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Abstract: This study investigated the effect of annealing treatment on the stability of soy protein
isolate (SPI) during storage. Different SPI samples with varying denaturation levels were subjected
to varying annealing temperatures and durations before being stored at 37 ◦C for 12 weeks to assess
their stability. Our findings revealed that annealing at 65 ◦C for 30 min significantly mitigated protein
deterioration, improving the stability of highly denatured proteins during storage. Surface hydropho-
bicity and endogenous fluorescence analyses indicated that this annealing condition induced protein
structure unfolding, an initial increase in SPI hydrophobicity, and a blue shift in the maximum ab-
sorption wavelength (λmax). The slowest increase in hydrophobicity occurred during storage, along
with a red shift in the maximum absorption wavelength by the 12th week. These results suggest that
annealing treatment holds promise for mitigating the issue of reduced SPI stability during storage.

Keywords: annealing; soy protein isolate; solubility; intrinsic fluorescence spectrum

1. Introduction

Soy protein is widely used in the food industry due to its versatility, providing rich
nutrition for vegetarians and serving as a key ingredient in various products like soy milk,
tofu, sausage [1,2]. However, a persistent issue in the soy protein industry worldwide
is the reduction in protein quality during storage and transportation, notably evident in
its reduced solubility [3]. For instance, the solubility of SPI in water (2%) decreased by
63% after one year of storage at 42 ◦C [4]. Solubility is crucial for the functionality of soy
proteins, including emulsification, gelation and foaming [5]. Regrettably, current research
has not fully addressed the factors leading to solubility loss during storage, and effective
strategies to enhance solubility under these conditions are lacking.

Researchers have explored the problem of reduced soy protein solubility during
storage. Their investigations have highlighted three primary factors contributing to the
this issue: thermal aggregation during processing and storage, oxidation of fats and oils,
and chemical reactions such as the Maillard reaction [6]. Efforts to mitigate these factors
have included storing proteins at low temperatures (4 ◦C) to reduce thermal aggregation,
adding antioxidants, or employing vacuum packaging to hinder protein oxidation [6,7].
However, these approaches often entail high costs and yield only modest improvements.

Soy protein can undergo inactivation or aggregation due to internal stress during
production, processing and storage, influenced by factors like temperature and pH [8].
For example, in the preparation of SPI, raw soybeans undergo a series of procedures,
including grinding, degreasing, alkaline solubilization, acid precipitation, spray-drying
and sterilization [9,10]. These processes inevitably lead to varying degrees of internal
stress, resulting in protein aggregation and compromising initial stability and excellent
functionality, which eventually results in reduced solubility during storage [6]. Therefore,
we introduce the concept of annealing, which could potentially improve the storage stability
by releasing internal stress.
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Annealing, originally applied to metal, involves heating a material to high temper-
atures and gradually cooling it to reorganize its internal structure, relieve internal stress,
and improve steel grain size and distribution [11]. This controlled heating process can give
materials a more uniform and favorable microstructure, enhancing material toughness
and flexibility [12,13]. Remarkably, annealing has extended its applications beyond metal
and glass, proving successful in other polymer substances and biological macromolecules.
Polymers like polyethylene, polypropylene, polylactic acid can undergo annealing to en-
hance grain size and concentration. In the realm of polymer films, annealing reduces
stress, improves flatness and enhances stability [14]. In the context of biological macro-
molecules, such as starch and ribosomes, annealing has been found to change molecular
chain arrangements and structures, thereby improving physical properties, stability and
functionality [15,16].

However, little has been reported on the annealing treatment of soybean protein isolate.
The objective of this study was to improve SPI stability during storage through annealing.
Prior to spray-drying, we prepared proteins with varying degrees of denaturation by
subjecting them to heat treatment. This yielded three groups: highly denatured samples
exposed to ultra-high-temperature sterilization (135 ◦C, 5 s); lowly denatured samples
without sterilization; and native samples without thermal denaturation, directly freeze-
dried. The low-denaturation and high-denaturation samples were subsequently annealed
at different temperatures (45, 55, 65, and 75 ◦C) for various durations (0, 5, 10, 30, 60, and
120 min). These samples were then stored at 37 ◦C for 12 weeks to observe and analyze
changes in solubility.

2. Materials and Methods
2.1. Materials

Soybean (Golden Soybean 626, harvested in 2020) was purchased from Fengyuan Seed
Co. Lianyungang, China. The soybean contained 40.52% ± 1.72% protein, 19.57% ± 1.68%
lipid, 12.52% ± 0.89% moisture, and 4.40% ± 0.53% ash. Analytical-grade chemicals were
purchased from Sigma Aldrich Trading Co Ltd. (Shanghai, China). Deionized water was
used for all reagents and sample preparations.

2.2. Preparation of Soy Protein Isolate

Soy protein isolate (SPI) was prepared from soybean employing an alkaline pH
extraction-isoelectric precipitation method, as described by Fu et al. (2023) [17]. Fol-
lowing neutralization to pH 7.0, one set of samples was subjected to vacuum freeze-drying
and designated the native sample (NSPI). Another set of samples underwent a spray-drying
process, designated the lowly denatured sample (LSPI). Additionally, samples exposed
to ultra-high-temperature transient sterilization at 135 ◦C for 5 s were labeled the high-
denaturation samples (HSPI). The protein content of the extracted SPI exceeded 90% (dry
basis), with a nitrogen conversion factor of 6.25.

2.3. Annealing Treatments

High-denaturation and low-denaturation samples were uniformly dispersed on the
surface of an iron basin, and subjected to annealing treatment upon reaching the target
temperature. Annealing temperatures spanned four gradients: 45, 55, 65, 75 ◦C. Annealing
durations encompassed six intervals: 0, 5, 10, 30, 60, 120 min. Following annealing, the
samples were vacuum-sealed and stored at 37 ◦C in the absence of light for 12 weeks. Sub-
sequently, samples were retrieved in the 1st, 2nd, 6th, 10th, and 12th weeks for assessment.

2.4. Solubility

A precise mass of SPI was weighed and dispersed in deionized water (1%, w/v).
The mixture was stirred at room temperature for 1.5 h to ensure complete dissolution.
After standing for 2 min, the upper layer of protein solution was separated, followed by



Foods 2024, 13, 615 3 of 17

centrifugation for 15 min at 10,000× g. Protein content was determined using the Kjeldahl
nitrogen determination method.

Solubility =
supernatant protein concentration

sample protein concentration
(1)

2.5. Particle Size Distribution

The particle size distribution of SPI samples was determined using a Zetasizer Nano-
ZS instrument (Malvern Instruments, Worcestershire, UK). SPI samples were dissolved in
deionized water and prepared as a 0.1% solution, and the refractive index and absorption
parameters of the SPI sample were 1.450 and 0.001, respectively.

2.6. Molecular Weight Distribution

A 1% SPI solution was prepared and passed through a 0.45 µm aqueous membrane
with a syringe. Gel permeation chromatography was performed using a high-performance
liquid chromatography system (Shimadzu, Kyoto, Japan), featuring a KW-804 protein
gel column and an ultraviolet detector. The mobile phase comprised 50 mmol/L pH 7.0
phosphate buffer, 0.3 M ionic strength, and an elution rate of 1.0 mL/min and was detected
at 280 nm.

2.7. Surface Free and Total Free Sulfhydryl Groups

Total free and surface free sulfhydryl groups were determined using 5,5′-dithiobis-(2-
nitrobenzoic acid; DTNB) according to the methods reported by Beveridge et al. (1974) and
Tang et al. (2009) with slight modifications [18,19]. A 2 mg/mL SPI sample (1 mL) was
mixed with 4 mL of Tris-glycine buffer (0.086 M Tris, 0.09 M glycine, 4 mM Na2-EDTA,
pH 8.0). Subsequently, 0.04 mL of DNTB solution was introduced, and the mixture was
incubated for 15 min at room temperature in the dark. Absorbance at 412 nm was recorded
for surface sulfhydryl groups’ determination. Tri-glycine buffer containing 8 M urea was
prepared for total free sulfhydryl groups’ determination. Then, 1 mL of protein solution was
mixed with 4 mL of urea-guanidinium hydrochloride solution, followed by the addition
of 0.04 mL of DNTB solution. Incubation at room temperature in the dark for 15 min was
followed by absorbance measurement at 412 nm to calculate total free sulfhydryl groups
using the following formula:

SH
(
µmol

g

)
= 75.53 × A412

C
(2)

SH denotes the sulfhydryl group, A412 denotes the absorbance of the sample at a
wavelength of 412, and C denotes the concentration of protein.

2.8. Sulfhydryl and Disulfide Content

Disulfide bonds were quantified according to the method reported by Hu, Hao et al.
(2013) with slight variations [20]. Then, 1 mL protein solution was mixed with 0.05 mL of β-
mercaptoethanol and 4 mL of urea-guanidinium hydrochloride (8 mol/L urea and 5 mol/L
guanidinium hydrochloride) solution. The mixture was incubated for 1 h at 25 ◦C, after
which 10 mL of 12% TCA (trichloroacetic acid) was added. Further incubation in a water
bath at 25 ◦C for 1 h was followed by centrifugation at 10,000× g for 10 min. The precipitate
was dispersed in 5 mL of 12% TCA, and then centrifuged to remove β-mercaptoethanol.
The precipitate was dispersed in 5 mL of 12% TCA, and β-mercaptoethanol was removed
through centrifugation. This step was repeated twice. Finally, the precipitate was dissolved
in 2.5 mL of a Tris-Gly solution of urea-guanidine hydrochloride, and 0.04 mL of DNTB
solution was added. Absorbance was measured at 412 nm. Disulfide bonds content was
calculated using the following formula:

-S-S- =
SHT − SHF

2
(3)
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-S-S-denotes the disulfide bond, SHT denotes the total sulfhydryl and SHF denotes the
total free sulfhydryl.

2.9. Surface Hydrophobicity

The surface hydrophobicity of proteins was evaluated using a 1-anilino-8-naphthalene-
sulfonic acid (ANS) fluorescent probe, with slight modifications, following the method
of Xu et al. (2016) [21]. SPI was diluted within a concentration range of 0.5–2.5 mg/mL
using a 0.01 mol/L phosphate buffer at pH 7.0. Separately, 5 mL of sample solution with
different concentrations were prepared, and 40 µL of 8 mM ANS was added and fully
shaken. Fluorescence intensity was measured using a 650-60 fluorescence spectrophotome-
ter (Hitachi, Tokyo, Japan), employing an excitation wavelength of 365 nm, an emission
wavelength of 520 nm, and a slit correction of 5 nm. A fluorescence intensity versus protein
concentration curve was constructed, and the slope of the regression equation provided the
surface hydrophobicity value of the protein.

2.10. Intrinsic Fluorescence Spectroscopy

Fluorescence spectra of SPI were separately determined by the method of reference in
the work of Zhang et al. (2016) using a 650-60 fluorescence spectrophotometer (Hitachi,
Tokyo, Japan) with slight modifications [22]. SPI was dissolved in 10 mM phosphate buffer
at pH 7.0 to achieve a final protein concentration of 0.05 mg/mL. The scanning emission
wavelength ranged from 290 to 460 nm, with an excitation wavelength of 280 nm. Both
excitation and emission slits were set to 5 nm, and the scanning rate was established at
1200 nm/min, with a voltage of 600 V.

2.11. SDS-PAGE Analysis

Electrophoretic patterns of SPI were visualized by SDS-PAGE, conducted under
both reducing (with the addition of β-mercaptoethanol) and non-reducing (without β-
mercaptoethanol) conditions. SPI samples were configured at a concentration of 2 mg/mL,
and each SPI sample and molecular weight markers were loaded in volumes of 10 µL. A 4%
concentrated gel and 12% separated gel were employed for analysis. Gel electrophoresis
was performed using a Bio-Rad Mini Protein Electrophoresis System (Bio-Rad Laboratories,
Hercules, CA, USA) at 40 V for the concentrated gel and at 80 V for the separated gel. To
achieve a clear background, the gel was washed three times with boiling water, stained with
rapid staining solution for 30 min, and then decolorized with deionized water for 120 min.

2.12. Statistical Analysis

This experimental dataset included two replications in three parallels. Statistical
analysis was carried out using Excel 2010 and SPSS 25 software to assess potential significant
differences among the results.

3. Results and Discussion
3.1. Solubility

Protein solubility was continuously tracked throughout storage to assess the solubility
of SPI (Figures 1 and A1). The solubility of all samples showed a decreasing trend with
increasing storage time, which is consistent with previous findings [4]. However, samples
with different degrees of denaturation demonstrated distinct solubility reductions during
storage. NSPI displayed the smallest decline in solubility, followed by LSPI, while HSPI
exhibited the most significant decrease. This variation can be attributed to the differing
degrees of initial protein aggregation, where a higher degree of initial aggregation correlated
with poorer protein stability during storage [6]. In addition, different annealing treatments
had a significant effect on the change in storage solubility for HSPI, but not for LSP,
probably due to the less severe structural damage in LSPI, rendering annealing treatments
less influential.
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Figure 1. The solubility of soy protein isolate with or without annealing treatment as a function
of storage durations. NSPI: native soy isolate protein; HSPI: denatured soy isolate protein; H-65-5
denotes highly denatured soy protein isolate subjected to annealing treatment at 65 ◦C for 5 min;
H-65-30 denotes highly denatured soybean isolate annealed at 65 ◦C for 30 min.

The effects of different annealing conditions on solubility change during HSPI storage
were diverse. Within the annealing temperature range of 45 to 55 ◦C, there were no
significant differences in protein solubility during storage. This observation could be
attributed to the relatively low annealing temperature, which did not fully unfold the
internal structure or eliminate residual internal stresses from processing. Conversely, an
annealing temperature of 75 ◦C accelerated protein deterioration, probably because the
elevated temperature caused significant protein aggregation. The most effective annealing
temperature for maintaining protein storage solubility proved to be 65 ◦C. Despite including
initial protein aggregation, a 30 min annealing period for HSPI resulted in the slowest
solubility decline, maintaining an 80% solubility even by the 12th week. These findings
underscore the potential of suitable annealing conditions in enhancing protein stability
during storage.

3.2. Particle Size Distribution

Since the annealing treatment at 65 ◦C had a significant effect on the improvement of
solubility during protein storage, the particle size distribution of all annealed samples at this
temperature was traced and measured. Particle size distribution serves as a vital parameter
for evaluating the extent of protein aggregation and plays a crucial role in charactering
protein stability [23]. Figure 2 illustrates the particle size distributions of NSPI and HSPI
annealed at 65 ◦C over a 12-week storage period. Their distributions manifested a distinct
bimodal pattern, wherein HSPI, having undergone thermal denaturation, exhibited protein
particle aggregation, resulting in a rightward shift (indicating larger particle sizes) of the
two peaks [24]. At week 0, the protein particle size increased with increasing annealing
time (Figure 2a), probably attributed to the aggregation induced by the heat treatment. The
particle sizes of all protein samples showed an increasing trend with increasing storage time.
The particle size of HSPI displayed different degrees of increase over different annealing
durations, potentially linked to the aggregation kinetics of the protein [6]. Notably, HSPI
subjected to a 30 min annealing displayed smaller particle sizes throughout the storage
period, although accelerated storage resulted in an increase in particle size for this sample,
reaching a minimum in the 10th week and maintaining a similar trend until the 12th week
(Figure 2d,e). This suggested that brief annealing at 65 ◦C (5 and 10 min) did not yield
an improved long-term storage outcome; instead, it may have induced in internal stress,
leading to the increased particle size. However, excessively prolonged annealing durations



Foods 2024, 13, 615 6 of 17

(60 and 120 min) may have triggered a series of reactions resulting in protein aggregation
and subsequent particle size enlargement.
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Figure 2. Particle size distribution of HSPI at an annealing temperature of 65 ◦C, different annealing
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10, and 12 weeks, respectively.

3.3. Molecular Weight Distribution

To further illustrate the effect of annealing treatment on HSPI stability through-
out storage, we analyzed the relative molecular mass distribution of the proteins, as
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shown in Figures 3 and A2. To facilitate comparison among samples, we categorized
into four segments based on relative molecular mass interval as represented by group
A, B, C and D. Interval A (>1000 kDa) corresponds to large-size aggregates, interval B
(670–1000 kDa) to medium-size aggregates, interval C (43–670 kDa) to components of 11 s
and 7 s (340 and 200 kDa, respectively) globular proteins, and interval D (<43 kDa) to
dissociated small-size portions of the corresponding proteins. NSPI exhibited the lowest
percentage of group A and the highest percentage of group D, whereas all HSPI samples
exhibited a higher percentage of group A, which could be attributed to protein denatura-
tion and aggregation [25]. At week 0, different annealing treatments resulted in increased
percentage of group A, probably due to heat-induced aggregation and the formation of
disulfide bonds, resulting in increased macromolecular content and reduced solubility [26].
With the increase in storage time occurring at 37 ◦C, the content of group A in all samples
displayed an upward trajectory, indicating accelerated protein aggregation [6]. However,
it is worth noting that the macromolecular content of HSPI did not witness significant
numerical growth, probably due to the filtration of insoluble aggregates formed by the
samples after the sixth week. In addition, the duration of annealing exerted a notable
influence on the molecular weight distribution. In particular, a 30 min annealing time cor-
responded to lower protein macromolecule content, reaching its lowest by the 12th week.
This underscores the pivotal role of annealing duration in preserving protein structure [15].

Foods 2024, 13, x FOR PEER REVIEW 9 of 19 
 

 

0 10 20 30 40
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Retention Time(Min)

A
b

so
rb

ti
o

n
(2

80
n

m
)

A B C D(a)

Native
0min

5min
10min

30min

60min

120min

 
 

0 10 20 30 40
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Retention Time(Min)

A
b

so
rb

ti
o

n
(2

80
n

m
)

(b)

A CB D

120min

60min
30min

10min

5min

0min

Native

  

Figure 3. Molecular weight distribution of HSPI samples with an annealing temperature of 65 °C, 

different annealing times, and different storage times; (a,a1b,b1) indicate the molecular weight dis-

tribution of the samples at 0 and 10 weeks, respectively. Intervals A, B, C and D indicate molecular 

weights greater than 1000 kDa, 670 kDa to 1000 kDa, 43 kDa to 670 kDa and less than 43 kDa, re-

spectively. 

3.4. Sulfhydryl Groups Contents 

Sulfhydryl groups (-SH) and disulfide bonds (-S-S-) within soy proteins can be inter-

converted under specific conditions, significantly influencing protein functional proper-

ties [27]. Figure 4 presents changes in surface sulfhydryl groups, total free sulfhydryl 

groups, total sulfhydryl groups and disulfide bonds of the protein during storage. HSPI 

exhibited higher disulfide bond and total free sulfhydryl group contents compared to 

NSPI. This difference may elucidate why thermal denaturation treatment can lead to the 

aggregation of free sulfhydryl groups to form disulfide bonds, consequently explaining 

higher solubility of NSPI [28]. 

At week 0, there was a small increase in disulfide bond content with prolonging an-

nealing time, indicating that the annealing induced minor protein aggregation, which is 

consistent with the molecular weight and particle size distribution results (Figures 2 and 

3). As storage duration extended, both surface sulfhydryl groups and total sulfhydryl 

groups showed a decreasing trend. However, the extent of this change remained relatively 

consistent across different samples, suggesting that annealing had a minimal effect on the 

change in surface sulfhydryl groups and total sulfhydryl groups. Nevertheless, different 

annealing treatments affected the variations in total free sulfhydryl groups and disulfide 

0

20

40

60

80

100

NSPI 0 5 10 30 60 120

P
ea

k
 a

re
a 

(%
)

Annealing Time (min)

(a1) >1000 kDa 670–1000 kDa 43–670 kDa <43 kDa

0

20

40

60

80

100

NSPI 0 5 10 30 60 120

P
ea

k
 a

re
a 

(%
)

Annealing Time (min)

(b1)
>1000 kDa 670–1000 kDa 43–670 kDa <43 kDa

Figure 3. Molecular weight distribution of HSPI samples with an annealing temperature of 65 ◦C,
different annealing times, and different storage times; (a,a1,b,b1) indicate the molecular weight
distribution of the samples at 0 and 10 weeks, respectively. Intervals A, B, C and D indicate molecular
weights greater than 1000 kDa, 670 kDa to 1000 kDa, 43 kDa to 670 kDa and less than 43 kDa, respectively.



Foods 2024, 13, 615 8 of 17

3.4. Sulfhydryl Groups Contents

Sulfhydryl groups (-SH) and disulfide bonds (-S-S-) within soy proteins can be intercon-
verted under specific conditions, significantly influencing protein functional properties [27].
Figure 4 presents changes in surface sulfhydryl groups, total free sulfhydryl groups, total
sulfhydryl groups and disulfide bonds of the protein during storage. HSPI exhibited higher
disulfide bond and total free sulfhydryl group contents compared to NSPI. This difference
may elucidate why thermal denaturation treatment can lead to the aggregation of free
sulfhydryl groups to form disulfide bonds, consequently explaining higher solubility of
NSPI [28].
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Figure 4. Sulfhydryl group content of HSPI samples with an annealing temperature of 65 ◦C, different
annealing times, and different storage times; (a–d) indicate changes in surface sulfhydryl groups,
total sulfhydryl groups, total free sulfhydryl groups, and disulfide bonds in the samples during
the storage.

At week 0, there was a small increase in disulfide bond content with prolonging
annealing time, indicating that the annealing induced minor protein aggregation, which is
consistent with the molecular weight and particle size distribution results (Figures 2 and 3).
As storage duration extended, both surface sulfhydryl groups and total sulfhydryl groups
showed a decreasing trend. However, the extent of this change remained relatively consis-
tent across different samples, suggesting that annealing had a minimal effect on the change
in surface sulfhydryl groups and total sulfhydryl groups. Nevertheless, different annealing
treatments affected the variations in total free sulfhydryl groups and disulfide bonds during
protein storage. Proteins annealed for 30 min displayed the slowest rate of increase in
disulfide bonds. In weeks 10 and 12, the quantity of disulfide bonds in HSPI samples
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subjected to 30 min annealing time was lower than that in all other samples. This, in turn,
contributed to their relatively high solubility at the end of the storage period. Consequently,
annealing treatments reduced protein aggregation rates during storage, enhancing overall
stability. In addition, the protein samples exhibited a slightly swifter decline in total free
sulfhydryl groups compared to the rate of disulfide bond formation, probably due to the
conversion of free sulfhydryl groups into other sulfur-containing substances [29].

3.5. Surface Hydrophobicity

The protein surface hydrophobicity provides insight into its degree of denaturation
and the interactions among protein molecules [30]. ANS fluorescence data were employed
to probe structural changes during protein storage (Figure 5). The results reveal that HSPI
exhibited higher hydrophobic values compared to NSPI, probably due to the denatura-
tion treatment that partially unfolded the protein structure, exposing previously buried
hydrophobic regions within the protein molecule [31].
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Figure 5. Surface hydrophobicity of HSPI samples at an annealing temperature of 65 ◦C, different
annealing times, and different storage times. Different letters indicate significant differences between
different samples in the same week (p < 0.05).

At week 0, the protein hydrophobicity increased with extended annealing time. Pro-
longed heat treatment appears to promote a greater unfolding of the protein structure,
leading to more substantial exposure of hydrophobic groups and a more pronounced
hydrophobic effect, resulting in reduced initial protein solubility [32]. As storage time
progressed, proteins subjected to different annealing treatments exhibited varied degrees of
increased hydrophobicity. Notably, the 30 min annealing treatment maintained the lowest
hydrophobic value throughout the storage period, despite initially elevating protein hy-
drophobicity. This phenomenon may stem from the fact that the annealing leads to varying
degrees of protein unfolding and exposure of hydrophobic groups. However, suitable
annealing conditions help remove most of the stress associated with the production process,
promoting a more stable structure within and between protein molecules. This limits the
exposure of hydrophobic groups during storage, resulting in a relatively modest increase in
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hydrophobicity [33]. As a result, the hydrophobic value showed a relatively minor increase.
Moreover, this enhanced stability of protein structure during storage can be associated with
a reduced level of aggregation. From a microscopic perspective, it can be deduced that
annealing contributed to the improved stability of the protein throughout storage.

3.6. Intrinsic Fluorescence Spectrum

Endogenous fluorescence spectroscopy is a valuable tool for tracking changes in the
polarity of the microenvironment surrounding aromatic amino acids (tyrosine, trypto-
phan, and phenylalanine). This approach provides a direct characterization of the tertiary
conformational changes experienced by proteins [34]. Typically, proteins exhibit fluores-
cence in the range of 320–350 nm, which is especially notable in the case of tryptophan
residues following excitation at 290 nm [35]. The inherent fluorescence spectra during
protein storage are displayed in Figure 6. Throughout the storage period, NSPI consistently
exhibited the lowest fluorescence intensity value (FI) compared to HSPI. This difference
can be attributed to the denaturation treatment, which likely led to protein unfolding,
exposure of tryptophan residues, and an increased presence of chromogenic sites, resulting
in elevated FI [36].
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Figure 6. Intrinsic emission fluorescence spectra of HSPI samples with an annealing temperature of
65 ◦C, different annealing times, and different storage times. (a–e) Intrinsic emission fluorescence
spectra of sexual samples at 0, 2, 6, 10 and 12 weeks, respectively.

At week 0, the annealing treatments induced higher FI of the protein. FI gradually
increased with extended annealing time, accompanied by a blue shift in the maximum
absorption wavelength (λmax), shifting from 337.5 nm to 334.5 nm. This shift may be due
to the annealing-induced unfolding of the protein structure, altering the tryptophan mi-
croenvironment from relatively hydrophilic to relatively hydrophobic [37]. As storage time
progressed, the 30 min annealed proteins displayed a gradually decrease in FI, reaching a
minimum after week 10 compared to other annealed samples. λmax shifted from 334 nm to
337 nm, compared to the unannealed protein, by week 12. This phenomenon suggested
that annealing may have alleviated most of the residual stresses associated with protein
processing. This led to the formation of a relatively stable protein structure and a decelera-
tion of aggregation. Thus, the fluorescence intensity from aromatic amino acid residues
decreased, and the tryptophan microenvironment transitioned from relatively hydrophobic
to relatively hydrophilic [38]. Therefore, annealing appears to facilitate the formation
of a stable protein conformation, mitigate hydrophobic protein aggregation, and reduce
fluorescence coloration sites, aligning well with the solubility and surface hydrophobicity.

3.7. SDS–PAGE

Figures 7 and A3 shows the SDS-PAGE patterns of SPI under different annealing con-
ditions. Under reduced SDS-PAGE conditions, SDS disrupted non-covalent bonds between
aggregates and disrupted S-S bonds due to the presence of SDS and β-mercaptoethanol [39].
In contrast, under non-reducing SDS-PAGE conditions, S-S bonds remain intact, while
SDS solely denatured non-covalent bonds between aggregates. Under both reducing and
non-reducing conditions, all samples showed major components of SPI, namely the 7S and
11S protein subunits [39]. The 7S fraction consists of three subunits, α, α, and β; the 11S
component is a hexamer consisting of an acidic subunit A and a basic subunit B, connected
by S-S bonds [40]. No significant differences in subunit content and composition were
observed between the protein samples at week 0 and week 12 under reducing SDS-PAGE
conditions, indicating that the annealing and accelerated storage treatments did not alter
the protein composition. Under non-reducing SDS-PAGE conditions, the HSPI samples
exhibited an increase in the content of macromolecular bands but a significant decrease
in the content of AB subunits compared to NSPI. This suggests that soluble aggregates,
potentially generated during heat treatment, contain A and B subunits linked by disulfide
bonds. The relatively high solubility of the sample that underwent a 65 ◦C, 30 min treatment
during storage could be attributed to the soluble aggregates.
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Figure 7. SDS-PAGE patterns of HSPI dispersions with an annealing temperature of 65 ◦C and
different annealing times: 0 and 12 weeks. (a,c) are the non-reduced electropherograms, and (b,d) are
the reduced electropherograms, respectively, where M is maker, and 1 is NSPI. Numbers 2, 3, 4, 5, 6
and 7 denote samples with annealing times of 0, 5, 10, 30, 60 and 120 min, respectively.

4. Conclusions

Annealing treatment improved the stability of HSPI during storage, despite the initial
occurrence of protein aggregation. The 65 ◦C, 30 min annealing exhibited the most favorable
outcomes, displaying the slowest decline in protein solubility, the least protein aggregation,
smaller particle size, lower large molecular weight content and a more gradually formation
of disulfide bond. The annealing treatment induced changes in the tertiary structure of the
protein. In particular, the 65 ◦C, 30 min annealing resulted in a slower increase in protein
hydrophobicity, a gradual decrease in FI, and an enlargement of λmax. This is likely due to
the fact that the annealing process eliminated the residual stress of the protein processing,
thereby maintaining a relatively stable structure. In conclusion, annealing treatment
provides a promising approach to mitigating decreases in the solubility of soy protein
during its storage. Future investigations should explore the combination of annealing with
chemical methods to further enhance the stability of soy protein during storage.
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Figure A1. The solubility of soy protein isolate with or without annealing treatment as a function of
storage durations. NSPI: native soy isolate protein; LSPI: lowly denatured soy isolate protein and
HSPI: highly denatured soy isolate protein; L-45-5 denotes the lowly denatured soy protein isolate
subjected to annealing treatment at 45 ◦C for 5 min. (a), (b), (c) and (d) denotes the changes in storage
solubility of LSPI after annealing at 45, 55, 65, and 75 ◦C, respectively; and (e), (f) and (g) donates the
changes in storage solubility of HSPI after annealing at 45, 55, and 75 ◦C, respectively.
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Figure A2. Molecular weight distribution of HSPI samples with an annealing temperature of 65 ◦C,
different annealing times, and different storage times; (c,c1), (d,d1) and (e,e1) indicate the molecular
weight distribution of the samples at 2, 6 and 12 weeks, respectively. Intervals A, B, C and D indicate
molecular weights greater than 1000 kDa, 670 kDa to 1000 kDa, 43 kDa to 670 kDa and less than
43 kDa, respectively.
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