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Abstract: The aim of this research was to apply an electronic device as indirect predictive technology
to evaluate toxic chemical compounds in roasted espresso coffee. Fresh coffee beans were subjected
to different thermal treatments and analyzed to determine volatile organic compounds, content of
acrylamide and 5-hydroxymethylfurfural, sensory characteristics and electronic nose data. In total,
70 different volatile compounds were detected and grouped into 15 chemical families. The greatest
percentage of these compounds were furans, pyrazines, pyridines and aldehydes. The positive aroma
detected had the intensity of coffee odor and a roasted aroma, whereas the negative aroma was
related to a burnt smell. A linear relationship between the toxic substances and the sensory defect
was established. A high sensory defect implied a lower content of acrylamide and a higher content of
5-hydroxymethylfurfural. Finally, electronic signals were also correlated with the sensory defect. This
relationship allowed us to predict the presence of these contaminants in the roasted coffee beverage
with an indirect method by using this electronic device. Thus, this device may be useful to indirectly
evaluate the chemical contaminants in coffee beverages according to their sensory characteristics.

Keywords: roasted coffee; sensory analysis; electronic nose; acrylamide; 5-hydroxymethylfurfural;
volatile compounds

1. Introduction

Coffee is one of the most commercialized beverages worldwide. Its fruit belongs
to the Coffea genus made up of some 100 species of which the most commercially used
are the Arabica (Coffea arabica L.) and Robusta (Coffea canephora L.) varieties [1]. Coffee
production in 2022 saw an increase of 4.2%, totaling 175.6 million bags. Considering this
demand, producers were expected to increase coffee production in the 2023 campaign by
1.7% [2]. The coffee beans of the Arabica variety surpass those of the Robusta variety in
terms of quality, with Arabica presenting greater aromatic complexity [3]. The quality of
coffee depends largely on the aroma obtained in the roasting process, whose composition
of volatile compounds is complex, with more than 800 compounds identified [4]. Thus,
roasting times must be precisely controlled as they generate different degrees of roasting
that vary from a very light to a very dark color and influence the aroma generated by the
different types of volatile compounds [5].
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A wide and complicated pathway of reactions is formed in the coffee roasting process.
In some cases, this process can produce positive reactions and in others, negative reactions
can arise from the transformation of precursors. The principal precursors are sugars,
amino acids, unsaturated fatty acids, fats and carotenoids [6]. The Maillard and Strecker
reactions represent the main reactions of this type in which proteins, sugars, trigonelline
and chlorogenic acid are formed in unwanted substances, such as furfural-type compounds,
including 5-hydroxymethylfurfural (5-HMF), 2-acetylfuran (FMC) and 5-methyl-2-furfural
(MF) [7]. These compounds are found in foods affected by storage or processing, or
that have undergone heat treatment or enzymatic browning reactions [8]. 5-HMF is an
intermediate compound formed by enzymatic browning or Maillard reactions, formed by
the dehydration of fructose and glucose in an acidic medium [9]. HMF with the IUPAC
name of 5-(hydroxymethyl) furan-2-carbaldehyde has a molecular weight of 126.11 g mol−1

and consists of a furan ring with functional groups, such as aldehyde or alcohol. HMF
concentrations in roasted coffee have been found between 300 and 2900 mg kg−1 [10].
Furans and methylfurans are VOCs found in a wide variety of foods when they undergo
thermal processing, and they present adverse health effects [11]. This compound is a
cyclic aldehyde that is absent in fresh foods, but when it appears in foods through the
aforementioned reactions, it is considered potentially carcinogenic to humans. Analyzing
the number of toxic substances in foods is therefore essential [12], and many countries have
established policies to control their content in foods. However, the direct quantification
of these compounds continues to pose a challenge due mainly to the complexity of the
samples and interfering substances [13].

A further undesirable compound formed during the coffee roasting process is acrylamide—
a compound classed as carcinogenic by the Food Safety and Nutrition Agency [14]. This
compound is included as a toxic, carcinogenic compound classified in group 2A [14] with a
reference level of acrylamide between 50 and 100 µg kg−1 [15,16]. Asparagine is the main
amino acid precursor that is converted during the Maillard reactions after undergoing
a decarboxylation and deamination reaction in acrylamide [17]. Therefore, this product
represents one of the principal sources of acrylamide with high daily consumption [18].

The precursor compounds of coffee aroma include lipids, which undergo autooxida-
tion and decomposition reactions during the roasting process, contributing to the formation
of an aroma in coffee-type beverages [19].

The concentration of these toxic compounds is quantified using gas and liquid chro-
matography. Gas chromatography technology is used for the quantification of VOCs, while
liquid chromatography is used to evaluate the amount of hydroxymethylfurfural [10,20].
Organoleptic techniques are also useful to evaluate the final product quality [20–22]. This
requires specialized people trained in obtaining high-quality results. In addition, such
sensory evaluations require appropriate facilities, the preparation of samples and the orga-
nization of tasting sessions [23]. The aromatic profile of roasted coffee can, however, also be
characterized using sensor techniques, such as an electronic nose (e-nose)—a promising tool
with great potential for analysis [24]. It is a non-destructive, low-cost, efficient and fast tech-
nique [25] that has been used by different researchers [26,27] to analyze volatile compounds
in foods and food defects. Its sensors react with specific aromatic molecules that produce
a signal that generates a fingerprint of the sample to be evaluated. The data obtained are
transformed into digital data and processed by algorithms and machine learning techniques
to represent the results by applying different multivariate analyses [23,25,26]. Therefore,
coffee beverages were evaluated whose beans had been submitted to different thermal
treatments by analyzing the sensory profile, content of toxic compounds, volatile organic
compounds and e-nose data. The aim was to establish relationships between this data and
the aromas to indirectly evaluate the content of acrylamide and 5-hydroxymethylfurfural.



Foods 2024, 13, 768 3 of 16

2. Materials and Methods
2.1. Samples

Two kg of green Arabica coffee (Coffea arabica L.) samples were harvested in the Copán
region (Honduras) during the 2022/23 crop season. Coffee from Honduras was selected as
it is a coffee that competes in quality with other varieties. Furthermore, it is an emerging
market in terms of organic coffee, and due to its organoleptic properties, like Colombian
coffee, Honduran coffee is a quality Arabica coffee. Fresh samples of 150 g were placed onto
porcelain plates to be roasted in a conventional oven (model 210, J.P. Selecta®, Barcelona,
Spain) at 215 ◦C, as described by Barea-Ramos et al. [28]. The roasting times were 8, 9,
10 and 11 min, respectively. Samples were roasted in triplicate. The roasted samples
were stored at room temperature for 48 h, after which a coffee beverage was made. The
samples were mechanically ground at a constant speed for 1 min. The ground coffee size
measured 0.4 mm. Next, an espresso coffee beverage was prepared by adding hot mineral
water (100 ◦C) to roasted coffee at a ratio of 3:1, respectively. The espresso was brewed at
9 bar pressure. Samples of 30 mL each were prepared in triplicate. The different brewed
beverages were analyzed via a sensory panel, gas chromatography and an e-nose. Figure 1
depicts the study carried out.
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2.2. Analysis of Volatile Compounds

The VOCs of samples were evaluated using gas chromatography–mass equipment
to determine the profile of their aromatic compounds, as per the method described by
Sánchez et al. [29]. Samples of 2 g of each beverage were placed into a vial, and the aroma
was absorbed using polydimethylsiloxane/divinylbenzene (PDMS/DVB) StableFlex fiber
(65 µm, Supelco). A triple quadrupole mass spectrometry detector model 456-GC was
applied. The fiber was injected into this equipment. A capillary column Agilent DB WAXetr
(60 m × 0.25 mm; DI: 0.25 mm) was used. The desorption was carried out at 250 ◦C for
15 min. Each peak of the samples studied was identified using the NIST 2.0 MS library.
VOCs were measured in %.

2.3. Sensory Analysis

The aroma characteristics of the espresso coffee were assessed by a tasting panel [23]
made up of eight experts in food sensory evaluation at the University of Extremadura.
The evaluation test was carried out in a tasting room. Samples were prepared in a tasting
glass and evaluated immediately. The positive attribute evaluated was coffee aroma, while
the negative attribute was that of a roasted/burnt odor. The results of each taster were
included in a structured scale (0–10 points) and were evaluated by the head of the tasting
panel when the coefficient of variation was less than 20. The median of the evaluated
results was made for each of the attributes studied.

2.4. Acrylamide Analysis

The protocol analysis described by Pérez-Nevado et al. [30] was used to calculate the
acrylamide content in the coffee beverage studied. A quantity of 2 g of coffee was filtered
through a 0.45 µm nylon syringe filter, and the liquid was placed into two Telos columns
(PCX, 200 mg/3 mL and PRP, 60 mg/3 mL) to obtain the eluate. Concentrations ranged
from 50 to 150 ng mL−1 of acrylamide, and a standard addition method was used. Finally,
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an Agilent 1290 Infinity II liquid chromatograph (Agilent Technologies) coupled to an
Agilent 6460 triple quadrupole mass spectrometer was used to obtain the concentration of
this toxic substance. Helium was used as carrier gas with a flow rate of 0.8 mL min−1. It was
worked in isocratic mode with a flow of 0.25 mL min−1, using eluent A (0.1% formic acid in
Milli-Q-water) and eluent B (0.1% formic acid in methanol). The gas injector temperature
was 340 ◦C, the nebulizer pressure was 40 psi, the sheath gas temperature was 400 ◦C with
a flow rate of 12 L h−1 and capillary voltages were +2.5 kV. The nozzle voltage was 300 V
and dental EMV: 300.

2.5. 5-Hydroxymethylfurfural Analysis

The quantification of 5-HMF was carried out as per the methodology proposed by
Long et al. [31]. A Shimadzu HPLC system (Tokyo, Japan) was coupled to a Thermo
Q-Exactive Plus mass spectrometer (USA). A C18 column (2.1 mm × 100 mm × 1.9 mm)
(Waters Co., Torrance, CA, USA) was used. The mobile phases used were acetonitrile (eluent
B) and formic acid at 0.1% (v/v) in water (eluent A) with a flow rate of 0.3 mL min−1 and
an injection volume of 2 µL and were worked into an elution system in gradient as follows:
Elution of 100% of eluent A up to 1.20 min. Furthermore, 80% of eluent A for 1.21–1.80 min.
Subsequently, 80% of eluent B and 40% of eluent A for 1.81–3.0 min and 40%–10% of A for
3.01–4.50 min, which was the time required for the elution of each sample. The amounts of
5-HMF were quantified by external calibration using 5-HMF reference standards expressed
in µg L−1. A UV–visible detector at a wavelength of 280 nm was used. The peaks obtained
were compared with the retention times of the standards and quantified by calculating the
peak area corresponding to the HFM in the chromatograms.

2.6. E-Nose Measurements

The samples were additionally analyzed in the laboratory using an e-nose equipment
prototype designed by the Engineering Department of Miguel Hernández University
(Spain) in collaboration with Telenatura EBT, S.L. (Elche, Spain) [32]. The e-nose comprises
a chamber for depositing samples, an air pump or fan, a sensor matrix and a data-processing
unit (Arduino Nano microcontroller with USB serial connection). The sensor array consists
of eight MQS sensors manufactured by Hanwei Electronics Co., Ltd., Zhengzhou, China.
These metal oxide semiconductor resistive sensors detect changes in electrical resistance
when exposed to specific gases, offering a wide-ranging detection of VOCs. The MQ
resistive sensors were as follows: MQ2 (liquefied petroleum gases (LPG), hydrogen and
propane), MQ3 (alcohol), MQ4 (methane), MQ5 (hydrogen and LPG), MQ7 (hydrogen
and carbon monoxide), MQ8 (hydrogen), MQ9 (carbon monoxide and LPG), MQ135 (NH3
(ammonia), NOx, alcohol, benzene, smoke, CO2, etc.). The device included an Arduino
Nano microcontroller and an analog circuit for controlling sensor heating with sensor
sensitivity enhanced through voltage modulation. A sinusoidal voltage variation strategy
was employed with a period of 128 s and a voltage range from 1.6 to 4.8 V. Normalization
techniques, including the use of 50 kΩ trimmer potentiometers as load resistors, were
applied to balance sensor outputs and account for manufacturing variability. A calibration
process preceded analysis, defining parameters, such as stabilization time (SBT), sensing
time (ST), cleaning time (CT), total time (OVT) and maximum number of analyses (MNA),
ensuring experiment completion within five hours to maintain test result integrity.

The experiments were conducted in a clean and disinfected environment. A sample
of 10 mL of freshly brewed coffee was placed into a chamber. Next, the chamber was
hermetically closed, and the quantum light sensor (PAR) Walz (MQS) was used to evaluate
the aroma of each sample. Prior to placing the next samples, the chamber was cleaned,
and the sensors were exposed to clean air for 15 min. Data were extracted using computer
software and a chemometric analysis was carried out.
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2.7. Multivariate Data Analysis

The raw e-nose data were processed by applying an algorithm. Thus, each group
of data obtained by this equipment was recalculated by applying the maximum signal
value minus the minimum signal data, multiplied by 100 and subtracted by one. These
data were used to differentiate between the different treatments studied by applying
principal components analysis [20,23]. Furthermore, the evaluation of coffee beverage
aromas perceived by the panelists and the negative aromas were related by applying a
partial least squares regression test [30]. PLS_Toolbox 8.2.1 (Eigenvector Research Inc.,
Wenatchee, WA, USA) associated with Matlab version R2016b, version 9.1 (The Mathworks
Inc., Natick, MA, USA) was used to analyze the data.

2.8. Statistical Analysis

An analysis of variance was carried out to establish differences between the roasted
coffee beverages studied. The differences between each thermal treatment were discrimi-
nated by Tukey’s test. The statistical program used was SPSS 18.0 (SPSS Inc., Chicago, IL,
USA). Furthermore, the relation between the aroma perception and the toxic substance was
established using multiple linear regression. Finally, the coefficient of determination (R2)
was indicated in each model established.

3. Results and Discussion
3.1. Effect of Roasted Coffee on Volatile Organic Compounds

Figure 2 shows the percentage of the different VOCs formed in the beverage at different
roasting times (8, 9, 10 and 11 min). They were grouped into 15 chemical families, and
those presenting the highest percentage of VOCs were furans, pyrazines, pyridines and
aldehydes. The minor ones were pyrroles, furanones and lactones.
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Figure 2. Chemical distribution of volatile compounds (%) in roasted coffee beverage.

The concentration of pyridines was seen to increase with the roasting time up to 36.3%.
Pyridines, as well as other types of compounds that contain heterocyclic rings, such as
pyrazines, pyrroles or imidazoles, contribute to Maillard reactions with the production of
melanoidins. This fact is related to the increase in Maillard reactions with longer roasting
times [14]. Furans also increased, especially after 9 min. The formation of furans is related
to the sweet caramel flavor and burnt smell of coffee [33]. Aldehydes together with organic
acids, alcohols and esters are the families of compounds crucial as precursors of the VOCs
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responsible for aroma in the coffee roasting process [34]. The percentage of aromatic
compounds and alcohols was the same with a roasting time of 8 min (12.8%). The aromatic
compounds decreased over time, by up to 85.5% for the roasting time of 11 min. These
types of compounds are essential in the production of coffee aroma both in the drying and
roasting phases [23,28].

Ketones presented 5.1% of VOCs for a roasting time of 8 min and decreased by 90.2%
at 10 min. Some esters were also present for the roasting times of 8 and 9 min but then
disappeared when the time increased. Carboxylic acid derivatives increased by 26.2% when
the roasting time increased from 8 to 9 min but decreased by 67.6% when it reached 11 min.
Carboxylic acids and their derivatives presented the same pattern. These increased for the
roasting time of 9 min and then decreased by up to 64.8% for the roasting time of 11 min in
relation to the acid derivatives. The increase in carboxylic acids and derivatives when the
roasting time increased could be attributed to the degradation of carbohydrates and esters
that subsequently degrade if the roasting time continues to increase [35]. Hydrocarbon
compounds, specifically polycyclic hydrocarbon compounds, increased by 62.4% during
the roasting process. These are undesirable compounds formed during the roasting process
and are considered genotoxic and carcinogenic to humans [36]. Sulfur compounds are also
formed in the roasting process. The concentration of these compounds increased the most,
reaching up to 264% for a roasting time of 11 min. The sulfur family is an essential class
with low positive aromatic thresholds. Sulfides that include compounds such as thiols,
thiophenes and thiazoles are formed by Maillard reactions from cysteine and present a
toasted and garlicky aroma [37].

Finally, among the minor VOCs found during coffee roasting were pyrroles—compounds
formed by an aromatic ring of four carbon atoms and a nitrogen atom whose concentration
increased in coffee with the degree of roasting [38]. These presented no differences in the
first two roasting times and subsequently increased when the coffee was roasted up to
11 min. These compounds are formed through the degradation of Strecker in the coffee
roasting process, negatively affecting its sensory quality [39]. Another group of minor
VOCs found were furanone-type carbohydrates, which, although their formation was
only 1.7% for a roasting time of 8 min, reduced by 53.0% for a roasting time of 11 min.
Carbohydrates, along with chlorogenic acids, are degraded into other compounds that are
formed such as furans, pyrazines and lactones [40]. Although lactones appeared, there
were no significant differences in this type of substance during the different roasting times.

A total of 70 VOCs were identified for the four roasting times and are presented in
Table 1. They were classified into 15 chemical families grouped as follows: three furanones,
four furans, six pyrazines, four pyridines, four pyrroles, six aldehydes, five ketones, five es-
ters, four acid derivatives, four carboxylic acids, two lactones, six aromatics, eight alcohols,
six hydrocarbons and three sulfur compounds. Of these, the unwanted compounds that
were formed in greater concentrations with the increase in roasting time and consequently
contributed negatively to the quality of the coffee were furans. Their main compounds
were furfural and 2-methylfurfural, the latter presenting concentrations 2.23 times higher
than in furfural for the roasting time of 11 min. These types of compounds that are formed
during the thermal processes of coffee roasting are classified as carcinogenic to humans
since they are transformed into 2-sulfoxymethulfuran and 5-sulfoxymethylfurfural that
can create mutations by reacting with DNA or proteins [41]. Pyrazines represent another
family of compounds whose formation in the coffee roasting process contributes nega-
tively to the quality of coffee. Among these types of compounds, 2-ethylpyrizine and
2-ethyl-6-methylpyrizine stood out. The concentration for both these compounds doubled
with increasing roasting times. The formation of these types of compounds in the roasting
process is related to the pyrolysis of hydroxyamino acids, trigonelline and sugars [42].
Pyrazines, along with pyrroles and pyridines, are responsible for contributing roasted and
nutty attributes in coffee [43]. Among the pyridines found in the coffee roasting process
were pyridine and 2,5-dimethyl-pyridine. The concentration of pyridine increased threefold
when the roasting time was increased from 8 to 11 min, and for 2,5-dimethyl-pyridine,
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the concentration increased fourfold in relation to the roasting time of 8 min. Of the five
pyrroles identified, some were degraded during the roasting process, except for 1H-Indole,
whose concentration increased by 250%. Pyrroles also give coffee certain buttery notes
similar to caramel [23].

The concentrations of carbonyl compounds presented significant differences with
the coffee roasting time. Ketones were degraded as the time increased, and among the
aldehydes that contributed negatively to the quality of the coffee was 2-methyl-butanal.
Its concentration tripled for the roasting time of 11 min compared with that of 8 min,
with hexanal being present at the beginning of the roasting process and then reduced by
half over the roasting time. Both compounds are crucially important to the quality of
coffee, especially 2-methyl-butanal, which gives malty notes, and hexanal, which is formed
during coffee storage and can contribute to the rancid flavor due to lipid oxidation [44].
The concentration of carboxylic acids and derivatives generally decreased until they were
completely degraded during the roasting time. Few of these compounds were still present
at the 11th minute. Those that stood out were nonanoic acids, whose concentration at
the roasting time of 11 min was reduced to a third compared with the roasting time of
8 min, and carboxylic acid, namely 3-methyl-butanoic acid [45], whose concentration was
maintained without significant differences during the coffee roasting process.

The lactones detected in the different coffee treatments presented no significant dif-
ferences with the roasting time. Some lactones are formed in the roasting process as
chlorogenic acids which give coffee a certain bitterness [46]. Alcohols also degraded over
time, except for 1-butanal-3-methyl, whose concentration increased slightly. Of the six
hydrocarbons detected, all showed low concentrations, and there were no significant differ-
ences between the roasting times with the exception of tetradecane, whose concentration at
11 min was four times higher than at 8 min. Finally, other families linked to the negative
quality of coffee were sulfide compounds, namely dimethyl sulfide, 2-furfurylthiol and
2-furanmethenethiol. The concentration of the former reduced slightly with the increase in
roasting time from 8 to 9 min before stabilizing. 2-furfurylthiol increased by 78.8% for the
roasting time of 11 min compared with the roasting time of 8 min, and 2-furanmethenethiol
also increased by 69.0% compared with the roasting time of 8 min. These thiols lend freshly
roasted coffee a characteristic aroma. Unfortunately, this compound reduces rapidly during
storage as the result of polymerization or oxidation reactions [47].
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Table 1. Content of volatile compounds (mean %, triplicate) obtained from roasted coffee beverage.

Furanone Furans Pyrazines

Treatments
(min)

Dihydro-5-
methyl-
2(3H)-

furanone

Dihydro-2-
methyl-
2(3H)-

furanone

2(5H)-
Furanone Furfural 2-Methyl-

furan
5-Methyl-

furan Furan Pyrazines 2-Methyl-
pyrazine

2-Ethylpyr-
azine

2,3-
Dimethyl-
pyrazine

2,3,5-
Trimethyl-
pyrazine

2-Ethyl-6-
methyl-

pyrazine

t8 0.5 0.5 0.7 1.5 2.5 2.0 2.3 1.6 1.5 2.0 2.0 1.5 1.6
t9 0.5 0.0 0.6 2.1 2.4 2.6 2.5 1.5 1.5 1.9 2.4 1.6 2.6
t10 0.6 0.0 0.5 2.6 5.5 3.0 2.3 2.0 2.2 3.5 2.0 1.4 2.8
t11 0.3 0.0 0.6 3.5 7.8 0.0 2.3 1.5 2.5 3.6 1.6 1.5 3.2

Pyridines Pyrroles Aldehydes

Treatments
(min) Pyridine 2-Methoxy-

pyridine
3-Ethylp-
yridine

Pyridine,
4-

ethenyl-

2,5-
Dimethyl-
pyridine

1-Methyl
pyrrole

1-Furfuryl
pyrrole 1H-Pyrrole 1H-Indole Butanal 2-Butenal 2-Methyl-

butanal Hexanal Benzaldeh-
yde Nonanal

t8 2.5 0.6 1.5 0.5 2.6 0.6 0.5 1.2 0.6 1.2 0.5 2.3 2.0 0.5 7.2
t9 5.4 0.5 1.2 0.5 3.8 0.5 0.5 1.0 1.0 1.0 0.6 3.0 2.8 0.8 6.0
t10 6.4 0.6 1.1 0.0 5.5 0.6 0.4 0.0 1.6 0.0 0.5 5.5 1.6 0.7 5.2
t11 7.0 0.5 0.0 0.0 9.8 0.7 0.6 0.0 2.1 0.0 0.5 7.2 1.2 0.8 2.2

Ketones Esters Acids derivates

Treatments
(min)

2-
Nonanone

2-
Heptanone

Propenone,
1-(4-

nitrophenyl)-
3-

phenylamino

Geraniol
2-Pentade-

canone,
6,10,14-

trimethyl

Ethyl
acetate

2-
Propenoic

acid,
butyl
ester

Acetic acid,
2-

ethylhexyl
ester

2-Methyl-
propanoic
acid, octyl

ester

Hexadecanoic
acid, ethyl

ester

3-Methyl-
butanoic

acid

Hexanoic
acid,

2-methyl

2-Methyl-
butanoic

acid

3-Methyl-2-
butenoic

acid

t8 0.5 0.5 2.6 1.0 0.5 0.6 0.4 1.5 2.2 1.0 2.0 1.0 0.0 1.2
t9 0.6 0.6 1.5 1.2 0.4 0.6 0.5 1.2 1.5 1.0 2.4 0.4 1.5 1.0
t10 0.5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 2.5 0.4 0.0 1.2
t11 0.0 0.0 0.0 0.8 0.0 0.0 0.0 0.0 0.0 0.0 2.8 0.0 0.0 0.0

Carboxylic acids Lactones Aromatics

Treatments
(min) Acetic acid Dentanoic

acid
Hexanoic

acid
Nonanoic

acid
γ-Butyrol-

actone
2,3-

Pentane-
dione

Phenol 3-Methyl-
phenol

D-Limonene
o 1-Metil-4-(1-
metiletenil)-
ciclohexeno

2-methoxy-
phenol

(Guaiacol)

2-Methoxy-
4-

vinylphenol

Benzene,
2,4-

diisocy-
anato-1-
methyl-

t8 0.0 0.5 0.6 3.0 0.4 0.5 2.5 0.8 2.0 0.5 5.0 2.0
t9 1.0 0.4 0.4 3.0 0.4 0.4 2.6 0.8 2.4 0.6 2.0 1.0
t10 1.0 0.5 1.1 1.2 0.4 0.4 2.0 0.7 2.0 0.0 2.0 0.0
t11 0.0 0.0 0.0 1.0 0.4 0.4 0.0 0.5 1.4 0.0 0.0 0.0
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Table 1. Cont.

Alcohols Hydrocarbons

Treatments
(min)

1-Butanol,
3-methyl- 1-Pentanol 2,3-

Butanediol
1-

Hexanol
1-Octen-3-

ol 1-Propanol Benzyl
alcohol

2-
Phenylethyl

alcohol

1,6-Octadien-
3-ol,

3,7-dimethyl-
(Linalool)

Toluene Pentane Styrene Pentadecane Tetradecane

t8 1.6 0.5 0.0 2.5 1.0 0.8 2.0 4.4 0.7 0.7 0.5 0.6 0.5 1.1
t9 1.6 0.0 0.6 2.0 1.0 1.2 1.3 2.1 0.4 0.5 0.4 0.5 0.5 1.0
t10 2.0 0.0 0.5 1.2 1.0 1.1 1.0 3.2 0.4 0.5 0.6 0.6 0.6 3.7
t11 2.3 0.0 0.9 0.6 1.2 1.3 0.5 2.2 0.4 0.5 0.5 0.5 0.4 4.4

Sulfur compounds

Treatments
(min)

Dimethyl
sulfide

2-Furfuryl-
thiol

2-
Furanmeth-

anethiol

t8 1.5 1.7 2.2
t9 1.0 2.5 3.2
t10 1.0 3.8 5.0
t11 1.1 8.0 7.1
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3.2. Effect of Roasted Coffee on Sensory Analysis

The roasted coffee beverage underwent a sensory analysis by panelists to describe the
positive and negative aroma (Table 2). The espresso coffee made with fresh coffee beans
submitted to low thermal treatments presented a good aroma, and the tasters detected no
negative attribute. Thus, the t8 treatment could be the thermal treatment that presented
the highest quality as no defect was detected. The strongest coffee aroma was observed
in the t9 treatment, but some negative defects were also detected. Moreover, when the
heat intensity in the fresh coffee beans increased (t9 to t11), negative defects appeared.
The roasted aroma is an attribute related to a burnt defect that tasters detected when high
intensity thermal treatment was applied. This roasted smell is related to the undesirable
compounds that are formed as the coffee roasting time is increased, as described in Table 1.

Table 2. Sensory assessment of roasted coffee beverage (mean ± standard deviation). Small letters in-
dicate significant statistical differences between the different experimental coffee elaborated (Tukey’s
test, p < 0.05).

t (min)
Aroma

Coffee Roasted/Burnt

t8 4.2 ± 0.2 b n.d.
t9 6.3 ± 0.2 a 2.5 ± 0.2 c

t10 3.6 ± 0.2 c 3.5 ± 0.3 b
t11 2.8 ± 0.3 d 4.7 ± 0.5 a

n.d.: not detected.

The results of the roasted coffee beverage demonstrate that the analysis carried out
by panelists was able to classify the samples evaluated. Stokes et al. [7] indicated this
odor as a negative attribute in fresh filter coffee. As the fresh coffee was processed in the
same way, it is clearly the intensity of the heat treatment that caused an increase in the
sensory defect, in turn decreasing the characteristic aroma of the coffee beverage. Chapko
and Seo [48] evaluated the sensory attributes of brewed coffee submitted to different
serving temperatures indicating that the highest temperatures studied implied high coffee
aromas with some negative attributes. This result showed us the importance of applying
the appropriate thermal treatment to obtain the highest quality of brewed coffee. Thus,
consumers will appreciate roasted coffee that provides the best sensory characteristics to
the final product.

3.3. Effect of Roasted Coffee on Chemical Contaminants

The acrylamide and 5-hydroxymethylfurfural levels of the roasted coffee beverage
submitted to different thermal treatments are shown in Table 3. Thermal treatments applied
to fresh coffee beans had a significant effect on the production of these toxic chemicals
in the roasted coffee beverage. The highest amount of acrylamide was observed in the
softest thermal treatment. The amount of this substance then decreased progressively
until values of the highest thermal treatment measured less than 60%. However, the 5-
hydroxymethylfurfural concentration increased when the thermal treatment was more
aggressive. An almost fourfold increase in this toxic substance was found when the thermal
treatment was higher. The acrylamide content was higher than the concentration of 5-
hydroxymethylfurfural in all the elaborated coffee beverages.

A negative correlation (R2 = 0.91) was found between the acrylamide concentration and
5-hydroxymethylfufural (Figure 3) when considering the high influence of thermal treat-
ments in the formation of these substances. When the concentration of acrylamide in the
roasted coffee beverage increased, the 5-hydroxymethylfurfural content was lower, while a
lower concentration of acrylamide led to a beverage with a higher 5-hydroxymethylfurfural
content. This inverse linear relationship was also observed by Lachenmeier et al. [49].
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Table 3. Acrylamide and 5-hydroxymethylfurfural in roasted coffee beverage (mean ± standard
deviation). Small letters indicate significant statistical differences between the coffee elaborated after
applying different thermal treatments to coffee beans (Tukey’s test, p < 0.05).

t (min) Acrylamide (µg·L−1) 5-Hydroxymethylfurfural (µg·L−1)

t8 18.5 ± 0.7 a 1.1 ± 0.1 d
t9 16.1 ± 1.1 b 2.6 ± 0.2 c

t10 11.3 ± 0.6 c 3.4 ± 0.2 b
t11 7.3 ± 0.3 d 4.5 ± 0.1 a
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beverage.

Heat treatment is a necessary step in the coffee making process, but despite applying
low thermal treatments, harmful toxic substances are also produced. Concentrations of
acrylamide increased in the lowest intensity of the thermal treatment. This produces a
wide range of undesirable substances in the final product that depends on the intensity
of the thermal treatment applied. Different researchers [49,50] indicated that different
brewed coffee preparations produced high levels of acrylamide content. Furthermore, when
the heat applied to fresh coffee was too high, the level of acrylamide content decreased
significantly [51]. However, 5-hydroxymethylfurfural contents gradually increased with
the increasing intensity of the applied heat treatments. Mesías et al. [50] highlighted the
content of 5-hydroxymethylfurfural in brewed coffee of the Arabica and Robusta variety.
The amount of this toxic substance increased with increasing the roasting temperature/time
of the elaboration process [52].

We need to highlight that ingesting two coffees per day would cause us to ingest an
average of 0.56 µg and 0.162 µg of acrylamide and 5-hydroxymethylfurfural, respectively.
It is estimated that the population could ingest 0.037 µg of acrylamide per kg of body
weight a day and 0.021 µg of 5-hydroxymethylfurfural per person per day. Thus, for a
person weighing 70 kg, the maximum dose of ingestion a day of these toxic substances rises
to 2.59 µg and 1.47 µg of acrylamide and 5-hydroxymethylfurfural, respectively [50,53].
Therefore, it is suggested that the ingestion of a low number of roasted coffee beverages
does not imply a high risk in the population and more specifically in the adult population.
Consumption should be moderated in elderly people and adolescents, especially when
other foods likely to contain these toxic substances produced in the manufacturing process
are ingested.

3.4. Relationship between Chemical Contaminants and Perceived Sensory Defect

As observed in the previous section, the toxic compounds detected in the roasted
coffee beverage varied depending on the intensity of the treatments applied to the fresh
coffee beans. Therefore, a linear regression was carried out between the toxic compounds
and the sensory defect detected by the tasting panel (Figure 4). As can be seen, an increase
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in the roasted or burnt defect implied a decrease in the acrylamide content (R2 = 0.85)
and an increase in the 5-hydroxymethylfurfural concentration (R2 = 0.94). Fresh coffee
beans subjected to different treatments caused a sensory defect in the brewed beverage.
This sensory variable had a good correlation between the toxic compounds studied. This
would allow us to predict the content of toxic compounds by carrying out an organoleptic
assessment of the final product. Researchers [54,55] have found relationships between
toxic substances and sensory parameters in different products in an attempt to predict the
content of these compounds.
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3.5. E-Nose Capacity to Discriminate Roasted Coffee Beverage

The aromas of the roasted coffee beverage were also studied using an electronic device
to discriminate them based on their volatile organic compounds. Principal component
analysis showed that this device discriminated the samples according to their aroma
(Figure 5). The variance was described by PC1 at 71.1%, while PC2 explained the 24.8%. As
can be seen in the figure, the different roasted treatments applied to coffee beans provoked
different aromas in the final product. The sensors of the electronic device reacted in different
ways according to the volatile organic compounds detected. This low-cost electronic device
could be useful for consumers since it could allow for a preliminary classification of the
aroma of brewed roasted coffee after applying different thermal treatments to fresh coffee
beans. The e-nose has been used to create odor fingerprints of different varieties of roasted
coffee [56] or even to obtain a sensory profile of different drying methods [57]. It has also
been used to discriminate the aromatic profile of volatile compounds in the roasting process
of other species, such as Pinus koraiensis [58].
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Finally, a PLS model was carried out between the data obtained with the electronic
device and the sensory defect perceived by the tasters (Figure 6). The figure shows a linear
prediction model between the negative aroma perceived and the data obtained by the
electronic sensors’ signals. R2

CV values for the defect perceived were 0.90. A low RMSECV
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value of 0.47 was also assessed. The model was validated using external samples. R2
P

values were 0.93 for negative aromas perceived, whilst RMSEP values were 0.43. Thus, this
model led to the quantification of the defect detected by the panelists of the roasted coffee
beverage samples. The scientific literature contains studies that discriminate coffee samples
with electronic devices. Some researchers [28] discriminated coffee samples of different
qualities from Colombia. Others [59] classified coffee submitted to different intensities of
roasting periods. Zhang et al. [60] differentiated Robusta coffee using an e-nose during the
application of different heat air-drying treatments. Furthermore, the evolution of chemical
aromatic compounds in espresso coffee was evaluated using an e-nose system.
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Therefore, via an indirect measurement, it would be possible to quantify the number
of toxic compounds in the roasted coffee beverage using an electronic device since there
is a correlation between the sensory defect and toxic compounds as well as between the
e-nose and the defective roasted aroma of coffee.

4. Conclusions

When fresh coffee beans are subjected to different intensities of heat treatment, differ-
ent intensities of positive and negative aromas are produced in the brewed coffee beverage.
All of these aromas are characterized by different VOC profiles. The toasted or burnt defect
caused by excessive roasting of the beans results in a positive or negative aroma that is
easily detected by specialized tasters. The application of heat to coffee beans produces
the synthesis of toxic compounds in different concentrations in roasted espresso coffee,
specifically acrylamide and 5-hydroxymethylfurfural. The amount of these compounds is
related to the aromatic profile of the coffee samples. Significant relationships were observed
between these toxic compounds and acrylamide levels, since elevated acrylamide levels
corresponded to decreased amounts of 5-hydroxymethylfurfural. The e-nose was able
to detect the olfactory pattern of the roasted samples, establishing a linear classification
between the levels of toxic substances and the sensory defect. A PLS model showed a
relationship between the defect perceived by the tasters and the response of the electronic
sensors, since a high sensory defect indicated a decrease in acrylamide and high content
of 5-hydroxymethylfurfural. Furthermore, the electronic signals exhibited a correlation
with the sensory defect, thus allowing us to anticipate the presence of these contaminants
in roasted coffee beverages. Therefore, this device could be considered useful as an in-
direct predictive methodology to discriminate the aroma of a coffee beverage and could
indirectly identify the number of toxic compounds in the brewed espresso by virtue of its
sensory attributes.
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