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Abstract: On a global scale, food safety and security aspects entail consideration throughout the farm-
to-fork continuum, considering food’s supply chain. Generally, the agrifood system is a multiplex
network of interconnected features and processes, with a hard predictive rate, where maintaining the
food’s safety is an indispensable element and is part of the Sustainable Development Goals (SDGs). It
has led the scientific community to develop advanced applied analytical methods, such as machine
learning (ML) and deep learning (DL) techniques applied for assessing foodborne diseases. The
main objective of this paper is to contribute to the development of the consensus version of ongoing
research about the application of Artificial Intelligence (AI) tools in the domain of food-crop safety
from an analytical point of view. Writing a comprehensive review for a more specific topic can also
be challenging, especially when searching within the literature. To our knowledge, this review is the
first to address this issue. This work consisted of conducting a unique and exhaustive study of the
literature, using our TriScope Keywords-based Synthesis methodology. All available literature related to
our topic was investigated according to our criteria of inclusion and exclusion. The final count of
data papers was subject to deep reading and analysis to extract the necessary information to answer
our research questions. Although many studies have been conducted, limited attention has been
paid to outlining the applications of AI tools combined with analytical strategies for crop-based food
safety specifically.

Keywords: chemometrics; food contaminants; food processes; machine learning; spectroscopy;
sustainability

1. Introduction

One Health is a very distinct concept unifying soil, plant, and human health for a
flourishing and sustainable ecosystem. This approach can also be applied on ensuring food
safety and security. Ending hunger and ensuring access to safe, nutritious, and sufficient
food all year round by all people are part of the Sustainable Development Goals (SDGs) to
be achieved by 2030, according to the United Nations SDGs agenda, specifically SDG3 and
SDG2, respectively (Good Health and Well-being, Zero Hunger). Nonetheless, multiple
challenges and issues are increasingly making this mission impossible to accomplish [1].
As a matter of fact and according to statistical studies, humanity is expecting an enormous
increase in the global population, reaching 9.7 billion individuals by 2025. Surely, ensuring
that they all have access to safe and nutritious food becomes more challenging. The
increasing demand for crop-based food in the market is due to multiple factors, mainly
the propaganda of plant-based diets [2], the transition of human diets in society, and the
factor of poor diversity in crop-food consumption while thousands of crops exist. These
factors have impacted diversity concerning crops, and lately, scientists have been shedding
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light on orphan crops, which are crops not traded internationally, but would have been
important for regional food security [3], hence our objective to target food of crop origins.

Concretely, it has always been a big challenge; the food system dates back several
decades, with a tendency to evolve continuously, depending on its economic, social, cul-
tural, and environmental factors, along with several external and internal variables [4].
These complex interdependent and interconnected factors impact the global agrifood
system, encompassing the farm-to-fork continuum and various environmental and socioe-
conomic factors [5]. In this dynamic context, the integration of crop classification using
deep learning emerges as a significant consideration, providing advanced tools for precise
and efficient analysis within the intricate web of factors influencing the agrifood system,
supported by numerous studies dedicated to the development of advanced tools [6,7].
Hence, food security, quality, and safety, now more than ever, are depending on the entire
food supply chain from early production to market accessibility. A food-borne disease is
referred to as food contamination, on account of the presence of hazardous contaminants
that can cause human body illnesses. They are divided into three groups, namely biological,
chemical, and physical contaminants, based on the pollutant and the process by which they
enter the food product [8], for example, during crop cultivation, due to contaminated soil
(animal manure or chemical fertilizers), as well as the water used for irrigation of produce
(groundwater, recovered rainfall, surface water, or re-utilized wastewater) [9,10]. Food
contamination represents a big challenge because of its large impact, being related to the
whole food supply chain. In order to protect consumers from unsafe foods, standards
are required to establish a monitoring system to reduce chemical and microbiological
food contamination [11], including all food chain participants, such as farmers, processors,
transporters, retailers, and consumers [4]. Even though there are many guidelines to follow,
only a fraction of them is followed. In many cases, individuals neglect simple practices,
such as proper hand-washing methods and the good use of gloves, which leads to serious
food poisoning [12].

It was said that the transmission of viruses through food matrices is less likely com-
pared to direct person-to-person contact, respiratory droplets or contaminated surfaces.
The COVID-19 pandemic has forced us to think about the technological preparedness to
use these smart technologies, which avoid human-to-human and human-to-food contact
during food processing. Hence, there is a need for technological innovation combining
analytical strategies with AI tools, taking into consideration economic and feasibility chal-
lenges [13]. Artificial intelligence (AI) is primordial for technological advances, developing
computational tools to provide sustainable solutions for food security and safety [14]. There
are potential applications of machine vision systems in addition to analytical strategies for
more accurate and lower-cost techniques for contaminant detection in food [15].

The present work proposes a unique methodology that was developed after a careful
investigation of the literature on how to conduct a high-quality comprehensive review. For
the data collection, which is detailed later on, the search process is carried out in three major
databases: Scopus, Web of Science, and IEEE Xplore. Notwithstanding the fewer databases
implicated, the proposed approach is based on executing multiple query searches in each
one, leading to an in-depth and exhaustive investigation.

The remainder of this paper is organized as follows. In Section 2, we start by investi-
gating related and/or similar works to our topic of research. Section 3 holds the section in
which research questions, search procedures, and paper selection settings are described.
Section 4 presents and discusses relevant information extracted from collected papers
according to our research questions. In Section 5, we highlight further details concerning
gaps in research and challenges. Finally, Section 6 draws conclusions, final remarks, and
our suggested future research directions.

2. Background

Spectroscopic measurement methods are versatile tools applied across diverse scien-
tific domains. They play crucial roles in pharmaceutical quality control, environmental
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monitoring, materials science, medical diagnostics, forensic analysis, agricultural research
and much more. The adaptability and precision of these methods make them invaluable
for characterizing composition, structure, and properties in various scientific disciplines.
Recent advances have emerged in chemical analytical strategies, depending on the variety
of studied food matrices. There is a constant quest to find the most suitable technique to
investigate certain aspects of a compound and ascertain its consistency or structure.

2.1. Spectroscopy for Food Safety and Quality

Spectroscopic methods serve as analytical tools to identify food’s composition, germs,
pests, diseases, and adulteration [16]. The following listing presents the most com-
mon techniques within the literature: 1. infrared spectroscopy, 2. Raman spectroscopy,
3. nuclear magnetic resonance (NMR) spectroscopy,4. ultraviolet–visible spectroscopy
(UV-vis). Infrared spectroscopy using Fourier transform infrared (FTIR) is often employed.
The mid-infrared (MIR) region covers an area between 4000 and 400 cm−1 [17]. A soil’s
composition, characteristics, and organic matter may all be found via MIR spectroscopy.
Also, the diffuse reflectance infrared Fourier transform (DRIFT) method may identify the
chemical characteristics of humus and soil. Moreover, attenuated total reflectance (ATR) can
identify organic materials in soil [18]. Anisidine, which is produced during the oxidation
of food, is frequently measured using UV-visible spectroscopy to assess the quality of
oil [19]. Moreover, fluorescence is a property shared by a large number of microorganisms,
including their colonies, making it simple to identify any bacteria by looking at their fluo-
rescence spectra [20,21]. Tryptophan, riboflavin, and lumichrome are three different forms
of fluorophores found in yogurt, and their presence enables fluorescence spectroscopy to
assess the yogurt’s quality [22]. Honey is a substance produced by bees from floral nectar,
containing phenolic chemicals that are byproducts of the phenolic acid found in the flower,
and as it is packaged and transported, its qualities alter [23]. Fluorescence spectroscopy
can quantify the concentration of phenolic chemicals. During processing and storage, my-
cotoxins and fungus are found in grains using MIR spectroscopy [24]. On the other hand,
carbohydrates’ structure can change during storage, especially in the presence of water,
which can be identified using Raman spectroscopy. This technique characterizes and quan-
tifies the lipid content of foods [25]. NMR spectroscopy can monitor the ripening, drying,
and adulteration of food components as well as determining the genotype responsible for a
certain phenotype of the grapes used to create wine. As a result, NMR spectroscopy may
offer information on mixtures of metabolites [26]. Infrared or Raman fingerprints are the
outcomes of observations made on a large number of objects or samples with a wide variety
of characteristics (variables, like the absorbance at various wave-numbers or wave-number
shifts) from a monochromatic light source for FTIR and Raman, respectively [27]. Therefore,
since the exponential rise in computing power and the capacity to gather, store, and analyze
enormous volumes of data, machine learning (ML) systems can improve the potential to
extrapolate information from complicated spectrum data.

2.2. Integrating AI Tools for Food Safety and Quality Analysis

The development of analytical strategies for food and beverage assessments is cru-
cial for ensuring food safety and public health. Various technologies, including imaging,
odor, and taste, have been developed [28]. Spectroscopic techniques, such as infrared
spectroscopy and Raman spectroscopy, have proven to be rapid and nondestructive for
microorganism detection [29]. Magnetic surface-enhanced Raman scattering nanoprobes
show high specificity in separating and detecting multiple pathogens in complex food
matrices [30]. The usage of electronic noses, coupled with data acquisition cards and classi-
fication methods, enhances success rates in ensuring the originality of saffron products [28].
The integration of more effective algorithms is essential for spectral data processing and
microorganism reference database building [29].

Hyperspectral imaging (HSI) systems, including computer vision systems (CVS), are
widely applied in the food industry for nonintrusive quality control [28]. HSI covers various



Foods 2024, 13, 11 4 of 32

food-processing phases, providing the ability to control the quality and safety of processed
foods [31]. Challenges lie in the classification, especially for crops within the same family,
and the high cost of these technologies [31]. Algorithms and chemometric methods should
focus on reducing the dimensionality of data and improving computational efficiency while
enhancing performance and robustness [31].

Terahertz spectroscopy techniques, coupled with machine learning tools, ensure quality
and security inspection of agricultural products and food [32]. Classical methods of spectral
preprocessing, such as smoothing, standard normal variate, and Fourier transformation, can
be integrated into multivariate calibration steps for more efficiency [33]. In the quantification
of honey adulteration, spectroscopy and hyperspectral imaging, when coupled with machine
learning models and optic fiber sensors, provide fast and nondestructive detection [34].

AI development in data mining has made significant breakthroughs, particularly with
the application of deep learning (DL) in the analysis of spectral data from food and agricultural
products [35]. DL approaches offer a less laborious yet more precise method for this purpose.
Combining infrared spectroscopy (IRS) and hyperspectral imaging (HSI) techniques with
AI tools shows potential in advancing the quality evaluation of cereals, which are among
the top consumed crops globally [36]. The integration of convolutional neural networks
(CNNs) in the qualitative and quantitative analysis of spectra involves extracting micro- and
macro-features through multiple convolution and pooling layers. DL-spectroscopic sensing
techniques have demonstrated promising results in the quality evaluation of food and agro-
products, encompassing identification, geographical origin detection, adulteration recognition,
bruise detection, and component content prediction for crops [35].

The application of CNNs helps avoid secondary workloads, although challenges
persist, such as determining optimal network scale, selecting parameters, addressing
overfitting, and enhancing model interpretability—a current dilemma in AI research [33].
Table 1 highlights recent and high-quality papers that couple analytical strategies with
machine learning approaches across diverse food safety and quality purposes.

Table 1. Latest applications combining AI tools with analytical approaches for food safety and quality.

Analytical Approach AI Tool Problematic Ref.

Spectroscopy Python-based portable system using Jetson TX2 Module Food classification of four classes of cof-
fee and purées

[37]

Near-infrared spectroscopy Block sparse Bayesian learning (BSBL) with fast marginalized
likelihood maximization (FMLM)

Computational cost reduction for calcu-
lating the inverse of a large matrix con-
taining absorption peak information

[38]

Impedance spectroscopy A fuzzy logic model applied on the parameters extracted from
distribution of relaxation times (DRT)

Meat-based food classification according
to its freshness for different types of mus-
cles

[39]

TeraHertz (THz) spec-
troscopy and chemometrics

Interval partial least squares (iPLS) for optimizing the THz fre-
quency and other preprocessing techniques combined with ex-
treme learning machine (ELM), genetic algorithm support vector
machine (GA-SVM), and artificial bee colony algorithm support
vector machine (ABC-SVM) for decision making

Three typical soybean origins’ identifica-
tion

[40]

Fourier transform infrared
(FTIR) spectroscopy

FTIR and multispectral imaging (MSI) coupled with support vec-
tor machines (SVM) for regression

Meat quality assessment, specifically
minced pork patties stored under modi-
fied atmosphere packaging (MAP) condi-
tions, by estimating the microbial popu-
lation

[41]

Raman spectroscopy A single convolutional neural network (CNN) model develop-
ment where hyperparameters, activity functions, and loss func-
tions were optimized

Spectral data preprocessing simplifica-
tion

[42]

Dielectric spectroscopy Principal component analysis (PCA) for preprocessing and
four models, namely support vector machine—SVM, K-
nearest neighbor—KNN, linear discriminant—LD and quadratic
discriminant—QD, for classification purposes

Discrimination between three citrus
juices in order to develop new technolo-
gies to identify adulteration

[43]
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3. Methodology

Writing a quality review paper is a crucial step in one’s research project; it helps in
clarifying the state of knowledge, explaining apparent contradictions, identifying needed
research, and creating a consensus where none existed before [44]. In the literature, there
are three major types of review papers: comprehensive (including systematic reviews),
semisystematic, and integrative, depending on its purpose, research questions, search strat-
egy, and data analysis. However, they all generally aim at resolving conceptual ambiguities
by providing an integrated, synthesized overview of the current state of the art, as well
as presenting research insights, existing gaps, and future research directions [45]. A good
literature review must offer both depth and rigor; hence, demonstrating an appropriate
strategy for selecting articles and capturing data and insights is crucial [46]. To this end,
we propose our own methodology for a comprehensive review: TriScope Keywords-based
Synthesis, which can be further generalized to a MultiScope Keywords-based Synthesis method-
ology, as represented in Figure 1. The following section describes in detail the process
and methodology that we developed to execute this study, taking into consideration the
guidelines of writing a review paper [45,46].

Final count of
research papers: Y

Topic formulation

Keywords formulation

List 1
Scope 1

List 2
Scope 2

List 3
Scope 3

 API

Search strings generation

Search entries: X

Inc/Exc Process

N results

List n
Scope n

N results

if API
available

Figure 1. Generalized representation of our MultiScope Keywords-based Synthesis methodology.

3.1. Topic Formulation

This study reviews the current advancements in incorporating AI tools to address
challenges associated with analytical procedures and advanced chemical methods. These
approaches are applied to prevent food contamination within the food supply chain. For
this matter, we propose the following questions:

• What are the analytical strategies that are mainly used for crop-food safety and which
techniques were dominantly incorporated?

• What are the AI-based tools that were embodied to ensure crop-food safety?
• Did these AI-based systems prove to be beneficial in research and industry? To what

degree they proved to be explainable or/and interpretable?

Depending on the type of questions and the targeted scientific audience, the collected
papers are analyzed in different manners, either pursuing a qualitative or quantitative
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analysis. In our case, and while this topic combines three different fields of research, we
focused on both quantitative and qualitative analysis, in order to allow people from either
fields to comprehend the general outline of this work. In order to answer these questions,
an efficient and in-depth analysis of the available literature regarding the addressed topic
has been generated and fully explained in the following section.

3.2. Study Design

Academic articles are available through a plethora of scholarly databases. Web Of
Science (WOS), Scopus, and IEEE Xplore contain, combined, over 254 million records with
a variety of influential academic journals, and are highly recognized by the international
academic community. They cover a wide variety of topics, where many papers from differ-
ent publishers are visible, and they allow access to diverse databases, with the possibility
of filtering the search based on personalized search criteria. This paper combines the above
three databases as the main source of articles. In order to answer our proposed questions
related to our topic of research, we followed a thorough search methodology as visualized
in Figure 2, considering the three above-mentioned databases for paper retrieval. The
whole process of data collection, including keyword identification, search string generation,
and inclusion/exclusion, was performed from October 2022 to January 2023.

These processes were conducted using two approaches, one for the WOS and IEEE
Xplore databases, which depended mainly on manual search, and an API-based approach
for the Scopus database (see Figures 2 and 3). Figure 2 summarizes the whole process of data
collection for all three databases. All searches targeted papers of the same timeline, which
is from 1 January 2000 to 30 September 2022. We aimed to explore the evolution of this
issue over an extended period, allowing for a comprehensive investigation and analysis.

Final count of
scientific papers: 69

Topic formulation

Keywords formulation

List 1
Food-related

List 2
AI-related

List 3
Analytical strategies-related

Scopus

 APISearch strings generation

Search entries: 175

WOS
IEEE Xplore

Inc/Exc Process

988
672

1506

Figure 2. The general workflow of our developed TriScope Keywords-based Synthesis for conducting
this comprehensive review.
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Prepare lists

Keywords_1: AI related

Keywords_2: Analy. strat.
related

Keywords_3: Food Sc. related

Output

Search string_1, search String_2, ..........
Search string_n

In
pu

t

Manual Search

WOS
IEEE Xplore

 API

Scopus

Output

ENG

CHEM

BIO

AGRI

Figure 3. Data collection process, using API for the Scopus databse and manual searching for Web of
Science and IEEE Xplore databases.

3.2.1. WOS and IEEE Xplore Data Collection

The first step is the presearch phase. Firstly, we collected the most convenient and
in-domain concepts and technical words to describe this topic by investigating the most
relevant literature and executing manual preliminary searches on the Google Scholar
database, in order to define our keywords. The list of keywords that were used during our
search process, divided into three groups:

• Food: food, foodborne, crop, cereal, and toxin.
• Analytical Strategies: analytical strategies, biochemistry, chemical analysis, spec-

troscopy, omics, immunosensor, and biosensor.
• AI tools: artificial intelligence, machine learning, deep learning, neural networks, and

computer vision.

These keywords were then divided into three columns, which represent the three main
parts of this research: the first one for AI, the second one for analytical strategies, and the
third one for food safety keywords. Secondly, we organized and ran a simple algorithm on
Python, which was able to produce all possible combinations between these words from
the three columns, to have as an out-put a three-word search string entry, stored in a xlxs.
format file. The order of these words isn’t important in this case, and the final query string
is a combination of three words from three lists of keywords corresponding to food, AI
tools and chemical analytical strategies. The final count of these generated search string
was 175 query string, written as follows:

Search String 1 = “Arti f icial intelligence” + “Analytical strategies” + “cereal”

Search String 2 = “Arti f icial intelligence” + “Analytical strategies” + “crop”

Search String 3 = “Arti f icial intelligence” + “Analytical strategies” + “ f ood”

Search String 4 = “Arti f icial intelligence” + “Analytical strategies” + “ f oodborne”

Search String 5 = “Arti f icial intelligence” + “Analytical strategies” + ”toxin”

Search String 6 = “Arti f icialintelligence” + “Biochemistry” + “cereal”
...

Search String 175 = “Neural networks” + “spectroscopy” + “toxin”
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These search queries were inserted as described previously for each search in the WOS
database, but they were converted to another form using the AND Boolean operator and the
ALL METADATA filter in order to execute the manual search in IEEE Xplore, which leads to:

Search String1 = (“All Metadata” : Arti f icial intelligence)AND

(“All Metadata” : Analytical strategies)AND(“All Metadata” : cereal)

Along with these specific keyword combinations, we used database filters to display results
based on some specific criteria, which are the timeline (2000–2022) and paper status (only
published papers).

In both databases, a total of 175 searches were executed manually between the 30th of
October 2022 and the 4th of November 2022 (Figure 3). The outcome of each search resulted
in a number of results, ranging between 0–63 results for IEEE Xplore and 0–235 results
for WOS. Each search outcome was stored as a link in a xls. format file with its according
search string, sorted from the highest to the lowest, in order to eliminate search strings
that did not generate any results. These links needed to be briefly inspected in a short
period to avoid any research papers being added on the databases. Table 2 highlights the
six search strings that provided the highest numbers of results for both databases (more
than 30 results).

Table 2. Search strings with the highest number of results (>30) for Web of Science and IEEE Xplore.

IEEE Xplore WOS

“neural networks” + “spectroscopy” + “food”: 63 “Machine learning” + “spectroscopy” + “food”: 235
“neural networks” + “chemical analysis” + “food”: 58 “neural networks” + “spectroscopy” + “food”: 160

“Artificial intelligence” + “chemical analysis” + “food”: 57 “computer vision” + “spectroscopy” + “food”: 111
“Machine learning” + “spectroscopy” + “food”: 55 “Deep learning” + “spectroscopy” + “food”: 77

“Artificial intelligence” + “spectroscopy” + “food”: 50 “Machine learning” + “spectroscopy” + “crop”: 69
“Machine learning” + “chemical analysis” + “food”: 43 “Artificial intelligence” + “Analytical strategies” + “food”: 37

3.2.2. Scopus Data Collection

To retrieve data from Scopus database, an open access Application Protocol Interface
(API) was used in Python. Three string lists were defined, corresponding to Food, Chemical
Analytical strategies and AI tools keywords as mentioned before. Subsequently, a list of
four subjects was considered, containing Engineering (ENG), Chemistry (CHEM), Biology
(BIO), and Agriculture (AGRI). To formulate one specific query, we looped over all possible
combinations of keywords formatted in accordance to the standard Scopus advanced search.
Then, we retrieved corresponding data for each query in the four considered subjects. Then,
we stored the obtained metadata in four .xlsx files corresponding to the considered subjects
(see Figure 3).

3.2.3. Inclusion and Exclusion Process

The three databases resulted in a total number of 3166 results as raw data, which went
through the same scanning process. The inclusion/exclusion (Inc/Exc) phase consisted of
three major subphases, each one bases its outcome on distinguished and precise criteria
of selection:

• Inc/Exc 1: A first selection based on the relevance of these papers to the topic, after
thoroughly reading the title, key words, and abstract sections, respectively. The
number of papers included were 30, 166, and 242 for IEEE XPLORE, WOS, and
SCOPUS databases, respectively.

• Inc/Exc 2: A further evaluation of these collected papers was conducted based on their
original language and availability online, also removing duplicates, which ended with
a total of 109 papers included.

• Inc/Exc 3: A full reading process was thoroughly executed to decide which of these
papers are the most relevant to our topic of research, leaving 69 papers.
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The final count was 69 research papers that have met all the search criteria, and were
further organized in MENDELEY https://www.mendeley.com. This software will serve as
a tool for storing and analyzing these papers. Figure 4 summarizes in details the process of
Inc/Exc phase.

3166 papers

ABS + Title +
keywords
Analysis

Keep english
papers
Remove
redundant papers
Remove non-
available papers

Keep related
papers after full-
text reading
Remove non-
available
manuscripts

Store in
Mendeley for

further
analysis

Figure 4. Diagram illustrating the inclusion–exclusion process and criteria of selection.

4. Data Description and Analysis

As discussed in Section 3, our methodology output is 69 papers, including articles and
reviews, as detailed in Table 3. Figure 5 also showcases a map of these papers with possible
connections and links, highlighting first authors and the according year of publication, as
well as numbers of citations for each one. This map was produced using the free online

https://www.mendeley.com
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tool ConnectedPapers https://www.connectedpapers.com/, after manually uploading
our collected papers. The following data results representation will focus on quantity and
quality analysis, as set forth in the upcoming parts.

Table 3. This table represents all collected 69 papers, where A stands for Articles and R stands for
Review papers.

Title First Author Publisher Type Year Ref.

Detection of defects on selected apple cultivars using hyperspectral
and multispectral image analysis

Mehl ASABE A 2001 [47]

Differentiation and detection of microorganisms using Fourier
Transform infrared photoacoustic spectroscopy

Irudayaraj Elsevier A 2002 [48]

Rapid detection of foodborne microorganisms on food surface using
Fourier transform Raman spectroscopy

Yang Elsevier A 2003 [49]

Differentiation of food pathogens using FTIR and artificial neural
networks

Gupta ASABE A 2005 [50]

Identification and quantification of foodborne pathogens in different
food matrices using FTIR spectroscopy and artificial neural networks

Gupta ASABE A 2006 [51]

Applications of Artificial Neural Networks (ANNs) in Food Science Huang Taylor & Francis R 2007 [52]

Supervised pattern recognition in food analysis Berrueta Elsevier R 2007 [53]

Cortical Networks Grown on Microelectrode Arrays as a Biosensor for
Botulinum Toxin

Scarlatos Wiley-Blackwell A 2008 [54]

Detecting single Bacillus spores by surface enhanced
Raman spectroscopy

He Springer A 2008 [55]

Self-organizing algorithm for classification of packaged fresh
vegetable potentially contaminated with foodborne pathogens

Siripatrawan Elsevier A 2008 [56]

Raman Spectroscopy-Compatible Inactivation Method for Pathogenic
Endospores

Stöckel American society
for Microbiology

A 2010 [57]

Application of Hyperspectral Imaging in Food Safety Inspection and
Control: A Review

Feng Taylor & Francis R 2012 [58]

Characterization of food spoilage fungi by FTIR spectroscopy Shapaval Wiley-Blackwell A 2013 [59]

Detection of aflatoxin contaminated figs using Near-Infrared (NIR)
reflectance spectroscopy

Güneş IEEE A 2013 [60]

Hyperspectral and multispectral imaging for evaluating food safety
and quality

Qin Elsevier R 2013 [61]

Analytical techniques combined with chemometrics for authentication
and determination of contaminants in condiments: A review

Reinholds Elsevier R 2015 [62]

Applications of computer vision for assessing quality of agri-food
products: a review of recent research advances

Ma Taylor & Francis R 2016 [63]

Data mining derived from food analyses using non-invasive/non-
destructive analytical techniques; determination of food authenticity,
quality & safety in tandem with computer science disciplines

Ropodi Elsevier R 2016 [64]

Image analysis operations applied to hyperspectral images for
non-invasive sensing of food quality—A comprehensive review

ElMasry Science Direct R 2016 [65]

Early Warning Modeling and Application based on Analytic
Hierarchy Process Integrated Extreme Learning Machine

Geng IEEE A 2017 [66]

Feasibility of Non-Destructive Internal Quality Analysis of Pears by
Using Near-Infrared Diffuse Reflectance Spectroscopy

Shen IEEE A 2017 [67]

FT-IR Hyperspectral Imaging and Artificial Neural Network Analysis
for Rapid Identification of Pathogenic Bacteria

Lasch American Chemical
Society

A 2018 [68]

An Approach for the Development of a Sensing System to Monitor
Contamination in Stored Grain

Kaushik IEEE A 2019 [69]

Application of Deep Learning in Food: A Review Zhou Wiley-Blackwell R 2019 [70]

https://www.connectedpapers.com/
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Table 3. Cont.

Title First Author Publisher Type Year Ref.

Machine learning algorithms for the automated classification of
contaminated maize at regulatory limits via infrared attenuated total
reflection spectroscopy

Öner Wageningen
Academic
publishers

A 2019 [71]

Quantitative assessment of zearalenone in maize using multivariate
algorithms coupled to Raman spectroscopy

Guo Elsevier A 2019 [72]

Raman Spectroscopy Classification of Foodborne Pathogenic Bacteria
Based on PCA-Stacking Model

Wan-dan IEEE A 2019 [73]

Rapid determination of aflatoxin B1 concentration in soybean oil using
terahertz spectroscopy with chemometric methods

Liu Elsevier A 2019 [74]

Terahertz Spectroscopy Determination of Benzoic Acid Additive in
Wheat Flour by Machine Learning

Sun Springer A 2019 [75]

An Overview on the Applications of Typical Non-linear Algorithms
Coupled With NIR Spectroscopy in Food Analysis

Zareef Springer R 2020 [76]

Application of deep learning and near infrared spectroscopy in cereal
analysis

Le Elsevier A 2020 [77]

Arcobacter Identification and Species Determination Using Raman
Spectroscopy Combined with Neural Networks

Wang American Society
for Microbiology

A 2020 [78]

Deep learning networks for the recognition and quantitation of
surface-enhanced Raman Spectroscopy

Weng The Royal Society of
Chemistry

A 2020 [79]

Development of Machine Learning & Edge IoT Based Non-destructive
Food Quality Monitoring System using Raspberry Pi

Sahu IEEE A 2020 [80]

Emerging techniques for determining the quality and safety of tea
products: A review

Yu Wiley-Blackwell R 2020 [81]

Machine learning applications to non-destructive defect detection in
horticultural products

Nturambirwe Science Direct R 2020 [82]

Multi-view Learning for Subsurface Defect Detection in Composite
Products: a Challenge on Thermographic Data Analysis

Wu IEEE A 2020 [83]

On-line prediction of hazardous fungal contamination in stored maize
by integrating Vis/NIR spectroscopy and computer vision

Shen Elsevier A 2020 [84]

Optical detection of aflatoxins B in grained almonds using
fluorescence spectroscopy and machine learning algorithms

Bertania Elsevier A 2020 [85]

Achieving a robust Vis/NIR model for microbial contamination
detection of Persian leek by spectral analysis based on genetic, iPLS
algorithms and VIP scores

Rahi Elsevier A 2021 [86]

Application of Artificial Intelligence in Food Industry—a Guideline Mavani Springer R 2021 [87]

Applications of THz Spectral Imaging in the Detection of Agricultural
Products

Ge MDPI R 2021 [88]

Bioimpedance data statistical modelling for food quality classification
and prediction

Rivola IEEE R 2021 [89]

Characterisation and Classification of Foodborne Bacteria Using
Reflectance FTIR Microscopic Imaging

Xu MDPI A 2021 [90]

Combining optical spectroscopy and machine learning to improve
food classification

Magnus Elsevier A 2021 [91]

Deep Learning for Rapid Identification of Microbes Using
Metabolomics Profiles

Wang MDPI A 2021 [92]

Hyperspectral image processing for the identification and
quantification of lentiviral particles in fluid samples

Gómez-
González

Nature Publishing
Group

A 2021 [93]

Identification of the apple spoilage causative fungi and prediction of
the spoilage degree using electronic nose

Guo Wiley-Blackwell A 2021 [94]

Investigation of nonlinear relationship of surface enhanced Raman
scattering signal for robust prediction of thiabendazole in apple

Li Elsevier A 2021 [95]

Metaheuristic Optimization to Improve Machine Learning in Raman
Spectroscopic based Detection of Foodborne Pathogens

Vakilian IEEE A 2021 [96]
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Table 3. Cont.

Title First Author Publisher Type Year Ref.

Microwave Sensing for Food Safety: a Neural Network Implementation Ricci IEEE A 2021 [97]

Non-destructive detection of foreign contaminants in toast bread with
near infrared spectroscopy and computer vision techniques

Yin Springer A 2021 [98]

Raman spectroscopy combined with machine learning for rapid
detection of food-borne pathogens at the single-cell level

Yan Elsevier A 2021 [99]

Recent advances in assessing qualitative and quantitative aspects of
cereals using nondestructive techniques: A review

Zareef Elsevier R 2021 [100]

Trace Identification and Visualization of Multiple Benzimidazole
Pesticide Residues on Toona sinensis Leaves Using Terahertz Imaging
Combined with Deep Learning

Nie MDPI A 2021 [101]

A Novel Method for Carbendazim High-Sensitivity Detection Based
on the Combination of Metamaterial Sensor and Machine Learning

Yang MDPI A 2022 [102]

Advances in Machine Learning and Hyperspectral Imaging in the
Food Supply Chain

Kang Springer R 2022 [103]

Component spectra extraction and quantitative analysis for
preservative mixtures by combining terahertz spectroscopy and
machine learning

Yan Elsevier A 2022 [104]

Design of Food Safety Supervision System in the Background of Big
Data

Zhang IEEE R 2022 [105]

Detection and quantification of peanut contamination in garlic
powder using NIR sensors and machine learning

Rady Academic Press Inc. A 2022 [106]

Domain Adaptation for In-Line Allergen Classification of Agri-Food
Powders Using Near-Infrared Spectroscopy

Bowler MDPI A 2022 [107]

Investigation of reflectance, fluorescence, and Raman hyperspectral
imaging techniques for rapid detection of aflatoxins in ground maize

Kim Elsevier A 2022 [108]

Low-Resolution Raman Spectroscopy for the detection of contaminant
species in algal bioreactors

Adejimi Elsevier A 2022 [109]

Machine learning-based typing of Salmonella enterica O-serogroups
by the Fourier-Transform Infrared (FTIR) Spectroscopy-based IR
Biotyper system

Cordovana Elsevier A 2022 [110]

Markov Transition Field Combined with Convolutional Neural
Network Improved the Predictive Performance of Near-Infrared
Spectroscopy Models for Determination of Aflatoxin B1 in Maize

Wang MDPI A 2022 [111]

Potential application of hyperspectral imaging in food grain quality
inspection, evaluation and control during bulk storage

Aviara Elsevier R 2022 [112]

Recent Advances and Applications of Rapid Microbial Assessment
from a Food Safety Perspective

Pampoukis MDPI R 2022 [113]

Recent Progress in Spectroscopic Methods for the Detection of
Foodborne Pathogenic Bacteria

Hussain MDPI R 2022 [114]

Spectroscopy and imaging technologies coupled with machine
learning for the assessment of the microbiological spoilage associated
to ready-to-eat leafy vegetables

Manthou Elsevier A 2022 [115]
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Figure 5. A map of all our collected papers. Each node represents a paper with its first author and
year of publication. The size of a node represents the number of citations. Please refer to Table 3 for
more details.

4.1. Quantitative Analysis

Although we explored a larger period of time, from 1 January 2000 to 30 September
2022, most of our collected papers were between 2019 and 2022. As shown in Figure 6,
these papers were generally published in 14 different publishers, which are well classified
globally and highly recognised.

Most of the journals are highly ranked, with a quartile of 1 (Q1), which are divided as
article papers and review papers; some of these papers, mainly those published by IEEE,
are conference papers, as in Figure 7.
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Figure 6. Count of published papers per publisher name.
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Figure 7. A table chart depicting the number of papers published per journal.

On the other hand, Figure 8 highlights the distribution of article papers only, in a
color-coded format; each color refers to a field of study. Although our keywords were
mainly extracted from three different fields of research, after the paper collection, another
distribution emerged. These fields are Artificial Intelligence (including computer vision,
machine learning, etc.), Analytical Strategies, Biological Sciences, and Food Sciences.

We will discuss these papers’ contents while trying to answer our research questions
(RQs), which are considered as the qualitative analysis of our results. Firstly, we divide the
discussion into two parts, one for review papers and all related types, and the second one
for article papers with experiments and applications. Then, the outcome from discussing
these review papers will help as a reference while discussing the articles.
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Figure 8. A diagram representing the chronological (from 2001 to 2022) distribution of the resulting
articles. Each data-point represents an article, the colors are according to which field of study, and
the lines are related to the decision-making objective Mehl, 2001 [47]; Irudayaraj, 2002 [48]; Yang,
2003 [49]; Gupta, 2005 [50]; Gupta, 2006 [51]; He, 2008 [55]; A. Scarlatos, 2008 [54]; Siripatrawan,
2008 [56]; Stöckel, 2010 [57]; Günes, 2013 [60]; Shapaval, 2013 [59]; Geng, 2017 [66]; Y.Shen, 2017 [67];
Lasch, 2018 [68]; Guo, 2019 [72]; Kaushik, 2019 [69]; Liu, 2019 [74]; Öner, 2019 [71]; Sun, 2019 [75];
Wan-dan, 2019 [73]; Bertania, 2020 [85]; Le, 2020 [77]; Sahu, 2020 [80]; Shen, 2020 [84]; Wange,
2020 [78]; Weng, 2020 [79]; Wu, 2020 [83]; Gonzalez, 2021 [93]; Guo, 2021 [94]; Li, 2021 [95]; Magnus,
2021 [91]; Nie, 2021 [101]; Rahi, 2021 [86]; Ricci, 2021 [97]; Vakilian, 2021 [96]; Wang, 2021 [92]; Xu,
2021 [90]; Yan, 2021 [99]; Yin, 2021 [98]; Adejimi, 2022 [109]; Bowler, 2022 [107]; Cordovana, 2022 [110];
Kim, 2022 [108]; Manthou, 2022 [115]; Rady, 2022 [106]; Wang, 2022 [111]; Yan, 2022 [104]; Yang,
2022 [102].

4.2. Qualitative Analysis

Over the last decade, there has been a rapid development of artificial intelligence
(AI) tools for the nondestructive evaluation of food and agricultural products. However, a
key aspect of the emerging AI tools is the preprocessing phase, where acquired data are
adequately prepared for further analysis and decision making using, generally, machine
learning models. Through our analysis process of our data papers, new keywords and
concepts emerged, for a diversity of techniques and technologies, regarding analytical
strategies where spectroscopy and chemometrics were the most used in articles and dis-
cussed in review papers (see Figure 9). The commonality among these collected papers is
their focus on exploring innovative approaches and technologies applied to food sciences.
Their aim is to solve challenges related to food safety, quality assessment, authenticity
verification, and inspection processes. In the following sections, we will discuss articles
and review papers separately, following the three RQs defined in the Methodology section.

4.3. Review Papers

The review papers report recent advances regarding the application of various AI
technologies and methodologies in the field of food sciences. These papers discuss the use
of different techniques in AI, such as artificial neural networks (ANNs), computer vision,
data mining, deep learning, machine learning, and statistical modeling combined with
recent analytical strategies, such as hyperspectral imaging, chemometrics, nondestructive
analytical techniques, THz spectral imaging, bioimpedance and spectroscopic methods for
food analysis, quality assessment, safety inspection, authenticity determination, and defect
detection. Assessments of food products are divided into two pillars: safety and quality
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parameters, and since our concern is on safety, we focused on extracting information related
to this matter, specifically for crop-based food.

Figure 9. A map highlighting subject-related words and concepts that were strongly present within
the literature, such as Spectroscopy (Graphical design generated using free-online tool Wordart
https://wordart.com/create, accessed on 23 August 2023).

4.3.1. Analytical Strategies and AI as Nondestructive Tools for Crop-Food Safety

These review papers are commonly discussing the usage of analytical techniques and
consider them as revolutionary, mostly for being nondestructive Techniques in food analy-
sis, where the key word “nondestructive” was stated plainly in these
works [62–64,76,82,88,89,100,112]. These techniques allow for the assessment of crop-based
food safety without structural damage. The overall focus of these papers focuses on both
aspects of food analysis: safety and quality [52,61,70,112]. Nonetheless, we will inspect only
technologies and methodologies that have been implemented in food safety analysis, thus
detecting contaminants, assessing microbial risks, determining the presence of pathogens,
and evaluating their safety and readiness to be manufactured, stored, transported, or di-
rectly consumed. Many examples emerged, such as reviewing methods for determination
of contaminants in spices and herbs [62], such as biological contaminants [113,114], caused
by foodborne pathogenic microorganisms. These samples are subject to analytical analysis,
which then, depending on the objective of the study and which aspect of food safety to
tackle, will produce data.

The most referred-to analytical strategies in solving this matter were spectral imaging
(SI) technologies [61,113], and spectroscopy-based technologies [52,61,63,64,76,81,82,88,89,
100,113,114].

Different techniques have emerged in spectral imaging, like hyperspectral imaging
(HSI) [58,61,65,70,82,103,112], for example, near-infrared hyperspectral imaging [112], as
well as multispectral imaging [58,61,64,65,113] and THz spectral imaging [88]. In spec-
troscopy, we list ultraviolet-visible spectroscopy (UV-vis), near-infrared spectroscopy,
Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy, THz spectroscopy,
THz time-domain spectroscopy(THz-TDS), laser-induced breakdown spectroscopy (LIBS),
surface-enhanced Raman spectroscopy sensors (SERS), nanoenzymes, and modified chro-
matographic techniques that were mostly coupled with AI tools [76,81,88,100,112–114]. On
the other hand, electroanalytical methods have risen to mimic the human senses by using
sensor arrays and pattern recognition systems, known as E-nose, E-tongue, and E-eye [81].
They are often combined with other spectral techniques for real-time detection and higher
accuracy results, such as near-infrared spectroscopy (NIRS) [87]. The E-nose is destined to
emulate the human olfactory system, hence avoiding exposure to dangerous chemical and
biological hazards due to inhaling or skin leisure [82]. Many applications have been studied,

https://wordart.com/create
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like evaluating shelf life by detecting grain off-odor due to microbial spoilage for wheat
and barley-based foods [52]. Furthermore, electrochemical impedance spectroscopy (EIS)
has been receiving more attention research lately, especially when applied on biological
tissues, such as crop-based food membranes. EIS or bioimpedance technology is optimal
for surface contaminant detection, with its capacity to detect defects [89].

Several papers discuss the importance of data analysis and processing for food safety.
Chemometrics [81,100], machine learning [87,88], computer vision [63,113], and data min-
ing [64,70] are applied to extract meaningful information, detect patterns, and make predic-
tions based on the collected data. Machine learning techniques are summarized in Table 4,
with the most common techniques gathered from some relevant review papers related to
crop-food safety.

Table 4. Chemometrics and ML approaches for crop-based food safety and quality in some relevant
review papers.

Ref. Crop-Food Preprocessing Steps Decision Model

[81] Tea Standard normal variate (SNV) and
multiplicative scatter corrections

PCA, KNN, KPCA, ANN, HCA, BPNN, PLS,
CPNN, SPA, PNN, ELM, LDA, SVM, S-LDA,
LVQ, KLDA, MLP, RBF, RF

[103] Apple, wolfberry, lettuce, pear,
green plum, peach, strawberry,
Brassica, jujube, lettuce and
chives

LLE, LE, ISOMAP and MDS, SNE and t-SNE PLSR, KNN, LDA, NB, DT, SVR, SVM, RF,
LSSVM, LWR, FNN, ResNet, CNN, and DNN

[76] Grain products, forages, oil,
fruits, vegetables, sugarcane
seeds, coffee, tea, spices,
black/green tea, grapes, apples,
wheat flour, rice and barley

Multivariate calibration of spectral data,
standard normal variate transformation (SNV),
multiplicative scatter correction (MSC),
smoothing, derivative, wavelet transforms (WT),
and orthogonal signal correction (OSC)

ANN, BP-ANN, GA-ANN, RBFNN, AdaBoost,
SVM, LA, ELM,SLFN, LS-SVR, SVM, linear, radial
basis function (RBF), normalized polynomial,
sigmoid, Gaussian RBF, and string kernels

[62] Condiments, spices, and herbs PCA, HCA, parallel factor analysis (PARAFAC),
MPLS, PLS, ANOVA, t-test, straight line
subtraction (SLS), constant offset elimination
(COE), and minimum–maximum normalization
(MMN)

ANN, kNN, PLS regression, PLS-DA, HCA, PCA,
LDA, k-means cluster analysis (KM-CA), and DA

[87] Fruits computer vision systems Adaptive Neuro Fuzzy Inference System (ANFIS)

[70] Vegetables CNN ResNet-152, AlexNet-SVM classifier, and hybrid
CNN-SSAE

[58] Apples, cucumbers, spinach,
and wheat

PCA, PLSR PLSDA, ANN, LD, and PCA

The best description of the purpose of chemometrics was in a recent work by Yu et al. [81],
quoting exactly “Chemometrics, the art of extracting chemically relevant information from
data produced in chemical experiments”. We can also distinguish between chemometrics
and sensometrics, respectively, studying the relationship between the measured chemical
parameters and the state of the object by statistical or mathematical methods or studying
the link between sensory parameters and the internal characteristics of the object via
similar approaches as the first one [70]. Spectra processing and model establishment are
two main aspects of chemometrics; each contains multiple analysis methods [100]. These
systems that are based on sensors equipped with chemosensitive materials for molecular
recognition [113] can also be joined with other techniques for data analysis in electronic
sensing [81]. Chemometrics were usually incorporated within data analysis in electronic,
E-nose, E-tongue, and E-eye [100] and within spectra processing and model establishment
when combining AI tools with spectroscopic techniques. There is application potential of
deep learning in chemometrics and sensometrics toward food [70], for example, real-time
toxins quantification and detection in cereals by combining nondestructive techniques with
chemometrics, such as spectroscopy-based techniques [100]. They were also joined when
applied in condiment analysis methods for the determination of contaminants in spices
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and herbs [62]. Final data acquired by HSI systems were described as “hypercube” for their
3D characteristics: two for spatial coordinates and one for spectral values [58].

4.3.2. Interdisciplinary Approaches in Crop-Food Safety

The review papers often involve interdisciplinary approaches, combining knowledge
and techniques from fields such as food science, computer science, spectroscopy, image
analysis, and statistical modeling. These collaborations aim to leverage the strengths of dif-
ferent disciplines to address complex challenges in food analysis and safety. Firstly, image
correction before implementing chemometric algorithms is necessary to reduce the noise to
enhance the signal-to-noise ratio by either spectral or image analysis, Secondly, data prepa-
ration and preprocessing use chemometric methods, such as principal component analysis
(PCA) and partial least square regression (PLSR), to be fed for model application [58].
Microbiological applications, for mycotoxin detection, for example, include combining
nondestructive methods with statistical methods such as PLS at different stages of the food
supply chain; harvesting and transporting, due to many climate conditions and agricul-
tural processes [62]; and the detection of the total aflatoxin content using fluorescence
fingerprints (FF) in combination with PLSR [62]. FT-NIR data were often analyzed using
the PLS regression with various preprocessing techniques, such as straight-line subtraction
(SLS), constant offset elimination(COE), and minimum–maximum normalization (MMN).
The classification of hyperspectral images of possibly contaminated chili was proposed by
using PCA and SANN as a classifier [62]. Supervised ML approaches (classification and
regression) are used for the detection of endogenous component content, pesticide residue,
microplastic, and heavy metal contamination in crops [103]. THz-TDS can be combined
with SVMs for classification purposes, scoring good results [81]. However, this work can be
criticized for mentioning various spectral dimensionality reduction techniques for feature
extraction and selection, like LLE, LE, ISOMAP, and MDS in addition to SNE and t-SNE,
whereas those techniques are not mentioned in the literature in any shape or form [103].
PCR, PLS, and MLR are best to check the linearity, while qualitative techniques are best
for non-linearity detection, such as partial residual plot (PRP), residual plot (RP), e-PC
(AVP/PaRP), and Mallows’ augmented partial residual plot (APaRP). On the other hand,
quantitative techniques are mostly referred to for statistical methods such as ANOVA for
lack of fit (LOF) for univariate calibration mode, or the most basic tests to assess serial
correlation: the Durbin–Watson test and run test [103]. The fuzzy logic technique is used
in the food industry, in food modeling, control, and classification, and in addressing food-
related problems by managing human reasoning in linguistic terms. FL has been proven to
successfully maintain the quality of the foods, and it acts as a prediction tool and control
system for food production processes [87]. Deep learning has been introduced into the
food field by analyzing RGB images and spectra images of food, as the data analysis tool to
solve the problems and challenges in the food domain. Food recognition and classification,
such as CNN and image analysis, has been the most commonly used pattern in food
recognition and classification. Numerous popular CNN architectures for image processing
were cited, including AlexNet, the visual geometry group network (VGG), GoogLeNet, and
the residual neural network (ResNet), as well as the usage of hybrid models, such as radial
basis function (RBF) kernel-based SVM with ResNet-152, coupling fine-tuned AlexNet with
a binary SVM classifier [70].

4.3.3. Analytical Strategies and Recent Technologies for Food Safety

Some papers highlight the use of automation and advanced technologies to streamline
food analysis processes, improve efficiency, and enable rapid assessment. This includes
the integration of computer vision, machine learning, and artificial intelligence techniques
for automated defect detection and quality evaluation. Table 4 highlights some relevant
reviews reporting chemometrics and ML applications for food safety and quality.

Analytical strategies deploying AI tools can be described as knowledge-based systems
with computer programs using knowledge from different sources for food safety problems,
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such as expert systems, knowledge-based artificial intelligence, and knowledge-based
engineering [87]. Integrating various sensors with AI-based methods has been increasing
in food industries over the past few years, for example, E-nose-based systems to detect
defects and contamination in crop foods. The classification and differentiation of different
fruits have also been determined by using E-nose. CVS usage can be a handful for image
processing and pattern recognition combined with near-infrared spectroscopy (NIRS) in
the food industry for accurate and precise results [87]. Combining ANNs-sensors in
real-time applications, like E-nose and E-tongue for real-time detection, scores faster and
higher accuracy results [87]. Fecal contamination on fruits and vegetables—apples, for
example—using reflectance-fluorescence, is coupled with band ratio, threshold, separation
algorithms, and PCA. Defects like bruises and lesions are considered symptoms of possible
contamination if caused by a biological agent. Hyperspectral imaging is then used to
inspect defects coupled with many tools, such as PLSDA, ANN, LDA, and PCA [58].

Overall, the common points among these review papers revolve around the application
of emerging technologies, nondestructive techniques, data analysis, food safety, quality
assessment, automation, and interdisciplinary approaches within the field of food science.

4.4. Article Papers

As depicted in Figure 8, the obtained 49 research papers focus on the identification,
and in some cases quantification, of food-borne pathogens, be they bacteria, fungi, or
yeast. The employed machine learning (ML) workflow mostly consists of two major steps,
namely data preparation, including data acquisition, data cleaning, and data transformation;
and decision making including, tuning, training, and testing of one or multiple machine
learning models.

The results are best categorized by how data were gathered. However, in most cases,
data acquisition stems from a chemical analytical approach, mostly spectroscopy-based
approaches, resulting in structured data in the form of numerical values or unstructured data
in the form of images. Thus, the results are reported following the taxonomy outlined in
Section 2.1. Each subsection that follows gathers the research papers that use the specific
spectroscopic approach, and its variants if any, combined with various ML methods for
food safety purposes.

4.4.1. Raman Spectroscopy

In earlier studies, Raman spectroscopy was used in combination with classical machine
learning approaches to enhance food pathogen detection. In [57], principal component
analysis (PCA) was applied in combination with linear discriminate analysis (LDA), sup-
port vector machines (SVM), and a simple artificial neural network (ANN) architecture for
classification of Bacillus anthracis endospores and their products. Also, Raman Spectroscopy
spectra were preprocessed using a first derivative (D1) and Savitzky–Golay smoothing func-
tion and second (2)-order polynomial to enhance the spectra’s resolutions and eliminate
baseline and linear slope effects, respectively [72]. The resulting signal was used as input
for partial least squares (PLS), synergy interval partial least squares (siPLS), and ant colony
optimization-siPLS (ACO-siPLS) to quantify the level of maize contamination by zear-
alenone. On the other hand, after applying the Savitzky–Golay smoothing function on the
spectral information, a stacking approach combined with K-nearest neighbors (KNN) and
support vector machines (SVM) was proposed in [116] to distinguish between the Escherichia
coli and Brucellasuis vaccine. Later studies investigated the use of complex ANN-based
models to enhance classification and quantification performances. In [78], a simple PCA
approach was used to categorize three genera (Arcobacter, Campylobacter, and Helicobac-
ter), then a one-dimensional convolution neural network (1D-CNN) and a fully connected
artificial neural network (ANN) were used to classify 18 of Arcobacter species and quantify
their ratio in the bacterial mixture [78]. In another study, raw Raman spectroscopy was
used as an input to the fully connected ANN, genetic algorithm-ANN (GA-ANN), and
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particle swarm optimization-ANN (PSO-ANN) to distinguish between 12 strains of five
bacteria genera, including (Escherichia, Listeria, Vibrio, Shigella, and Salmonella) [96].

In addition, in the cases where faster sampling, higher resolution, and better signal-to-
noise ration are needed, Fourier transform (FT)-Raman is often used with promising results.
In an older work, ref. [49] proposed a first attempt to use FT-Raman for a nondestructive
characterization and differentiation of six different microorganisms, including the pathogen
Escherichia coli on whole apples. PCA and canonical variate (CV) plot and cluster the data
in two-dimensional scatter-plot.

Furthermore, a more sensitive version of Raman spectroscopy, namely surface-enhanced
Raman spectroscopy (SERS), can be used in cases where sensitivity, selectivity, and rapid
analysis are needed. In an older work [55], SERS was used to detect and discriminate
among five Bacillus spores (B. cereus, B. cereus, B. cereus, B. subtilis, and B. stearothermophilus).
Standard data preparation techniques were conducted, such as normalization, binning,
smoothing, and second-derivative transformation, before using PCA and hierarchical
cluster analysis (HCA) to cluster the data into three groups. However, a recent comparative
study [79] demonstrates the benefit of using deep learning models such as CNNs, fully
convolutional networks (FCN), and principal component analysis networks (PCANet) to
determine their abilities to measure pirimiphos-methyl in wheat extract in the two input
forms of one-dimensional vector or two-dimensional matrix, as opposed to classical ML
methods such as random forests (RF), KNN, and SVM.

On the other hand, single-cell Raman spectroscopy (SCRS) has also been used in
a recent work [99] to discriminate between 23 common strains from seven genera of
food-borne bacteria (Escherichia, Listeria, Staphylococcus, Cronobacter, Vibrio, Shigella, and
Salmonella) at the single cell level. Kernel PCA (KPCA) was used for nonlinear feature
extraction, followed by a decision tree (DT) algorithm, with promising results.

In addition, low-resolution Raman spectroscopy (LRRS) has also been used in combina-
tion with SVM discriminate analysis to rapidly identify harmful cyanobacterial species and
quantify their presence, demonstrating the potential of LRRS technology for the real-time
detection of contaminant species within microalgal bioreactors.

4.4.2. Visible and Near-Infrared Spectroscopy

Visibe/near-infrared spectroscopy (Vis/NIR) is of valuable usage for food safety,
especially when a broad spectral range analysis is needed. It has been used in combination
with LDA and partial least square regression (PLSR) for online detection of Aspergillus
and Fusarium contamination in stored maize [86]. LDA was used for classification results
of maize samples according to species of infected fungal strain and infection level. PLSR
was used for the respective determination of colony counts. Also, in [84], Vis/NIR was
considered with PCA in combination with various data preprocessing techniques, such as
moving average (MA), multiplicative scatter correction (MSC), standard normal variate
(SNV), first derivative (D1), second derivative (D2), and Savitzky–Golay (SG), and their
combinations were considered based on PCA results. The prepared data were the input to
the PLS-DA algorithm, as well as three of the variable selection-based variants (iPLSDA,
GA-PLSDA, and VIP-PLSDA), to detect contaminants in Persian leek.

On the other hand, recent studies explored the use of near-infrared spectroscopy (NIR)
coupled with computer vision in food safety applications. In [106], they used low-cost
NIR sensors (NIRONE S2 and S2.5) to acquire spectra with wavelengths 1550–1950 nm
and 2000–2450 nm. Standard preprocessing approaches were applied, such as autoscaling,
mean centering, Savitzky–Golay, standard normal variate (SNV), and first and second
derivatives. The objective is garlic powder contamination, especially allergen contami-
nation such as peanut powder. Thus, five classification models were used (KNN, SVM,
LDA, PLS-DA, and DT), to first detect the presence of peanut powder in garlic powder,
then identify whether the presence was high (2–20%) or low (0.01–1%). In the latter two
cases, a PLSR-based regression model was developed to quantify the presence concen-
tration. Similarly, a deep learning-based approach was proposed in [107] for the in-line
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allergen classification of agrifood powders, combining domain-adversarial neural networks
(DANN) and semisupervised generative adversarial neural networks (SGANN). In addi-
tion, two DL approaches were proposed in [98,111], namely a two-dimensional Markov
transition field-CNN (2D-MTF-CNN) and a modified version of FCN (U-net) to monitor
the aflatoxin B1 (AFB1) content in maize and identify food foreign contaminants (metallic
iron, polypropylene plastic, and hair) on the surface of bread, respectively.

NIR spectroscopy in the diffuse reflectance mode has been used [67] for soluble solid
content and total acid content analysis of fruits. After reducing the dimension of the
acquired data to the leading three principal components, the backpropagation neural
network (BPNN) and generalized regression neural network (GRNN) were proposed and
compared in predicting the values of SSC and TAC in three cultivars of pears.

Furthermore, earlier works [50,51] investigate the usage of Fourier transform infrared
spectroscopy (FTIR) coupled with complex ANN methods to identify five pathogenic
bacteria (Enterococcus faecium, Salmonella Enteritidis, Bacillus cereus, Yersinia enterocolitis,
and Shigella) [50], as well as to quantify four food pathogens (E. coli O26, Salmonella Ty-
phimurium, Yersinia enterocolitica, and Shigella boydii) [51]. In both works, probabilistic
neural networks (PNNs) were developed and tested. FTIR has been used for aflatoxin
contamination detection in figs [60]. The forward feature selection (FFS) method was used
to reduce features in spectra space, followed by three linear classifiers, namely the linear
discriminant classifier (LDC), logarithmic linear classifier (LOGLC), and quadratic discrim-
inant classifier (QDC). Also, it was coupled with smoothing and standard normal variate
(SNV) for noise removal, followed by SVM and PLSDA to characterize and differentiate
between Bacillus subtilis and Escherichia coli cell suspensions in food spoilage context [90].
The authors of [71] have also showed the benefits of using FTIR combined with five clas-
sification approaches, namely adaptive boosting (AdaBoost), random forests (RF), SVM,
and multilayer perceptrons (MLPs) for the automated classification of contaminated maize.
In a latter study [110], the FTIR spectroscopy-based IR biotyper system was used to suc-
cessfully classifying a total of 958 characterized Salmonella enterica isolates (25 serogroups
and 138 serovars). PCA and LDA were applied for visualization porpuses, followed by
SVM and ANNs for classification. Also, an earlier attempt to combine FTIR photoacoustic
spectroscopy (FTIR-PAS) with unsupervised analysis (PCA and canonical variate analysis)
was explored in [48] to identify various bacteria (Lactobacillus casei, Bacillus cereus, and
Escherichia coli), fungi (Aspergillus niger and Fusarium verticilliodes) and yeast (Saccharomyces
cerevisiae) on apple surface, with promising results. However, to the knowledge of the
authors, no subsequent research was conducted using this technique.

4.4.3. Time-Domain Spectroscopy (THz–TDS)

The time-domain spectroscopy (THz–TDS) system can also be used in conjunction
with ML approaches for food safety. Due to its spectral range, sensitivity, and chemical
specificity, it is an appealing alternative for data acquisition. In [102], they proposed a novel
metamaterial sensor to analyze multiresonance dips in spectra obtained using time-domain
spectroscopy (THz–TDS) coupled with mean shift (MS) to investigate the presence of
Carbendazim’s residue in crops. Also, soybean oil contamination by aflatoxin B1 (AFB1) was
investigated using the same spectroscopic method [74]. Student stochastic neighborhood
embedding (t-SNE) dimensionality reduction (DR) methods were applied, followed by
the backpropagation neural network (BPNN), least squares SVM (LS-SVM), and RF for
classification purposes. As opposed to identification and classification problems, time-
domain spectroscopy (THz–TDS) systems were used in tandem multiple linear regressions
(MLR), PLS, and LS-SVM for measuring benzoic acid (BA) additives in wheat flour [75].
In a recent study, [104] used TPS systems with singular value decomposition (SVD), non-
negative matrix factorization (NMF), self-modeling mixture analysis (SMMA), and support
vector machines for regression (SVR) as preventative measures, that is, to identify and
quantify the right components of preservatives (sorbic acid, potassium sorbate, and sodium
benzoate) to precisely enhance the antimicrobial effect for merchandise safety.
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4.4.4. Fluorescence Spectroscopy

Fluorescence spectroscopy, which focuses on the measurement of the emitted light
(fluorescence) from a sample after it has been excited by an external energy source, can
also be used to acquire data for food contamination analysis. A recent work [85], presents
a methodology for the analysis of fluorescence spectra of slurred almonds under 375 nm
wavelength excitation for optical detection of Aflatoxins B in grained almonds. This appli-
cation is different than conventional classification frameworks in the sense that labels of
contaminated or not contaminated are generated based on multiple threshold values; thus,
a single sample could have a vector of labels corresponding to each threshold value. This is
referred to as multiexpert learning [117]. In this context, support vector machines (SVM)
were used with a majority vote. On the other hand, other techniques of analyzing materials
have been used, particularly based on the interaction of microwaves with samples. Un-
like spectroscopy, microwave sensing systems operate in the microwave-frequency range,
typically from hundreds of MHz to tens of GHz. Recently, a microwave sensing approach
coupled with ANNs for food safety was proposed in [97], exploiting the dielectric contrast
between the potential intrusion and the surrounding matter of packaged food. In addition,
nuclear magnetic resonance (NMR) spectroscopy, which is a prominent analytical approach,
was applied in a recent work [92] to distinguish between pathogenic and nonpathogenic
bacteria, using PCA and ANNs.

4.4.5. Nuclear Magnetic Resonance (NMR)

Nuclear magnetic resonance (NMR) can be of great importance in the food safety
context due to its ability to provide detailed molecular information in a nondestructive
manner. However, compared to the above categories, NMR is somewhat less used in the
literature. Only one study [92] explored the use of NMR spectra in combination with
artificial neural networks to distinguish between 10 different microbial strains such as
Bacillus, Salmonella, and Yersinia, among others in food based on metabolite profiles. For this
type of data, prior preparation is necessary, like scaling spectra to the internal concentration
standard (TSP), removing noise bins, standardization, and PCA for visualization. The
proposed ANN model, with hidden layers of 800 neurons, ReLu functions, and two dense
layers, was compared with two classical machine learning algorithms (RF and SVM), with
slight differences in performance.

4.4.6. Hyperspectral Imaging

Optical spectroscopic techniques have been recently exploited for food safety as an
advanced promising tool. Due to the enhanced spectral resolution and improved spacial
information, hyperspectral imaging, combined with AI tools, is increasingly appealing
for food safety applications. The first application was as early as 2002 [47], where hyper-
spectral imaging was used to characterize spectral features, and multispectral imaging
combined with PCA was used for the detection of defects on three apple cultivars, namely
Golden Delicious, Red Delicious, and Gala. Recently, an ANN-based method using FTIR-
hyperspectral data was proposed in 2018 for the rapid and cost-effective diagnosis of
pathogenic bacteria [68]. Also, in [83], active thermography and an infrared camera were
used to capture thermal images for analysis using a multiview learning-based autoencoder
(MVAE) for defect detection.

On the other hand, a study used visible and NIR (VNIR) hyperspectral imaging to
determine the presence of viral particles in a fluid suspension as well as on a surface upon
complete evaporation of its water content [93]. In contrast with the previous studies, which
proved the effectiveness of using HSI to detect the presence of fungi or bacteria, detecting
the presence of viruses, which are two orders of magnitude below fungi and bacteria, can
be crucial to prevent the spread of plant diseases. The acquired VNIR-HSI data were used
in combination with PLSDR and FFNN to detect the presence of viruses in addition to the
analysis of averaged spectra for quantifcation of the viral load [93].
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4.4.7. Comparative Studies

In the light of recent developments and applications of machine learning in food safety,
comparative studies are of great importance to understand and assess the viability of the
techniques. In [108], a thorough comparative study was conducted using four different
hyperspectral imaging techniques (fluorescence, VNIR, SWIR and Raman) combined with
five classification approaches (LDA, LSVM, QDA, and QSVM), in addition to four simple
preprocessing techniques. Also, the study in [115] provides a comparative assessment
of spectroscopy-based techniques and machine learning approaches for evaluating the
microbiological spoilage of ready-to-eat leafy vegetables (baby spinach and rocket). In this
study, Fourier-transform infrared (FTIR), near-infrared (NIR), visible (VIS) spectroscopy,
and multispectral imaging (MSI) were used, with only two regression algorithms, namely
SVR and PLSR.

4.4.8. Electroanalytical Methods

The data used in [80] were gathered using the daily inspection of food safety obtained
from the Analysis and Testing Institute of one province in China, which includes manufac-
turer information, origin information, product information, production dates, inspection
items, and inspection results, among others. The aim of this study is to first build an
AHP-ELM model to distinguish between three types of food safety risks, namely heavy
metal pollution, chemical contaminant pollution, and pathogenic bacteria pollution, then
construct an AHP-ELM-based model for food safety warning. In an earlier study [54],
microelectrode arrays (MEAs) obtained from Multichannel Systems GmBH were used to
measure the electrical activity of cortical networks grown in a controlled environment (in
vitro). The MEAs measure the electrical spikes of the lyophilized botulism toxin (BoNT A)
group for further statistical analysis, in contrast with a controlled group without toxins.
Furthermore, the use of cortical networks as a biosensor for botulinum toxin offers several
advantages. First, the networks can be grown in a controlled environment, allowing for
reproducible experiments. Second, the networks can be easily manipulated and modi-
fied to study different aspects of toxin detection. Third, the electrical signals from the
network can be recorded noninvasively, minimizing the potential harm to the tissue. This
approach provides a promising tool for potential applications in toxin detection in food
safety research.

On the other hand, few studies explored the potential for a real-time monitoring sens-
ing system to provide early means to assess food safety [69,80]. A brief study [69] proposed
a real-time environment monitoring sensing system to monitor stored grain’s condition and
potentially increase its shelf-life. First, sensors record the values of temperature, moisture
content, and CO2, among others, and store the data in an Ardinuo data logger periodically.
Consequently, the stored data are communicated to a web server using WI-FI. Second,
preprocessing techniques are applied in the microprocessor to reduce the inevitable noise
generated by the different environment sensors. This is due to long-term drifts, temporary
electrical errors, and the effects of nearby sensors. Finally, a classification approach can
be used to distinguish between four classes, namely no spoilage, early spoilage, severe
spoilage, and early insect infestation. A more recent study [80] proposed an edge IoT
and machine learning-based approach for food quality monitoring systems to avoid food
waste, which reaches 50% for root crops, fruits, and vegetables. First, three sensors are
in place to gather environmental data, namely gas, temperature, and humidity sensors,
after which any missing entry is replaced with the median value of the feature. Then, four
classification algorithms are considered to categorize the results into three classes (fresh,
semifresh, and spoiled), namely linear SVM, RBF-SVM, logistic regression, and random
forests (RF). To ensure real-time monitoring, the results are communicated to the user
through an Android application.



Foods 2024, 13, 11 24 of 32

5. Research Gaps and Challenges

Spectral imaging, along with spectroscopy-based techniques, can be considered as
alternatives for conventional methods in order to solve food safety-related problems [58].
For instance, applying AI has been rising since 2015, and is expected to stay on the same
path for the next 10 years. In fact, combining analytical technologies with AI and data
analysis tools, along with developing sensing systems, is expected to have great potential
for the agriculture and food industry [64,88]. However, many of these techniques are
still at the research and development stages [81], Sensor applications, for example, and
developing robust algorithms are still areas for further exploration [64]. It appears that
the driving factors to execute more innovation within a certain applied field, and if we are
talking about AI in the food industry, are mainly the Industrial Revolution and the need for
intelligent systems, hence smart factory development [87]. AI tool applications in the food
industry have been intense in 2020 mostly, where researchers were regarded as carrying out
more research work using the AI method, which might be linked to the recent pandemic
situation due to the COVID-19 virus. Many industrial corporations are now open to AI
applications as an alternative for human workers, for cheaper and better outcomes.

There has been much confusion within the literature, especially when it comes to
food safety and quality concepts, as well as concerning soilborne and foodborne infec-
tions in crop foods. These misconceptions were mostly present in papers classified as
analytical techniques or AI-oriented journals. On the other hand, food technology and/or
biology-oriented papers tend to the nonadequate referring to AI tools, maybe due to mis-
communication between these research areas. Generally speaking, we may suggest that
research-wise, this topic might stumble accross these challenges:

• The complexity and diversity of food matrices, which may require different AI models
and parameters for different food products and contaminants.

• The lack of standardization and validation of AI methods and data, which may affect
the accuracy, reliability, and comparability of the results.

• The potential risks and uncertainties of AI applications in agriculture, such as environ-
mental impacts, socioeconomic impacts, cyber-attacks, biases, and errors, which may
affect food security, sustainability, and resilience.

• The need for interdisciplinary collaboration and stakeholder engagement, which
may involve challenges such as communication barriers, knowledge gaps, cultural
differences, and conflicting interests.

5.1. Big Data

The complexity of food matrices that represent samples in experiments (Figure 10) is an
important challenge. Their diversity leads to a variety of data types, hence various protocols
and methods. Contaminant detection, for example, laboratory detection, emphasizes
accuracy, while field detection emphasizes efficiency and portability [81]. Spectral data can
be very noisy and susceptible to continuous change [53]. Big data are a major challenge,
where food safety relies on data analysis and the processing of information coming from a
variety of resources, such as IoT and information-based systems. At the macro level, data
analysis impacts market operations and government policies; at the micro level, it is called
the smart supervision of food safety. Creating a food traceability system can establish a
full correlation between all resources from different stages of the food supply chain. It can
be represented as a food safety management platform based on big data, forming a data
warehouse, with a unified and robust data management system, for digital food safety
supervision [105]. In fact, large data are required to develop cutting-edge technologies, but
difficulties arise, such as confusion between data fitting and modeling, and inadequate
decision making. Also, there is the curse of dimensionality, data leakage, limited real
datasets to experiment on, and low productivity [113].
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Figure 10. Information and data workflow according to case studies within our collected papers.

5.2. Learning Methods, XAI, and Interpretability

Limited model performances are also a major issue, along with the need for combining
this analytical methods with robust nonlinear algorithms [76]. Also, various general
guidelines are in place to objectively assess a machine learning model performance, in
particular the use of cross-Validation approaches (also known as K-fold cross-validation) to
avoid different problems such as over-fitting. However, as depicted in Figure 11c, only 33%
of the article papers used cross-validation techniques, with the number of folds ranging
between 4 and 10 (see Figure 11d). Also, the evaluation metrics used to validate the model
performance are of upmost importance. As shown in Figure 11a, accuracy is the most used
metric. In addition, over 42% of research papers only used one metric and an additional
27% only used two metrics to assess the model performance.

Nondestructive techniques in food safety, especially when it comes to spectral imaging,
are the objective detection of defects in plants. However, many challenges arise, such as
being restricted to a limited number of attributes; there is a need for more efficient image
acquisition and processing, in HSI or NIR, for example. The challenge that remains is
that of the standardization of techniques; each reported study is more or less limited to a
specific instrumental parameter, studying a single food item and particular defect, while
using a different learning algorithm or a different validation process [82]. Limitations and
challenges of rapid methods are mainly technical but sometimes are depending on the right
choice of data analysis techniques, including the most studied features, without losing
information [113]. In most cases of spectral data analysis, it is hard to acknowledge the
effect of variable combinations and adding interpretability in decision making.

5.3. Real-World Applications

The robustness and transferability of models is one of the main challenges and one of
the limitations that restrict the wide-scale application of spectroscopic techniques [69,80,81].
Most of these research papers are only investigations of the feasibility of applications of
these approaches. More research should be conducted in routine analysis and real-time
implementation [62]. The practical application of emerging techniques, such as the E-nose,
still needs to overcome a series of problems, such as the robustness and transitivity of
models [81]. Not every mentioned technology seems to be at the same development level in
theory as those in laboratories of the food industry; many are still at the infancy level [113],
for example, in safety cereal processing, which needs to be further investigated [100]. There
should also be more focus on establishing open-source databases and accessible analytical
methods for more applications [81].

To our knowledge, there are only a few published papers involving spectral sensing
coupled with AI tools, especially for crop-based food safety, although many pieces of
research related to food safety and quality, in general, have been executed. Additionally,
most studies combing analytical methods with AI tools were from contributors who were
mainly scholars of computer sciences and/or related fields, where in-depth safety prob-
lem solving is not the main objective of the study, but rather general or specific feature
engineering [69,70,80].
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Figure 11. Statistics about evaluation metrics and the use of K-fold cross-validation in the research
papers. (a) Number of times each evaluation metric is used in the 49 research papers. (b) Count
of evaluation metrics used per research paper. (c) Percentage of research papers that uses K-fold
cross-validation for model validation. (d) The number of folds used in K-fold.

6. Conclusions and Future Work

This work conducts a qualitative as well a quantitative evaluation of research works
regarding our research topic. Furthermore, it proposes a unique methodology to search
the literature exhaustively and come up with relevant conclusions and suggestions for
further research. This methodology can be further applied in upcoming comprehensive
review papers or for searching the literature in emerging areas of research. We executed
many searches with many keywords, which was necessary to perform an exhaustive
search in the literature to obtain as many papers as possible. Nonetheless, we remarked
that most papers were majorly discussing quality assessment issues, mostly, food origins
and/or adulteration, using classification and/or regression methods. Also, there was a
high tendency to confuse safety and quality measures, which are clearly separate. Since
we opted to accept reviews that are remotely related to our specific topic, these review
papers were discussing a diversity of points, including our target problem, with more
details directed towards meat products, and quality assessment measures, more than safety
matters. Food safety, like any other real-life problem, has either been a principal topic
in research projects or simply an application to test decision-making tools. It is apparent
that there are few applications, and even studies, directed towards food safety when it
comes to its contamination prevention, where most studies focused mainly on animal
products, like milk and meat; hence, very few studies were regarding crop-based food.
To this end, machine learning methods are of crucial importance. Analytical techniques
and analytical strategies are completely different concepts: the first one is related to one
field of studies involving for example spectral techniques; the second one represents an
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intersection between many areas of research, hence diverse technologies, as it was discussed
and referred to in many case studies papers and review papers, like systems for detecting
food defects involving spectral imaging, chemometrics for preprocessing, and computer
vision for image analysis and decision making.

There have been many gaps while searching the literature. We at this moment en-
courage more work to be conducted regarding this problem, for a variety of reasons. First,
food safety-security is a global call into question, congregating multiple areas of research
and industry. In our study, we investigated crop-food safety while considering all steps
of the food supply chain. There are many challenges in optimizing the whole process,
where employing AI tools would be highly beneficial. Food contamination prevention is a
real-world challenge, with multiple hazards at stake. Our focus was mainly on crop-based
foods, regarding the whole process, starting from healthy soil and fresh seeds to grow these
crop foods to the marketed food product.

As discussed previously, different contaminants present serious problems, particularly
biological contaminants. The first step in ensuring both food security and food safety is
growing a healthy crop. On one hand, crop diseases have multiple impacts, decreasing the
yield, which leads to insufficient food staples, defecting yield products and causing unsafe
food for both humans and animals. Also, regarding farm animals, once they ingest diseased
foods, all animal-based foods are susceptible to being unsafe for consumption. Furthermore,
there is an apparent gap between AI studies’ development and their applications, not only
at the industrial level but at the research level as well, particularly in crop and agricultural
sciences. Henceforth, upcoming research should be directed towards developing cutting-
edge technologies in precision agriculture, by executing more studies in the fields of crop
sciences combined with machine learning and computer vision tools. Our future work will
be focusing mainly on solving problems related to inspecting resistant crops to biological
contaminants in arid and semiarid regions as an important aspect of food safety. Working
on drought-resistant crops and combining AI tools is one of the major challenges facing
research globally, and African countries specifically. This problem falls within the area of
phytopathology, crop improvement, and machine learning. Our quest is to work on tasks
related to crop classification while adding interpretability in deep learning and complex
ML techniques based on image processing.
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