning electron micrography (Cryo SEM-Zeiss Supra 40VP field emission, Carl Zeiss 

AG, Darmstadt, Germany) was used to visualize the liposomes in the cheese samples. Cryofixation of 

the samples was carried out in liquid nitrogen and Cryo SEM analysis was carried out as  

per Gee et al. [36]. 

3.9. Sensory Evaluation and Volatiles 

The cheese samples were cut into 2 cm cubes and evaluated at 10 C by a descriptive sensory panel 

(n = 10, 9 females, 1 male, ages 22–46 years) with more than 200 h experience with the descriptive 

analysis of Cheddar cheese flavor. Descriptive analysis of flavor used a 15 point universal intensity 

scale with the Spectrum™ method [37,38] and a previously established cheese flavor sensory  

language [39,40]. Each panelist evaluated cheeses from each treatment replication in triplicate. 
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Analysis of Cheddar cheese volatiles was conducted by headspace solid-phase microextraction  

(HS-SPME) as per Kang et al. [41]. Briefly, 5 g of grated cheese were placed in 20 mL SPME vials. 

An internal standard (10 mL of 81 ppm 2-methyl-3-heptanone in methanol) was added to each vial. 

Vials were equilibrated for 25 min at 40 C. Headspace sampling was carried out using a CTC 

Analytics CombiPal Autosampler (CTC Analytics, Zwingen, Switzerland) with a single 

DVD/Carboxen/PDMS 1 cm fiber (Supelco, Bellefonte, PA, USA.). Each sample was analysed in 

triplicate. The SPME fiber was injected at 5.0 cm into an Agilent 6890 gas chromatograph with  

a 5973 MSD (Agilent Technologies Inc., Santa Clara, CA, USA) inlet fitted with a DB-5ms  

(30 m × 0.25 mm i.d. × 0.25 µm) column. Desorption time was 5 min and injector temperature was set 

at 250 C in splitless mode. The initial oven temperature was 40 C for 3 min, raised to 90 C at  

10 C/min then to 200 C at 5 C/min, held for 10 min at 200 C then raised to 250 C at 20 C/min 

and held for 5 min at 250 C. Helium was used as a carrier gas at constant flow rate of 1 mL/min. 

Detection scanning (temperature of the source and MSD transfer line: 250 C, and of the quadrupole: 

150 C) from 35–350 m/z was performed to identify compounds of interest. Volatile compounds were 

identified using mass spectra comparisons to the NIST 2005 mass spectral library. Relative intensities 

of each compound were compiled from total ion counts for each peak of interest and compared to the 

peak area of the internal standard. 

3.10. Statistical Analyses 

For the enzyme assays, microbiological cell counts and composition analyses, one way analysis of 

variance (ANOVA) was carried out with SPS (version 9, SPSS Inc., Chicago, IL, USA). A Student 

Newman-Keuls test was performed for mean multi comparison test at a significance level p < 0.05. For 

sensory analysis and volatile analysis, one-way ANOVA with Fishers least significant difference was 

used to determine treatment effects. Principal component analysis (PCA) of the correlation matrix was 

also applied to characterize differences in descriptive attributes between cheeses (SAS, version 9.2, 

Cary, NC, USA). 

4. Conclusions 

Inclusion of liposomes into Cheddar cheese had no adverse impact on cheese composition or 

microbiology. A CFE from Lactococcus lactis supsb. lactis 303 encapsulated in liposomes partitioned 

with the curd during Cheddar cheese production, and prevented excessive losses of CFE into the whey 

during production. No significant differences (p ≥ 0.05) in primary or secondary proteolysis or 

expressed PepX activity were evident between the cheeses during ripening. Even though flavor 

development as quantified by sensory and volatile attributes were more profound in the liposomal 

encapsulated CFE cheeses in comparison to the Control cheeses, no differences were evident to 

cheeses containing only empty liposomes at 112 days. As the cheeses containing CFE encapsulated in 

liposomes had significantly (p < 0.05) less losses of PepX activity to the whey at drainage in 

comparison to the cheeses with added free CFE, nor had any additional expressed PepX activity during 

ripening in comparison to the other cheeses, and as intact liposomes were apparent within the cheese 

up to 28 days of ripening, it appears that these liposomes did not degrade during ripening. Thus the 

lack of liposome degradation in combination with low encapsulation efficiencies resulted in an 
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insufficient amount of additional enzyme activity being available within the cheese curd to 

significantly impact proteolysis and, thus, flavor development. The liposomes used were comprised 

mainly of Prolipo Duo which has a low zeta potential and high stability and even though this is thought 

to be more beneficial for encapsulation efficiencies, it appears to have the opposite impact in terms of 

enzyme release in cheese curd during ripening. This result highlights the potential of liposomes to 

minimize losses of encapsulated enzymes into the whey during cheese production, but also highlights 

the need to optimize the hydrophobicity, zeta potential, size and composition of the liposomes not only 

for encapsulation efficiency, but also for stability within the cheese curd in order to maximize their use 

as vectors for enzyme addition in cheese to augment ripening. 
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