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Abstract: The challenging international landscape and exacerbated extreme weather conditions
contribute to the instability of global grain trade, complicating its impact on food security. This
complexity is particularly pronounced for varieties like rice, which are heavily affected by policy-
driven trade restrictions. There is insufficient research on how a country’s rice trade characteristics
affect food security. A network analysis approach is adopted to intricately dissect the structural
characteristics of rice trade. To explore causality with food insecurity, this paper chooses structural
holes and centrality as representatives of trade network characteristics and regresses them on the food
insecurity indicator. With cross-national data spanning over 30 years, the network analysis provides
a clear portrayal of the dynamic changes in international rice trade. The overall resilience of the
trade network has increased, but specific countries’ vulnerability has also risen. Unlike the changing
trends in features observed in grain and food trade networks, there is a notable intensification in the
imbalance of power distribution in the rice trade network compared to over 30 years ago. The panel
data regression results show that constraint, indicating the scarcity of structural holes or connections
to stronger trading partners, significantly and positively influences a country’s level of food insecurity.
Based on these findings, the policy proposal for importing countries emphasizes creating strategic
trade connections. By choosing appropriate trade partners that reduce constraint, food security can
be enhanced, even without improvements in other conditions.

Keywords: food security; structural advantages; constraint; global trade; network analysis; rice

1. Introduction

Rice is pivotal for global food security, acting as a primary calorie source for millions
in Asian poverty and emerging as a significant staple in Latin America and Africa [1].
Compared to the more diversified global wheat and maize markets, the international rice
market has a more concentrated production distribution and a smaller proportion of inter-
national trade volume [2]. Notably, Asian rice production contributes approximately 90%
of the global total, with China and India together contributing approximately 50%. The
geographic concentration of rice production makes global output more vulnerable to factors
such as the Asian monsoon climate and geopolitical influences, leading to fluctuations,
thus making it one of the sources of food insecurity [3,4]. Approximately 40% of Asian
rice is produced under a variable monsoon climate [5], leading to substantial interannual
fluctuations in rice production that directly impact the supply of the world rice market.
Adding to this complexity, climate change is emerging as a critical factor disrupting inter-
national trade in the 21st century [6]. The sensitivity of rice to climate change implies that
its production is significantly affected by climatic variations, such as floods, droughts, and
salinization. This sensitivity becomes particularly crucial when considering the historical
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role of the global rice market in previous food crises, notably the 2008 global rice crisis
when several importing countries faced severe rice shortages.

While production serves as the foundational factor determining supply, trade fluc-
tuations often emerge as a significant source of food crises, especially in the case of rice.
Many Asian countries ascribe cultural and political significance to rice, considering it a
signal of food security [7]. This prioritization makes rice the most protected grain and con-
tributes to greater instability in its international trade compared to other grains. Since the
Russia-Ukraine conflict, as of 5 June 2023, India, Bangladesh, Cameroon, Kuwait, Lebanon,
and Russia have implemented export bans on rice. Exploring innovative trade strategies
is essential to elevate the food security levels of importing countries. Considering these
complexities surrounding the global rice market and its impact on food security, it becomes
crucial to recognize the multifaceted role that trade plays in shaping the dynamics of food
security. In scenarios where trade relationships are stable, countries can confidently rely
on external supplies, leveraging comparative advantage rather than resorting to costlier
domestic production without a comparative advantage. However, when the international
trade market becomes unstable, dependence on imports becomes a source of risk for food
security [8]. Previous research, primarily measuring vulnerability based on factors such as
dependency on foreign sources [9], underscores the intricate relationship between trade
and food security. Studies on the international rice trade underscore the high vulnerability
of importing countries and the considerable influence of large exporting nations. Many
rice-importing countries, such as Saudi Arabia, South Africa, and Belgium, lack domestic
production resources. The absence of a stable external supply can significantly impact
their food security [10,11]. Some researchers narrow their evaluation of importing country
vulnerability to indicators such as the external dependence index and import concentration
index, focusing on production fluctuations rather than trade fluctuations on the exporting
side [8,12,13].

A social network analysis begins with examining relationships by delving into network
structures and central positions. This approach offers a detailed and precise measurement
of trade structural characteristics, providing multiple perspectives on the sources of power
status in trade. By studying the characteristics of trade networks and their implications
for food security or vulnerability, one can gain new insights for explaining food crises and
identifying potential solutions. The impact of food production shortages on food supply
is not solely determined by global markets; underlying trade networks also play a crucial
role [14]. The increasing connectivity and mobility of global trade networks, coupled with
the growing trend of food import dependence, heightens the vulnerability of food systems
to systemic disruptions [15]. Furthermore, trade networks can trigger cascading effects,
potentially transforming localized shocks into global crises [16]. Notably, the rice trade
has been identified as being particularly susceptible to cascading export restrictions, with
Asian and African countries being the most exposed to such cascades. An analysis of the
trade structure enables the identification of primary sources of constraints and provides
pathways for strategy improvements [17].

The primary network characteristics examined in the literature include centrality,
small groups, and network density [17,18], with fewer studies focusing on the analysis
of structural holes. In this context, analytical models predominantly utilize statistical
descriptive analysis [10], the construction of risk indicators [8], impact simulation [19], and
the multilevel impacts of shocks [16], with less emphasis on causal analysis. These research
findings generally show the increased activity and closeness of international trade, while
diverse conclusions have been drawn regarding the impact of shocks on food security from
different perspectives [8,10,16,19].

Importation is identified as a significant source of instability in food supply, par-
ticularly with rice imports causing more widespread instability in food supply regions
than corn and wheat imports. The reasons for instability caused by rice imports vary
across different regions, emphasizing the need for a regional heterogeneity analysis [10].
Structural hole analysis is more prevalent in the field of business organizations than in



Foods 2024, 13, 604 3 of 26

the context of trade networks; however, the existing literature consistently highlights the
positive impact of occupying structural holes on organizational outcomes, underscoring
the strategic opportunities available to organizations aware of their advantageous posi-
tions [20]. One can assume that occupying structural holes in the rice trade network could
impact a country’s food security. A recurring issue in the literature revolves around the
extent to which trade network characteristics affect food security, particularly the challenge
of establishing causality [21,22].

Existing research predominantly focuses on the resilience revealed by trade network
characteristics and potential food security risks. However, there is limited exploration of
causal analyses regarding how the network structure characteristics of a single country
affect its level of food security. The degree to which network characteristics influence
food security remains a complex and unresolved issue in the literature. Despite adopting
the recommended strategy of import diversification, some countries still face the risk of
unstable imports, leading to domestic food shortages. A potential explanation for this
phenomenon can be found in the structural features of their import partner relationships.
This paper innovatively utilizes computed panel data on network features as explanatory
variables, offering potentially deeper insight into these complex relationships.

This research endeavored to bridge existing gaps in understanding the evolving nature
of international rice trade and its impact on food security. The main problem addressed in
this study is the extent to which the trade network structure characteristics of a country
affect its food security. The primary goal of this study is to identify the sources of food
insecurity, the origins of vulnerability, and the specific areas that can be fortified. Drawing
on 36 years of trade matrix data for 210 countries, the authors calculated and analyzed the
dynamics of dozens of indicators measuring the characteristics of the international rice
trade network. To test the effect of centrality and structural holes on a country’s level of
food insecurity, a regression model was developed based on the panel data. The results
have the potential to deepen the understanding of the role of trade networks and provide a
scientific basis for policies aimed at optimizing networks to enhance food security. This
study holds immense significance in unraveling the intricate dynamics of the international
rice trade network and its profound implications for global food security.

The upcoming chapter is organized as follows. The second and third sections elu-
cidate the calculation formulas of the main indicators used in the network analysis and
describe a panel regression model constructed based on core indicators, providing detailed
insights into the sources and processing procedures of the primary data. The fourth section
illustrates the dynamic changes of network analysis indicators along with the regression
results of centrality and constraint indicators on the level of food insecurity. The fifth and
sixth sections discuss the findings and provide concluding remarks.

2. Methods and Data
2.1. Trade Network Analysis

For the social network analysis, trading countries or regions are designated as nodes, and
the trade flow between them are considered edges, thus forming a complex trade network [23].
This network is succinctly represented by a square matrix, Wn, with dimensions of n*n, where
exporters are in the rows and importers are in columns. To comprehensively investigate the
complex network characteristics of the international rice trade, a weighted trade network (Wn)
based on value data and an unweighted trade network (An) derived from Wn are constructed.
The unweighted network (An) is generated by disregarding the link weights and solely
accounting for the presence of a trade connection. The analysis employs both network-level
and node-level measures to provide a comprehensive understanding of the international rice
trade network. The square matrix Wn can be represented as

Wt
n =

w11 · · · w1n
...

. . .
...

wn1 · · · wnn

 (1)
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where t represents the year, and the matrix elements, wij, represent the trade volume
between node i and j. In the square matrix, An, the matrix elements are either one when
there is a trade connection or zero when there is no trade connection between the two nodes.

Table 1 lists more than 30 measures of network-level features [24–26]. The measures are
categorized into three main groups: network size, network centralization, and connectivity.
The measures of the network size mainly reveal the trade connections and volume. The net-
work centralization indicators generally reflect the degree of imbalance in the distribution
of trade connections or trade volume among countries. The network connectivity’s main
focus is to reflect the efficiency of trade connections, local fragmentation, and reciprocity.

Within the node-level measures, centrality and structural holes are explored. Centrality
stands out as one of the most fundamental and crucial concepts in network analysis,
providing insights into the superiority or privilege of a node within the network. There are
various methods for measuring centrality, the most basic of which is the node degree. In an
unweighted network, the node degree (ki) represents the number of connections a node has,
reflecting the number of countries with which a particular country trade. Mathematically,
the node degree (ki) is defined as

ki = ∑j aij (2)

where aij is the element of the binary adjacency matrix, AN. For weighted networks, the
weighted counterpart to degree is the node strength (si), calculated as si=∑j wji. The degree
can further be divided into outdegree (export) and indegree (import) based on the direction
of trade. A higher degree is indicative of greater centrality or influence in the network.

Table 1. Descriptions of network-level measures.

Classification Measure Description

Network Size

Number of Ties Number of connections of each node

Avg Degree Average number of connections of each node

Density Proportion of the actual existing trade links to all possible trade links

Diameter Maximum geodesic distance

Sum Strength Sum of the trade volume of all the ties

Network
Centralization

Deg Centralization Degree of distribution in the network compared to a perfectly
centralized network

Out-Centralization Degree of centralization in the export direction

In-Centralization Degree of centralization in the import direction

Indeg H-Index
Calculated by the largest number x, such that there are x vertices of
the in-degree of at least x. It helps identify the most influential nodes
based on the number of incoming connections

K-Core Index Subgraph where all nodes have at least k connections to other nodes
in the subgraph

Indeg Corr In-degree correlation or assortativity of the network

Outdeg Corr Out-degree correlation or assortativity of the network

Maximum Strength Highest trade volume on the connections

Avg Strength Average trade volume on the connections
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Table 1. Cont.

Classification Measure Description

Network Connectivity

Components Sets of nodes that are connected to each other but not to nodes
outside the set

Component Ratio Indicates how many distinct disconnected clusters or subgraphs exist
within the network

Compactness Mean of all the reciprocal distances—it is a measure of how closely
knit a network is

Breadth Equals one minus the compactness.

Connectedness Extent to which all nodes in the network are reachable from any
other node

Fragmentation
Complement of connectedness (1-Connectedness), representing the
proportion of vertex pairs that are unreachable. It measures how
much a network breaks into disconnected components

Transitivity/Closure
Calculated by the number of nonvacuous transitive triples divided by
number of paths of length 2. It reflects the degree of clustering in
the network

Avg Distance Average geodesic distance among reachable pairs

Prop within 3 Calculates the proportion of nodes within three steps from each node

SD Distance
Standard deviation of the geodesic distances among reachable pairs:
a lower SD distance indicates a more homogeneous network in terms
of how close or far nodes are from each other

Wiener Index Sum of the geodesic distances between all pairs of nodes. It is a
measure of the total closeness or connectedness of the network

Dependency Sum
Calculated by the sum of all the geodesic distance minus n(n-1). It
measures the extent to which nodes in the network are dependent on
one another

Nulls Proportion of dyads (pairs of nodes) that have no links

Mutuals Proportion of dyads that have reciprocated links

Asymmetrics Proportion of dyads that have an unreciprocated links and assess the
asymmetry in relationships between nodes

Arc Reciprocity Number of reciprocated arcs (connections between nodes) divided by
the total number of arcs

Dyad Reciprocity Number of reciprocated dyads divided by the total number of dyads

The concept of structural holes serves as a foundational explanation that transcends
player attributes, populations, and time [27]. This concept captures a causal mechanism
through which personal advantages can be derived from network positions [28]. The
constraint measure describes the scarcity of structural holes possessed by a node. The
value of the constraint is higher when a node has fewer or more mutually strong (i.e., more
redundant) contacts [29]. In simpler terms, a node’s constraint is typically greater if the
ego network is smaller or if its trading partners are highly connected—either directly in a
dense network or indirectly through respective central contacts in a multitiered network.
Burt’s measure of constraint, Ci, for vertex i’s ego network, Vi, is defined for directed and
valued graphs as

Ci = ∑
j

(
pij + ∑

q
piq pqj

)2

(3)
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For a graph of order n, the proportional tie strengths are defined as
pij = (a ij + aji

)
/ ∑j(aij + aji

)
, where a represents the elements of the graph adjacency

matrix, A. Notably, for isolated vertices, the constraint is undefined [27].

2.2. Regression Model

At the network level, indicators are chosen to either align with or counter the trends
observed in food security. At the node-level, the focus is on identifying indicators related to
the food security index based on the regression model. A panel data model is established
to uncover causal relationships. The main model takes the following form:

Yi,t =∝ +β1outi,t + β2ini,t + β3Ci,t + γXi,t + δi + µt + εi,t (4)

where i and t represent country and time, respectively. Y denotes food insecurity and is
represented by the prevalence of undernourishment (PoU), which is an indicator released
by the FAO to measure the severity of hunger [30]. Undernourishment, as per the FAO’s
definition, occurs when a person’s usual food consumption is insufficient to provide the
dietary energy needed to maintain a normal, active, and healthy life.

The key explanatory variables in the model include network centrality indicators
and structural hole indicators. The variable outi,t consists of indicators calculated through
network analysis to gauge the centrality of export directions. Similarly, the variable ini,t
comprises indicators that measure the centrality of import directions. Additionally, Ci,t rep-
resents the value of constraint, indicating the extent of a country’s lack of structural holes.

The variable X constitutes a set of control variables including GDP per capita (lnGDP)
and the cereal import dependency ratio (CIDR), which are hypothesized to be significant de-
terminants of national food security [31,32]. The term εi,t represents a random disturbance
term following a standard distribution. δi denotes country-specific effects, encapsulating
factors such as geographic characteristics or enduring cultural and institutional elements
that remain relatively constant over time. Additionally, µt represents the time-specific
effect, accounting for factors such as fluctuations in world prices and addressing shocks
that universally affect all countries, such as global demand shocks. In the regression model,
period-fixed results are presented because global food shocks have a broad impact on most
countries, and fixing this variable helps control for such effects [33,34].

2.3. Data

The trade data spanning from 1986 to 2021 were sourced from the detailed trade matrix
dataset of the Food and Agriculture Organization Corporate Statistical Database (FAOSTAT)
(http://www.fao.org/faostat/en/#home, accessed on 2 July 2023) [35]. FAOSTAT provides
extensive global coverage and longitudinal data, enabling researchers to monitor trends
over time across diverse countries. Although the credibility is reinforced by contributions
from official departments of many countries, there is a potential for inaccuracies, especially
when certain nations have limited capacity for comprehensive data collection and reporting.
In particular, countries with lower economic levels are more likely to have missing data,
leading to sample bias. Specifically, the data for imports and exports are adopted using
the item classification of rice/paddy (milled rice equivalent). The export quantity is used
to construct the main network. In instances where country-specific data are unavailable,
they are supplemented by the conversion of import data. There are slight discrepancies
between the sum of all countries in our matrix and the world rice trade volume. However,
the difference between the two datasets for the last 10 years is negligible, amounting to less
than one percent. Although the disparity was more pronounced in earlier years, it did not
significantly impact this study of trends and changes. This study’s trade matrix database
comprehensively covers all countries or regions engaged in the rice trade from 1986 to 2021.
In cases where a country’s name changed, the pre- and post-change names are treated as
separate nodes to maintain consistency. The number of nodes is consistently set at 210 for

http://www.fao.org/faostat/en/#home
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comparability across years, even though the actual number of countries or regions engaged
in trade each year was generally slightly less than 210.

The PoU, GDP per capita, and the cereal import dependency ratio are sourced from
the suite of food security indicators and the macrostatistics dataset of FAOSTAT (http:
//www.fao.org/faostat/en/#home, accessed on 2 July 2023) [35]. The panel data utilized
in the base regression model include 180 countries spanning from 2001 to 2021, representing
approximately 99% of the total world rice trade volume. The PoU is presented as a three-
year average for intermediate years, and missing data in the cereal import dependency
ratio are imputed using the average of three neighboring points.

Notably, the PoU measures levels of food insecurity, with a smaller value signifying
greater food security. The global prevalence of undernourishment decreased from 2002 to
2014, slightly increased in 2015, and then declined again. However, after reaching a low
point of 7.5% in 2017, the trend reversed and it reached 9.3% in 2021, essentially returning
to the 2009 level. Global Food Security Index (GFSI) values for the robustness check (2012
to 2021) were obtained from The Economist website (https://impact.economist.com/,
accessed on 21 July 2023). This study employs Ucinet 6.750 for network analysis and Gephi
for visualization purposes (https://gephi.org/, accessed on 15 August 2023) [25].

3. Results
3.1. Network-Level Structure and Dynamics of the Global Rice Trade Network

To better understand the multifaceted factors influencing food security, the first step is
to determine the network-level structure and dynamics of the global rice trade network
using social network analysis techniques. Table 2 illustrates the alterations in the values
of key network-level characteristics. The global rice trade network underwent substantial
expansion over the past thirty years, with 2149 trade connections in 2021—four times more
than in 1986—among the 210 nodes. The density of the network grew grown from 1.00% to
4.90%. The whole network became tighter and more cohesive. The number of components
and component ratios decreased, suggesting fewer disconnected subgraphs in the network.
An increase in compactness from 4.5% to 20.8% suggests that nodes in the network became
more closely connected and may indicate the formation of tighter clusters or communities
within the network. On average, all nodes became closer to each other, as evidenced by the
increase in values of connectedness and transitivity. The average distance and SD distance
became shorter, signifying a higher level of trade transport efficiency within the network.
The network-level analysis revealed substantial increases in size, density, and efficiency,
signifying enhanced cohesion and resilience across the entire rice trade network. However,
the overall resilience relies on some core nodes, and their influence may be substantial.

Centralization imbalances continued to rise, especially in the export direction. Between
1986 and 2021, out-centralization, representing overall network centrality in the export
direction, surged from 23.10% to 73.40%, indicating a significant increase in the power
disparity driven by exports. The indeg h-index rose from 8 to 20, aligning with the
expanded network size and signifying that more countries within the trade network gained
a substantial number of trading partners. Simultaneously, the in-centralization recorded
at 17.2% in 2021 reflects a relatively decentralized power distribution. The K-core index
increased from 7 to 18, indicating a growing centralization of the network around highly
connected nodes and enhanced resilience against random node removal. However, the
increase in trade flows on the largest edge (maximum strength) is much greater than the
increase in average flows (avg strength), partly reflecting a growth in imbalances.

http://www.fao.org/faostat/en/#home
http://www.fao.org/faostat/en/#home
https://impact.economist.com/
https://gephi.org/
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Table 2. Whole network measures of the global rice trade from 1986 to 2021.

Classification Measure 1986 2021 Change from
1986 to 2021

Values from 1986 to 2021

Mean Std. Dev.

Network Size

Number of Ties 426 2149 404.46% 1354.278 604.202
Avg Degree 2.029 10.233 404.34% 6.449 2.877

Density 1.00% 4.90% 3.9 pp 3.10% 1.40%
Diameter 7 6 −14.29% 5.972 0.609

Sum Strength 5,863,727 50,943,092 768.78% 25,553,666 14,421,910

Network
Centralization

Deg Centralization 25.20% 69.90% 44.7 pp 47.60% 14.50%
Out−Centralization 23.10% 73.40% 50.3 pp 49.20% 16.40%
In−Centralization 7.20% 17.20% 10 pp 12.30% 3.50%

Indeg H−Index 8 20 150.00% 15.056 4.105
K−core index 7 18 157.14% 13.333 3.84

Indeg Corr 10.90% 12.40% 1.5 pp 8.50% 1.70%
Outdeg Corr 21.60% 30.60% 9 pp 27.80% 3.20%

Maximum Strength 856,952 2,479,740 189.37% 1,742,748 1,075,720
Avg Strength 13,764.62 23,705.49 72.22% 17,743 3368

Network
Connectivity:
Components,
Distance, and

Reciprocity

Components 180 117 −35.00% 143.278 23.911
Component Ratio 85.60% 55.50% −30.1 pp 68.10% 11.40%

Compactness 4.50% 20.80% 16.3 pp 13.50% 5.70%
Breadth 95.50% 79.20% −16.3 pp 86.50% 5.70%

Connectedness 10.50% 42.50% 32 pp 29.00% 11.80%
Fragmentation 89.50% 57.50% −32 pp 71.00% 11.80%

Transitivity/Closure 22.50% 34.70% 12.2 pp 31.90% 4.40%
Avg Distance 2.788 2.334 −16.28% 2.538 0.119
Prop Within 3 8.10% 39.60% 31.5 pp 25.20% 10.80%
SD Distance 1.049 0.803 −23.45% 0.914 0.088

Wiener Index 12,895 43,509 237.41% 31,884 12,427
Dependency Sum 8269 24,871 200.77% 19,170 7277

Nulls 98.20% 91.30% −7.03 pp 94.42% 2.40%
Mutuals 0.10% 1.10% 1 pp 0.60% 0.30%

Asymmetrics 1.70% 7.70% 6 pp 5.00% 2.10%
Arc Reciprocity 13.10% 21.90% 8.8 pp 18.10% 2.60%

Dyad Reciprocity 7.00% 12.30% 5.3 pp 10.00% 1.60%

Notes: The number of nodes remained fixed at 210 from 1986 to 2021 to ensure comparability across the years.
Except for sum strength, maximum strength, and avg strength, other indicators were calculated using binary data.
Calculations were performed using Ucinet 6.75. The mean and std. dev. were calculated based on 36 sample
values from 1986 to 2021, and “pp” stands for percentage point.

Despite a 12.2 percentage point increase in transitivity/closure, this figure does not
match the substantial increase of 32 percentage points in connectedness. The transitiv-
ity/closure value in 2021 implies that the remaining 65.3% of the population must be
connected through intermediary nodes to reach a third party. Coupled with a twofold
increase in the dependency sum, this suggests that more bridges or intermediary nodes
gained significance, leading to increased dependency on them. Link reciprocity remained
low. In 2021, 91.2% of node pairs had no links (nulls), 1.1% had mutual links (mutuals), and
7.7% had unreciprocated links (asymmetrics). Arc reciprocity, the proportion of existing
bidirectional connections, was 21.9%, and dyad reciprocity, the bidirectional connection
proportion among connected pairs of nodes, was 12.3%. Although both arc reciprocity
and dyad reciprocity increased after 1986, the proportion of such cases remained rela-
tively small, indicating the presence of substantial heterogeneity and structural holes in
trade connections.

Figure 1 visually represents the nodes and flow of the rice trade network. The node
size reflects the node strength, which represents the volume of the rice trade, while the
edge thickness corresponds to the trade volume of specific connections. For readability,
both graphs include edges with quantities exceeding 10,000 tons. In the 2021 graph, there
are 358 such edges, comprising 16.66% of the total edges. In the 1986 graph, only 83 edges
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are displayed, accounting for 19.48% of the total. The graphs reveal an approximate trend
toward increased density and efficiency in the network. The United States of America
(USA), India (IND), and Thailand (THA) maintained their central export positions, with
India emerging as the most important exporter. France (FRA) and Belgium-Luxembourg
(BLX) that were core trade nodes in the rice trade in 1986 experienced significant decreases
by 2021. The country codes are listed in Table A1.
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Figure 1. Visualization of the global rice trade network in 1986 (top) and 2021 (bottom). The sizes of
nodes and edges in the graph reflect only their relative magnitudes within each graph.

The network-level analysis highlights increased density and efficiency trends, empha-
sizing the evolving dynamics and key players in the global rice trade network. The global
rice trade network became more cohesive, with fewer disconnected subgraphs and the
formation of tighter clusters. While overall resilience improved, centralization imbalances
surged, particularly in the export direction.

3.2. Node-Level Distribution of Centrality and Structural Holes

While network-level measurements provide a holistic view of the whole network’s
structure and characteristics, node-level measurements offer insights into the importance
and role of individual nodes within the network. The centrality and structural holes endow
nodes with structural advantages, making them significant sources of power dynamics
in trade. Hence, they are key indicators in the analysis. Node centrality can be measured
by degree, closeness, and betweenness centrality. Each measure has its own definition of
importance and power source. Degree centrality assigns an importance score based simply
on the number of links held by each node, as calculated by Equation (2). In a weighted
graph, importance can be assigned based on the flow between the ties, as represented
by strength in the analysis to distinguish it from degree. Closeness centrality measures
the ability of a node to reach others along a shorter path, occupy a better position in the
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network, and have a structural advantage that can be converted into power. Betweenness
centrality, being in the middle of other nodes, brings structural advantages. The more
connections there are in the middle, the less dependence there is and hence, the more power
there is. To reflect the dynamic changes over the past 30 years through a few typical points,
structural trend changes are identified in 1992, 2008, and 2014 based on multiple break
point tests and trend observations of the time series data on global rice trade volumes. Since
1992, the trade volume-to-production ratio for rice has increased due to the relaxation of
trade barriers among countries [36]. The structural changes in 2008 were primarily driven
by the global food crisis in 2007–2008, leading rice-exporting countries to impose export
bans, significantly reducing liquidity in the international rice market [37]. The change
from 2014 is mainly due to the increase of trade volume based on record imports by Sub-
Saharan Africa and China, slightly lower global trading prices and abundant exportable
supplies [38]. Incorporating the start and end years, the data from these five years are
utilized when presenting revolution patterns. Table 3 provides a listing of the top five
countries based on degree centrality, closeness centrality, and betweenness centrality.

Table 3. List of the top five countries by degree centrality, closeness centrality, and betweenness
centrality.

Rank
Outdegree Outstrength

1986 1992 2008 2014 2021 1986 1992 2008 2014 2021

1 USA PAK IND IND IND THA THA THA IND IND
2 FRA CHN PAK PAK PAK USA VNM USA THA THA
3 THA IND THA THA THA URY USA IND VNM PAK
4 IND USA USA USA USA ARG PAK VNM PAK VNM
5 BLX THA CHN ITA ITA ITA CHN PAK USA USA

Rank
Outcloseness Betweenness

1986 1992 2008 2014 2021 1986 1992 2008 2014 2021

1 USA PAK IND IND IND USA USA USA USA USA
2 THA USA PAK PAK PAK FRA CHN PAK PAK IND
3 IND IND THA THA THA BLX DEU ITA NER DEU
4 ITA THA USA USA USA CAN BLX FRA FRA FRA
5 FRA CHN CHN VNM ITA IND FRA DEU ZAF ZAF

Notes: Degree centrality is measured by both the number of trade connections (degree) and the trade volume
(strength). The top countries are presented in terms of only outdegree/strength centrality and outcloseness
centrality because the influence in the export direction is much more concentrated than that in the import direction.

In more recent years (2008, 2014, and 2021), India has consistently held the top position
in terms of outdegree, outstrength, and outcloseness centrality. While India’s export volume
surpassed that of Thailand only in the last decade and India has become the leading exporting
country, it was ranked first in terms of outdegree and outcloseness centrality in 2008. In 2021,
India’s ego network comprised 164 nodes, including itself, making up 78.1% of all network
nodes. India exports to all 163 countries, with the top five—Bangladesh (BGD), Benin (BEN),
China (CHN), Senegal (SEN), and Nepal (NPL)—each receiving exports exceeding one million
tons. In terms of centrality measured by betweenness, the United States has consistently held
the top position. In 2021, the United States’ ego network comprised 122 nodes, representing
58.1% of all network nodes. USA exports to 101 countries and imports from 47 countries.
Germany (DEU), France (FAR), and South Africa (ZAF) ranked in the top five for betweenness
centrality in 2021. Despite being net-importing countries, they also act as import sources for
numerous other nations.

Another crucial indicator of a node, aside from centrality, is its structural holes, as
calculated by Equation (3). Structural holes identify countries with greater power due to a
particular structural advantage, while a constraint serves as its counterpart, explaining why
countries have greater vulnerability due to limitations stemming from structural disadvan-
tages. A constraint is a cumulative numerical value that represents the degree to which
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the ego is connected to other interconnected entities. If the potential transaction partners
of the ego are also potential partners with each other, the ego faces greater constraint.
Conversely, if the ego’s partners have limited alternative choices, they cannot constrain the
ego’s behavior. The concept of constraint highlights that actors with numerous connections
may lose autonomy rather than gain more freedom, and the balance of losses and gains
is determined by the relationships among the actors [25,27]. For instance, in 2021, China
(CHN) had the highest import volume, thus ranking first in terms of volume. However,
it had only 15 import sources, thus ranking 38th in terms of sources. Despite this, China
exhibited relatively low constraint. This is primarily attributed to the fact that its part-
ner countries have fewer trade connections, and there is limited interaction among these
partner countries.

Dyadic constraint is a measure in network analysis that assesses the level of constraint
in a node pair’s relationships within a network. For instance, in a scenario where node A
has few other ties except that to B and where A’s other connections are also linked to B, A
would experience a higher level of constraint from B [25]. From the perspective of food
security, the focus is mainly on the constraint imposed by the import direction. For example,
India is a major import source for many countries, and these countries connected with India
have few independent connections other than India. There are too few alternative options,
and even if there are other connections, they are also countries that import from India.
Hence, India has a substantial influence on the constraint faced by these nations. According
to the 2021 import direction data, the five countries with the most significant constraint
on other countries were India (IND), China (CHN), the United States of America (USA),
Thailand (THA), and Pakistan (PAK). Countries experiencing significant high constraint
imposed by India are primarily located in Asia and Africa, with the top five nations being
Bhutan (BTN), Liberia (LBR), Chad (TCD), Yemen (YEM), and Nepal (NPL). The countries
facing substantial constraint imposed by China are predominantly located in Oceania and
Africa. The countries subjected to significant constraint imposed by the United States are
primarily located in Latin America and the Caribbean, with the top five nations located
in Central America and the Caribbean. The top countries facing the highest constraint
imposed by Thailand include New Caledonia (NCL) and French Polynesia (PYF) in Oceania.
The 10 countries facing the highest constraint imposed by Pakistan include nations in Asia
and Africa. At the same time, Pakistan faces significant constraint from China and India.

In comparison with major exporting countries, Vietnam imposes relatively lower
constraint on other countries, while China has relatively more constraint on other coun-
tries. Among the major importing countries in 2021, China experiences light constraint,
primarily from Vietnam with a dyadic constraint value of 0.175. Bangladesh faces sig-
nificant constraint, mainly imposed by India, with a constraint value of 0.923. Benin is
primarily constrained by India, with a constraint value of 0.639. The United States encoun-
ters constraint to a certain extent, primarily imposed by Thailand with a constraint value
of 0.268.

Figure 2 shows that the kernel density plot for outdegree is concentrated around the
value of 0, signifying that the majority of countries have relatively few connections in terms
of rice exports. Over time, the peak of the kernel density exhibits significant fluctuations.
After reaching its highest point at 1.03 in 1991, the peak value demonstrates a continuous
decreasing trend, reaching 0.107 in 2021. This implies that overall, the number of countries
with very few or no trade export connections has decreased over the past three decades.
The peak value of the kernel density curve for indegree countries (importing countries) has
consistently decreased over time, declining from 0.26 in 1986 to 0.063 in 2021. Additionally,
the overall distribution has gradually shifted rightward, signifying an increase in sources
of rice imports across many countries over the years. The kernel density distribution of the
constraints reveals a distinct leftward shift in the peak value, suggesting a decrease in the
number of countries with high constraint values. The peak shows relatively minor changes
in general, with values of approximately 1.01 in 1986 and 0.89 in 2021.
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Figure 2. Kernel density distribution of outdegree, indegree and constraint from 1986 to 2021.

The node-level centrality and structural holes provides insights into the significance
and role of individual nodes in the global rice trade network. The distribution of power
among countries is still highly disproportionate, and many countries remain vulnerable in
the global context.
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3.3. Causal Estimates of Network Variables and Food Insecurity
3.3.1. Estimation of the Main Model

The PoU (Y1) is used as the dependent variable in the main model. A country’s
centrality in the network is measured by multiple indicators, which show slight differences
but strong correlations. The outdegree and indegree indicators are chosen to represent
node centrality because compared to other sets of centrality indicators, they exhibit smaller
numerical differences, provide more reliable data, and are easier to comprehend. Addition-
ally, the constraint variable, representing the degree of absence of structural holes, further
refines the network analysis. Control variables, such as the logarithm of GDP per capita
(lnGDP) and the cereal import dependency ratio (CIDR), are included to contextualize the
broader dynamics within the network.

Firstly, a summary of the descriptive statistics is presented for the variables employed
in the main regression model, as represented by Equation (4), aiming to enhance the
comprehension of the sample (Table 4). The mean PoU is 9.730, signifying that on average,
9.73% of a country’s population experiences undernourishment. The maximum PoU is
67.800, indicating that during the most challenging year, 67.8% of the country’s population
experienced undernourishment. The mean values for outdegree, indegree, and constraint
are 9.623, 9.589, and 0.847, respectively. Notably, outdegree exhibits a relatively large
standard deviation. The average cereal import dependency ratio (CIDR) implies that, on
average, each country needs to import 24.97% of its food supply. A negative CIDR value
means that the country is a net exporter of food.

Table 4. Descriptive statistics for variables in the main model.

Variables Mean Median Maximum Minimum Std. Dev. Observations Cross Sections

PoU (Y1) 9.730 5.700 67.800 0.000 11.414 3578 180
Outdegree 9.623 1.000 158.000 0.000 20.950 3578 180
Indegree 9.589 8.000 48.000 0.000 6.794 3578 180

Constraint 0.847 0.796 2.000 0.053 0.417 3578 180
lnGDP 8.427 8.421 11.804 4.464 1.520 3578 180
CIDR 24.969 29.300 100.000 −654.900 65.565 3578 180

Table 5 shows the regression results of the main model. The focus is on the results
in column (6). The adjusted R-squared value indicates that 51.12% of the change in the
dependent variable can be explained by the change in the independent variables. The
constraint level has a substantial and significant impact on food insecurity. The constraint
coefficient, measured at 2.75, significantly surpasses the indegree coefficient. This finding
suggests that a one-unit increment in the constraint value corresponds to a 2.75 percentage
point increase in the PoU. Thus, a reduction of 0.36 in the constraint value could result in a
one percentage point decrease in the PoU.

Regarding another important dependent variable, the impact of import centrality is
statistically significant, although the coefficient is relatively small, indicating a modest
influence on food security. The coefficient for the indegree is 0.0836, indicating that with
other variables held constant, a one-unit increase in its value (reflecting a growth in the
number of import connections) is associated with a 0.08 percentage point reduction in
the PoU. Put differently, increasing the PoU by one percentage point would require the
establishment of approximately 13 new trade connections. The indegree may reflect food
security from two perspectives: on the one hand, high import centrality might signify a
large volume of imports, potentially but not necessarily implying a lower level of food
security; on the other hand, a high import centrality suggests diverse sources of imports,
contributing to enhanced food security.
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Table 5. The egression results for the main model on dependent variable PoU (Y1) and on alternative
food security measures (Ye, YGFSI).

Variables
Y1 Ye YGFSI

(1) (2) (3) (4) (5) (6) (7) (8)

Outdegree −0.0875 ***
(0.0090)

−0.0223 **
(0.0102)

−0.00955
(0.0075)

−0.0056
(0.0075)

−0.0049
(0.0101)

0.0248 ***
(0.0068)

Indegree −0.4071 ***
(0.0282)

−0.2715 ***
(0.0335)

0.0802 ***
(0.0254)

0.0836 ***
(0.0252)

0.1328 ***
(0.0346)

−0.0585 **
(0.0234)

Constraint 5.9956 ***
(0.4464)

3.2319 ***
(0.5493)

3.1268 ***
(0.4025)

2.7464 ***
(0.4035)

−4.2332 ***
(0.5630)

−1.6367 ***
(0.5261)

lnGDP −5.2677 ***
(0.0951)

−5.2847 ***
(0.0945)

6.1921 ***
(0.1326)

7.3275 ***
(0.1112)

CIDR 0.0146 ***
(0.0021)

−0.0148 ***
(0.0029)

−0.0047 **
(0.0022)

C 10.5727 ***
(0.2064)

13.6344 ***
(0.3273)

4.6497 ***
(0.4212)

9.8103 ***
(0.7091)

50.7964 ***
(0.9043)

50.8285 ***
(0.8983)

70.4679 ***
(1.1104)

−1.0727
(1.1104)

Period Fixed yes yes yes yes yes yes yes yes
Adjusted R2 0.0348 0.0639 0.0568 0.0775 0.5047 0.5112 0.4796 0.8410

Root Mean Square
Error (RMSE) 11.1792 11.0092 11.0506 10.9260 8.0048 7.9507 10.7679 4.9141

Akaike Information
Criterion (AIC) 7.6783 7.6476 7.6551 7.6336 7.0119 6.9989 7.6061 6.0503

N 3578 3578 3578 3578 3578 3578 3438 1063

Notes: The cross-section is not fixed. Standard errors are given in parentheses. ** p < 0.05, *** p < 0.01.

Unlike the import centrality, export centrality appears to exert a relatively minor and
insignificant influence on food insecurity. The nonsignificant regression coefficient of the
outdegree, coupled with its modest magnitude, suggests that export centrality may not
substantially influence PoU. This phenomenon is understandable, especially considering
that some prominent rice-exporting nations prioritize foreign exchange accumulation over
achieving food self-sufficiency. For instance, India primarily participates in rice exports to
bolster foreign exchange reserves, subsequently resorting to the import of other essential
food crops such as corn.

As for the control variables, for every 1% increase in per capita GDP, the PoU decreases
by 5.28 percentage points. A 1 percentage point increase in the cereal import dependency
ratio (CIDR) is associated with an increase of 0.01 percentage points in the PoU.

A comparison of the coefficient values for indegree, CIDR, and constraint reveals that
the primary contribution to the PoU does not stem from import dependency but rather
from the structural characteristics of import connections. This inference suggests that
establishing connections with the less core countries might substantially reduce constraint
values, effectively decreasing the level of food insecurity.

3.3.2. Robustness Check and Endogeneity Mitigation

Alternative food security measures are employed to assess the robustness of the regres-
sion results. The indicators adopted are the average dietary energy supply adequacy (Ye)
from the FAO database and Global Food Security Index (YGFSI) developed by Economist
Impact. Based on the model’s adjusted R-squared value, the explanatory variables demon-
strate greater explanatory power for YGFSI, potentially attributable to the smaller sample
size. The GFSI involves only 113 countries, making the sample much smaller than the
180 countries used in the analysis, leading to significant differences between the sample
and the main regression model. Despite these disparities, the regression results reveal
significant coefficients for both indegree and constraint, which is consistent with the main
model (Table 5).

The regression method used is a two-stage least squares (2SLS) approach to address
potential endogeneity issues, acknowledging potential correlations with omitted variables
in terms of both degree centrality and constraint. The instrumental variables (IV) adopted
are the total agricultural trade network’s centrality and constraint measures. These instru-
mental variables are related to the centrality and constraint indicators in the rice trade
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network but do not directly impact a country’s food deficiency rate. The first step is to
regress instrumental variables and other exogenous variables to estimate endogenous vari-
ables. These estimates are then substituted into the original equation to derive regression
coefficients. Table 6 shows that the coefficients of Findegree and Fconstraint are positive
and significant, which is consistent with the main tests.

Table 6. IV Regression results.

Variables
Y1

(9) (10) (11) (12)

Foutdegree −0.5405 ***
(0.0227)

0.0117
(0.0232)

Findegree −1.1711 ***
(0.0429)

0.0836 *
(0.0449)

Fconstraint 21.7579 ***
(0.8111)

10.2260 ***
(0.8570)

lnGDP −4.9552 ***
(0.1066)

CIDR 0.0055 **
(0.0023)

C 14.9884 ***
(0.2823)

20.9377 ***
(0.4451)

−8.5592 ***
(0.7035)

41.8448 ***
(1.2393)

Period Fixed yes yes yes yes
Adjusted R2 0.1457 0.1809 0.1758 0.5260

RMSE 10.5170 10.2980 10.3305 7.8294
AIC 7.5562 7.5141 7.5204 6.9682
N 3578 3578 3578 3578

Notes: * p < 0.10, ** p<0.05, *** p < 0.01.

3.3.3. Heterogeneity Analysis

Firstly, regional dummy variables representing the five continents are introduced
into the main regression equation. The coefficients represent the average impacts of Asia
(coefficient of −4.32), Europe (−5.00), the Americas (−3.09), and Oceania (−3.42) on the
PoU in comparison to the reference region (Africa). The negative values signify that the
average PoU in continents other than Africa is significantly lower than that in Africa.
This finding aligns with that of the literature [39], which reports that the proportion of
undernourished people in Africa reaches nearly 20%, surpassing that in other global regions.
In comparison, this figure was 8.5% in Asia, 6.5% in Latin America and the Caribbean, and
7.0% in Oceania 7.0% in 2022.

Secondly, the sample is divided into distinct groups, and separate regression analyses
are conducted for each group to gain a more nuanced understanding of the heterogeneity
of the data. The regression analysis is conducted on the subset of the sample, grouping it
based on the five continents and considering two subareas: the region of Latin America
and the Caribbean and that of Sub-Saharan Africa.

Table 7 presents the regression results for distinct geographical regions. Notably, the
constraint coefficient exhibits significant and high values in Asia, Sub-Saharan Africa, Latin
America, and the Caribbean. These regions correspond to the prevalent distribution of
countries where rice is a staple food. These findings indicate that in regions where rice
constitutes a primary dietary component, the influence of the level of constraint on food
security is more pronounced than in areas where rice is less prominent in diets. Table 7 also
presents the regression results for regions grouped by economic and social indicators. The
constraint coefficient exhibits significant and high values in all three groups: least developed
countries, low-income food deficit countries, and net food-importing developing countries.
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Table 7. Regression results based on geographical regional groups.

Variables

Y1

(13)
Asia

(14)
Europe

(15)
Africa

(16)
Americas

(17)
Oceania

(18)
Latin America

and the
Caribbean

(19)
Sub-Saharan

Africa

(20)
Least

Developed
Countries

(21)
Low-Income
Food Deficit

Countries

(22)
Net Food
Importing

Developing
Countries

Outdegree 0.0404 ***
(0.0104)

0.0141 *
(0.0075)

−0.0424
(0.042)

−0.0162
(0.0197)

−0.0622
(0.0455)

0.0151
(0.0214)

0.01270
(0.0098)

−0.0092
(0.0129)

−0.017
(0.012)

0.0059
(0.0097)

Indegree −0.1565 **
(0.0608)

0.0013
(0.0212)

−0.1857 **
(0.0827)

0.3504 ***
(0.0452)

−0.1575
(0.097)

0.1641 ***
(0.0591)

0.0093
(0.0377)

0.0248
(0.0462)

0.0697
(0.0468)

0.0671 *
(0.0372)

Constraint 5.1172 ***
(0.7871)

1.7048 ***
(0.3798)

1.838
(1.145)

1.1429 *
(0.5928)

0.8969
(1.1536)

3.0079 ***
(0.9492)

4.2521 ***
(0.6564)

2.576 ***
(0.7964)

2.8272 ***
(0.8312)

3.0544 ***
(0.5998)

lnGDP −4.5185 ***
(0.2035)

−1.3490 ***
(0.1048)

−6.3877 **
(0.4061)

−8.968 ***
(0.309)

−2.7963 ***
(0.3983)

−4.9565 ***
(0.2344)

−3.6216 ***
(0.1532)

−4.5878 ***
(0.2096)

−4.9471 ***
(0.2169)

−5.0795 ***
(0.1449)

CIDR 0.0252 ***
(0.007)

0.0007
(0.0015)

0.0647**
(0.0129)

0.0086 ***
(0.0027)

0.0022
(0.0056)

0.0245 ***
(0.0064)

0.0101 ***
(0.0029)

0.0112 ***
(0.0033)

0.0161 ***
(0.0034)

0.0165 ***
(0.003)

C 42.1185 ***
(1.8082)

12.7839 ***
(1.0867)

62.0539 **
(2.9525)

83.3066 ***
(2.7234)

33.4787 ***
(3.4923)

45.9739 ***
(2.0703)

35.3609 ***
(1.5306)

45.4294 ***
(2.0144)

48.8116 ***
(2.0918)

48.8239 ***
(1.4183)

Period Fixed yes yes yes yes yes yes yes yes yes yes
Adjusted R2 0.5113 0.2235 0.2322 0.6023 0.4733 0.4331 0.4718 0.4548 0.5002 0.5250

RMSE 6.9060 2.8114 10.7551 5.6087 4.9136 8.4673 6.4570 7.2436 7.1866 7.4745
AIC 6.7598 4.9699 7.6404 6.3648 6.2900 7.1904 6.6249 6.8616 6.8468 6.8974
N 910 805 1005 664 194 649 918 819 806 1424

Cross-Sections 45 39 51 35 10 33 46 41 41 72

Notes: * p < 0.10, ** p < 0.05, *** p < 0.01. Sub-Saharan Africa including Sudan.
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4. Discussion

This study conducted an in-depth network analysis of the dynamics within the global
rice trade, exploring its connection to food insecurity. This initiative addressed the existing
literature’s inadequate attention to enhancing the structural advantages of trade networks.
The results encompassed analyses at the network-level and node-level and a regression
model analysis using panel data. The main findings were as follows: (1) the rice trade
network became more cohesive and resilient as a whole, while relying more on the core
countries; (2) the power distribution based on the rice trade network positions was more
unequal between countries; (3) furthermore, the occupation of structural holes have a
significant impact on food security. Hence, improving the value of structural holes, i.e.,
establishing connections with partner countries that are less connected or have weaker ties,
could improve a country’s food security level.

The network-level analysis revealed substantial increases in size, density, and effi-
ciency, signifying enhanced cohesion and resilience across the entire rice trade network. For
example, global rice trade connections have expanded fourfold over the last 30 years. Nev-
ertheless, the overall resilience is dependent on certain central nodes, and their impact may
be considerable. The indicators measured were network density, centrality, and connective-
ness of the international rice trade over the last three decades. For network-level measures,
a general trend observed is the increasing efficiency and complexity in global food trade
networks. Higher efficiency was signified by the fourfold expansion of trade ties, higher
density, and shorter average distance. Complexity was evident in the generally tighter con-
nections for each node on average, while there was also an increase in the degree of unequal
distribution. This trend of more closely connected food trade networks was consistent
with the findings of the World Cereal Trade Network from 1986 to 2013 [40], a food trade
network analysis from 1992 to 2018 [41], and the International Wheat Trade Network for the
period 2009–2013 [19]. However, as noted by the previous literature, the global network has
become more resilient overall, but certain developing countries remain vulnerable [19]. This
study‘s analysis of the global rice trade network reveals several crucial features that impact
food security. Contrary to the suggestion that a more dispersed structure be established for
the global food and agriculture trade network [42], this paper’s findings in the rice trade
network context indicate that there has been an increased concentration in and dominance
of central countries. In 2021, the network exhibited a substantial level of power disparity,
with a high whole network centrality in the export direction (73.4%) and a comparatively
lower centrality in the import direction (17.2%). This disparity can be visually reflected by
the rice export volume proportion of the primary exporting country, which increased from
34.0% in 1986 to 41.5% in the 2021, compared to the world rice export volume. A significant
portion of this growth is attributed to the substantial increase in rice exports from India,
aiming to boost its foreign exchange reserves [43]. The degree of fragmentation highlights
that more than half of the node pairs lack mutual connections, indicating a certain level
of isolation among countries. The transitivity/closure and reciprocity measures suggest
a significant reliance on intermediary nodes for trade connections, contributing to both
structural complexity and potential vulnerabilities in the network.

The node-level analysis highlighted that the distribution of power among countries
was still highly disproportionate. India, Thailand, Pakistan, Vietnam, and the United States
consistently ranked among the top five influential countries across various dimensions in
the rice trade network. These core countries in the rice trade network intersect with key
players in other grain markets. The six most central countries in the wheat trade network
are Germany, Italy, France, Turkey, Russia, the United States, and Canada [22], while those
in the maize market are United States, Argentina, and Brazil [21]. This aligns with Zhang
et al.’s observation of stable core exporting countries for various crops as including the
United States, Canada, Argentina, Brazil, and India [8]. This study further highlighted
countries that play crucial intermediary roles in the rice trade network, like China, Italy,
and Greece. These intermediary countries, although not the most important exporters,
could exert significant influence on the food security of certain importing countries. This
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finding substantiated Burkholz and Schweitzer‘s highlight on the evolving role of countries
as intermediaries in trade [16]. On the other hand, some African, Latin American and
Caribbean countries were major importers with varying levels of vulnerability, as previous
work has revealed [44], reflecting potential challenges in ensuring import security.

The regression analysis’s most significant finding was the notable impact of the con-
straint indicator on the PoU. Constraint, an indicator of structural hole scarcity, elucidates
the inherent structural disadvantages of linking to strong partners who exhibit lower de-
pendence on specific connections. The PoU serves as a critical indicator of food insecurity.
To determine the impact of structural disadvantages on a country’s food insecurity, a
regression model was adopted with cross-country panel data from 180 countries from 2001
to 2021. The findings suggest that a reduction of 0.36 in the constraint value could result
in a one percentage point decrease in the PoU. Importantly, the results emphasized that
the structural characteristics of import connections, rather than import dependency alone,
play a major role in determining the prevalence of undernourishment. Furthermore, the
heterogeneity analysis reveals regional variations in the impact of centrality and constraint
on food insecurity. Areas heavily reliant on rice as a staple, such as Asia, Africa, and Latin
America, experience more pronounced effects from these various factors. This finding
aligns with Su et al.’s findings [45], indicating that economic policy uncertainty and for-
eign trade dependence have diverse inhibitory effects on food security for developed and
developing countries.

This paper has certain limitations. First, it does not analyze the causes of specific risk
formation and specific solutions from a more macroscopic perspective. Second, only the
impacts of trade quantity and trade structure are discussed; the risks arising from price,
export policy, transportation, and other factors were not considered in the network analysis
nor were the trade frictions caused by political factors.

5. Conclusions

This study employed network analysis methods to intricately depict the characteristics,
including scale, density, and connectivity, of the international rice trade network as well
as its dynamic changes over the past three decades. The analysis of the development
patterns indicated that the overall efficiency and stability of the rice trade network have
improved, while this stability primarily stems from the increased power of core countries.
Some network structural features were identified that may impact trade resilience and
food security. Furthermore, utilizing network analysis indicators as crucial independent
variables, a panel data model was established to regress against food security indicators.
Through the causal inference, this study discovered that a country’s structural hole disad-
vantage within its trade network has a significant impact on food insecurity, when other
conditions are unchanged. These results have been validated through various robustness
and endogeneity tests.

What sets this study apart is its innovative combination of network analysis and the use
of a panel data regression model, building the causality relationship between the network
features and food security. The implication from the findings for enhancing food security is
to decrease the constraint values in the trade network. Burt’s concept of constraint measures
how much an individual’s actions are limited by its position in the network. A high
constraint value suggests limited trading partners, potentially limiting product and resource
diversity through trade. This vulnerability may increase susceptibility to economic shocks,
reducing the ability to absorb and recover from disruptions. Moreover, countries with high
constraint may face challenges in negotiating favorable trade agreements or navigating
complex trade policies. Reducing constraint values, i.e., improving structural holes, could
be achieved by establishing connections with partner countries who have less connections
or are in a weak position in the network. For instance, as rice production increases in Sri
Lanka, establishing trade connections with formerly weak exporting countries like this
can prove beneficial for net-importing nations. In conclusion, understanding the evolving
dynamics of the rice trade network provides valuable insights for policymakers aiming to
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navigate the complexities of global food trade. By adopting proactive and collaborative
measures, countries can contribute to a more resilient and sustainable rice trade system in
the face of evolving global challenges.

Future research could focus on the following: (1) understanding the mechanisms of
improving structural holes; (2) measuring the impact of intermediary countries on global
food security; (3) combining other economic and social elements to examine the causality
within the network analysis framework.
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Appendix A

Table A1. Country codes used in this paper.

Country Code (M49) Country Code in This Paper

4 Afghanistan AFG

8 Albania ALB

12 Algeria DZA

24 Angola AGO

28 Antigua and Barbuda ATG

32 Argentina ARG

51 Armenia ARM

36 Australia AUS

40 Austria AUT

31 Azerbaijan AZE

44 Bahamas BHS

48 Bahrain BHR

50 Bangladesh BGD

52 Barbados BRB

112 Belarus BLR

56 Belgium BEL

https://impact.economist.com/sustainability/project/food-security-index/
https://impact.economist.com/sustainability/project/food-security-index/
https://www.fao.org/faostat/en/#data/TM
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Table A1. Cont.

Country Code (M49) Country Code in This Paper

58 Belgium-Luxembourg BLX

84 Belize BLZ

204 Benin BEN

64 Bhutan BTN

68 Bolivia (Plurinational State of) BOL

70 Bosnia and Herzegovina BIH

72 Botswana BWA

76 Brazil BRA

96 Brunei Darussalam BRN

100 Bulgaria BGR

854 Burkina Faso BFA

108 Burundi BDI

132 Cabo Verde CPV

116 Cambodia KHM

120 Cameroon CMR

124 Canada CAN

140 Central African Republic CAF

148 Chad TCD

152 Chile CHL

344 China, Hong Kong SAR HKG

446 China, Macao SAR MAC

156 China, mainland CHN

158 China, Taiwan Province of TWN

170 Colombia COL

174 Comoros COM

178 Congo COG

184 Cook Islands COK

188 Costa Rica CRI

384 Côte d’Ivoire CIV

191 Croatia HRV

192 Cuba CUB

196 Cyprus CYP

203 Czechia CZE

200 Czechoslovakia CSK

408 Democratic People’s Republic
of Korea PRK

180 Democratic Republic of the
Congo ZAR

208 Denmark DNK

262 Djibouti DJI

212 Dominica DMA
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Table A1. Cont.

Country Code (M49) Country Code in This Paper

214 Dominican Republic DOM

218 Ecuador ECU

818 Egypt EGY

222 El Salvador SLV

226 Equatorial Guinea GNQ

232 Eritrea ERI

233 Estonia EST

748 Eswatini SWZ

231 Ethiopia ETH

230 Ethiopia PDR ETF

234 Faroe Islands FRO

242 Fiji FJI

246 Finland FIN

250 France FRA

254 French Guiana GUF

258 French Polynesia PYF

266 Gabon GAB

270 Gambia GMB

268 Georgia GEO

276 Germany DEU

288 Ghana GHA

300 Greece GRC

308 Grenada GRD

312 Guadeloupe GLP

320 Guatemala GTM

324 Guinea GIN

624 Guinea-Bissau GNB

328 Guyana GUY

332 Haiti HTI

340 Honduras HND

348 Hungary HUN

352 Iceland ISL

356 India IND

360 Indonesia IDN

364 Iran (Islamic Republic of) IRN

368 Iraq IRQ

372 Ireland IRL

376 Israel ISR

380 Italy ITA

388 Jamaica JAM
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Table A1. Cont.

Country Code (M49) Country Code in This Paper

392 Japan JPN

400 Jordan JOR

398 Kazakhstan KAZ

404 Kenya KEN

296 Kiribati KIR

414 Kuwait KWT

417 Kyrgyzstan KGZ

418 Lao People’s Democratic
Republic LAO

428 Latvia LVA

422 Lebanon LBN

426 Lesotho LSO

430 Liberia LBR

434 Libya LBY

440 Lithuania LTU

442 Luxembourg LUX

450 Madagascar MDG

454 Malawi MWI

458 Malaysia MYS

462 Maldives MDV

466 Mali MLI

470 Malta MLT

584 Marshall Islands MHL

474 Martinique MTQ

478 Mauritania MRT

480 Mauritius MUS

484 Mexico MEX

583 Micronesia (Federated
States of) FSM

496 Mongolia MNG

499 Montenegro MONT

504 Morocco MAR

508 Mozambique MOZ

104 Myanmar MMR

516 Namibia NAM

520 Nauru NRU

524 Nepal NPL

528 Netherlands (Kingdom of the) NLD

540 New Caledonia NCL

554 New Zealand NZL
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Table A1. Cont.

Country Code (M49) Country Code in This Paper

558 Nicaragua NIC

562 Niger NER

566 Nigeria NGA

570 Niue NIU

807 North Macedonia MKD

578 Norway NOR

512 Oman OMN

586 Pakistan PAK

275 Palestine PALE

591 Panama PAN

598 Papua New Guinea PNG

600 Paraguay PRY

604 Peru PER

608 Philippines PHL

616 Poland POL

620 Portugal PRT

630 Puerto Rico PRI

634 Qatar QAT

410 Republic of Korea KOR

498 Republic of Moldova MDA

638 Réunion REU

642 Romania ROM

643 Russian Federation RUS

646 Rwanda RWA

659 Saint Kitts and Nevis KNA

662 Saint Lucia LCA

670 Saint Vincent and the
Grenadines VCT

882 Samoa WSM

678 Sao Tome and Principe STP

682 Saudi Arabia SAU

686 Senegal SEN

688 Serbia SERI

891 Serbia and Montenegro SER

690 Seychelles SYC

694 Sierra Leone SLE

702 Singapore SGP

703 Slovakia SVK

705 Slovenia SVN

90 Solomon Islands SLB
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Table A1. Cont.

Country Code (M49) Country Code in This Paper

706 Somalia SOM

710 South Africa ZAF

728 South Sudan SSUD

724 Spain ESP

144 Sri Lanka LKA

729 Sudan SUDA

736 Sudan (former) SDN

740 Suriname SUR

752 Sweden SWE

756 Switzerland CHE

760 Syrian Arab Republic SYR

762 Tajikistan TJK

764 Thailand THA

626 Timor-Leste TMP

768 Togo TGO

772 Tokelau TKL

776 Tonga TON

780 Trinidad and Tobago TTO

788 Tunisia TUN

792 Türkiye TUR

795 Turkmenistan TKM

798 Tuvalu TUV

800 Uganda UGA

804 Ukraine UKR

784 United Arab Emirates ARE

826 United Kingdom of Great
Britain and Northern Ireland GBR

834 United Republic of Tanzania TZA

840 United States of America USA

858 Uruguay URY

810 USSR SVU

860 Uzbekistan UZB

548 Vanuatu VUT

862 Venezuela (Bolivarian
Republic of) VEN

704 Viet Nam VNM

887 Yemen YEM

890 Yugoslav SFR YUG

894 Zambia ZMB

716 Zimbabwe ZWE
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