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Abstract: The anaesthetic effect of vanillin on crucian carp was investigated using different concentra-
tions of vanillin, with a nonvanillin control. The effective concentration range of vanillin anaesthesia
was determined from the behavioural characteristics of crucian carp during the anaesthesia onset
and recovery phases. Physiological and biochemical indices, and the electronic nose response to the
fish muscle, were measured over the range of effectiveanaestheticc concentrations. An increased
concentration of vanillin shortened the time taken to achieve deep anaesthesia but increased the
recovery time. The levels of white blood cells, red blood cells, haemoglobinn, platelets, alanine
aminotransferase, alkaline phosphatase, lactate dehydrogenase, phosphorus, potassium, magnesium,
total protein, and serum albumin were lower than the control in the vanillin treatment group. Triglyc-
erides and total cholesterol were not significantly affected. Histology showed no effect of vanillin
on the liver, except at 1.00 g/L vanillin. Vanillin resulted in a nondose-responsive effect on the gill
tissue, increasing the width and spacing of the gill lamellae. E-Nose analysis of the carp-muscle
flavour volatiles was able to distinguish between different vanillin treatment concentrations. GC-IMS
identified 40 flavour compounds, including 8 aldehydes, 11 alcohols, 10 ketones, 2 esters, and 1 furan.
Vanillin had aanaestheticic effect on crucian carp and these findings provide a theoretical basis for
improving the transport and experimental manipulation of crucian carp.

Keywords: vanillin; crucian carp; anesthetic effect; physiological and biochemical indices; pathology;
volatile components

1. Introduction

Freshwater fish are popular with consumers for their high-protein and low-fat contents,
and there is increasing consumer demand for high-quality fish. During the production and
transportation of fish, trauma and stress often occur, affecting their quality and survival
rate. Fish anaesthetics are widely used, as they have a sedative effect during transport, and
effectively reduce fish mortality. Commonly used fish anaesthetics in China are ethyl m-
amino benzoate (MS-222), eugenol, and 2-phenoxyethanol, however, all three anaesthetics
have undesirable side effects. MS-222 solution is weakly acidic, resulting in the plasma-
cortisol content increasing after the fish recover from deep anaesthesia; exposure to direct
sunlight may produce toxicity to fish when using MS-222 [1]. Eugenol is volatile and
its effect diminishes during anaesthesia [2,3]; 2-Phenoxyethanol is hazardous to fishery
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workers, causing neurological syndromes after prolonged exposure, has a severe, long-
lasting residual effect, and remains active for three days after the fish recover [4]. Therefore,
there is a need for research into safer anaesthetics for fishery use, such as those of a plant
origin, which have antimicrobial and antioxidant activities, and carry a low risk to human
health [5,6]. Plant extracts, such as alfalfa essential oil [7], thyme essential oil [8], and
menthol [9] all have anaesthetic effects on fish.

Vanillin is the common name for 3-methoxy-4-hydroxybenzaldehyde, which is ex-
tracted from the seeds of orchids of the genus Vanilla [10]. Annual consumption of vanillin
in China is 2000–2500 t, with consumption increasing every year [11]. Vanillin has biological
activities, such as antibacterial, anti-inflammatory, and sedative. Vanillin improved the
resistance of papaya to invasion by pathogenic bacteria, thereby improving fruit qual-
ity and improved resistance to papaya postharvest rot; vanillin can be used as a safe,
nontoxic inducer and preservative to inhibit the growth of rot pathogens [12]. Vanillin
encapsulated in nanofiber membranes extended the shelf life of turbot fillets at 4 ◦C [13].
Inhalation of vanillin by mice had no effect on activity and cognitive function, though
inhalation of essential oils containing vanillin produced effective sedation [14]. Vanillin
alleviated rotational behavioural symptoms, reduced dopamine neuron damage, inhibited
microglial activation in a rat model, and had a therapeutic effect in an animal model of
lipopolysaccharide-induced Parkinson’s disease [15]. The antimicrobial activity of vanillin
reduced the heat resistance of E. coli [16]. Vanillin has human health-promoting and medic-
inal properties and is also an important raw material for the synthesis of many drugs.
Vanillin has been reported to reduce infarct volume after hypoxic-ischaemic brain injury, by
reducing blood–brain barrier damage and oxidative damage [17]. Vanillin has neuroprotec-
tive effects by regulating the expression of inflammatory cytokines in mice with transient
middle cerebral artery occlusion, demonstrating that vanillin can inhibit the TLR4/NF-κB
signalling pathway by an anti-inflammatory mechanism [18]. Vanillin improved survival
and reduced oxidative stress in rats suffering from sepsis [19]. In this study, the anaesthetic
effect of vanillin was tested on crucian carp and the resulting changes in physiological and
biochemical parameters, pathology and volatile aroma compounds were investigated.

2. Materials and Methods
2.1. Materials and Reagents

Live crucian carp (Carassius auratus) from the Jinan seafood market (Jinan, China);
fish were selected for good health and active movement. The fish were maintained in a
temperature-controlled circulating water filtration system (dissolved oxygen ≥ 7 mg/L,
pH 7–8), at the National Agricultural Products Modern Logistics Engineering Technol-
ogy Research Center. Vanillin (purity ≥ 99%), was from Sinopharm Chemical Reagents
(Shanghai, China). Potassium (K+), sodium (Na+), glucose (GLU), total protein (TP),
albumin (ALB), total cholesterol (CHO), and triglyceride (TG) assay kits were all from
Shandong Boke Biological Industries (Jinan, China). Xylene and neutral resin were from
National Group Chemical Reagents (Shanghai, China). Hematoxylin and eosin (H&E) stain-
ing solution, differentiation solution, and blue return solution were from Wuhan Xavier
Biotechnology (Wuhan, China). Ethylene glycol ethyl ether acetate was from Shanghai
Macklin Biochemical Technology (Shanghai, China).

2.2. Experimental Methods
2.2.1. Determination of Effective Concentration of Vanillin for Anaesthesia of Crucian Carp

The effective concentration for this determination was defined as the onset of anaes-
thesia within 3 min and awakening within 5 min [20]. Six treatment concentrations (0.25,
0.50, 0.75, 1.00, 1.25, and 1.50 g/L) were used and 60 carp were randomly selected in total
for the treatment and control groups. When the fish entered the anaesthesia phase (A3),
the corresponding time was recorded as anaesthesia onset, then the fish were immediately
transferred to fresh water for recovery and the time was recorded as the onset of recovery
phase 3 (R3).
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2.2.2. Determination of Behavioural Characteristics during the Recovery Phases of
Anaesthesia, at the Optimal Vanillin Concentration

When the anaesthetic concentration is low, the fish cannot enter anaesthesia quickly;
when the anaesthetic concentration is high, the fish enter anaesthesia too quickly and the
behavioural characteristics of the anaesthesia are difficult to distinguish. To observe stable
and distinct anaesthetic staging characteristics, an appropriate anaesthetic concentration is
required. Based on the results from Section 2.2.1, the behavioural characteristics of the carp
during anaesthesia were observed in a 1.00 g/L vanillin solution. The anaesthesia (A0–A4)
and recovery (R1–R4) periods were classified according to the criteria of Mirghaed et al. [21]
and correlated with the behavioural characteristics of the different periods.

2.2.3. Effect of Vanillin Concentration on Blood and Serum Parameters of Crucian Carp

Three crucian carp were randomly placed in treatment (different vanillin concentra-
tions) and control tanks, then each fish was tested for anaesthesia (each fish was tested
only once). The fish were kept in a state of complete anaesthesia for 10 min, and then
blood samples (5 mL) were drawn with a syringe from the tail vein. Part of the sample
was mixed with an anticoagulant and used for the determination of the physiological
parameters, red blood cells (RBC), white blood cells (WBC), haemoglobin (HGB), and
platelets (PLT); the other part was centrifuged at 4 ◦C for 20 min and 4000 rpm. Then, the
supernatant was stored at −80 ◦C until needed for the determination of serum alanine
aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP),
lactate dehydrogenase (LDH), inorganic phosphate (Pi), magnesium (Mg2+), potassium
(K+), sodium (Na+), glucose (GLU), total protein (TP), albumin (ALB), cholesterol (CHO),
and triglycerides (TG).

2.2.4. H&E Staining and Histological Examination of Liver and Gill Tissues

The carp were put under complete anaesthesia with different concentrations of vanillin,
maintained for 10 min and then gently removed and placed on a dissecting table to remove
the liver and gill parts for H&E staining. All samples were cut into 5–6 µm thick slices.
Then H&E was stained for microscopic observation. Dehydration and transparency were
performed in ethanol and xylene, and then cover slipped. The stained sections were
observed and photographed using a light microscope (Nikon, DS-Fi2) and spliced into a
complete image using ImageJ software.

2.2.5. E-nose Analysis

The carp were put under complete anaesthesia with different concentrations of vanillin,
maintained for 10 min, and then gently removed and placed on a dissecting table to remove
the muscle for the electronic nose test. The E-Nose (FOX4000, Alpha MOS, Toulouse, France)
sampling was performed as described previously [22], with some modifications. Muscle
tissue (5.0 g) was homogenized, then sealed into 10 mL sample vials and analyzed each
sample 4 times. The samples were analyzed as follows: carrier gas velocity, 150 mL/min;
headspace generation temperature, 40 ◦C; injection volume, 2 mL; injection speed, 2 mL/s;
headspace generation time, 600 s; data acquisition time, 120 s; delay time, 400 s. Radar
charts and linear discriminant analysis (LDA) were used to analyse the data and remove
outliers. The response characteristics of each E-Nose sensor are shown in Table 1.

2.2.6. Gas Chromatography-Ion Mobility Spectrometry (GC-IMS) Analysis of Flavour
Volatile Compounds

The carp were put under complete anaesthesia with different concentrations of vanillin,
maintained for 10 min and then gently removed and placed on a dissecting table to extract
muscle parts for GC-IMS studies. The analysis was performed with a FlavourSpec flavour
analyser (G.A.S., Dortmund, Germany). The control software has built-in NIST and IMS
databases, which were used for analyte identification. A 4.0 g sample was placed in a
20.0 mL headspace vial and incubated for 15 min at 60 ◦C. Headspace sampling conditions
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were as follows: headspace temperature, 60 ◦C; incubation time, 15 min; heating mode,
oscillation; headspace injection needle temperature, 85 ◦C; injection volume, 500 µL; non-
split mode; carrier gas, N2 (purity ≥ 99.999%); and wash time 0.50 min. Chromatography
conditions were as follows: column temperature, 60 ◦C; run time, 15 min; carrier gas, N2
(≥99.999%); flow rate: initially 5.0 mL/min, held for 10 min, and then linearly increased to
150 mL/min over 5 min. Detection conditions were as follows: drift tube length, 5 cm linear
voltage in the tube, 400 V/cm; drift tube temperature, 40 ◦C; drift gas, N2, (≥99.999%); flow
rate, 150 mL/min; and IMS detector temperature, 45 ◦C.

Table 1. Response characteristics of E-Nose sensors.

Serial Number Sensor Name Sensor Response Characteristics

1 LY2/LG chlorine, fluorine, nitrogen oxides, sulfides
2 LY2/G ammonia, amine compounds, carbon oxides
3 LY2/AA ethanol, acetone, ammonia
4 LY2/GH ammonia, amine compounds
5 LY2/gCTL hydrogen sulfide
6 LY2/gCT propane, butane
7 T30/1 polar compounds, hydrogen chloride
8 P10/1 nonpolar; hydrocarbons, ammonia, chlorine
9 P10/2 nonpolar; methane, ethane
10 P40/1 fluorine, chlorine
11 T70/2 toluene, xylene, carbon monoxide
12 PA/2 ethanol, ammonia, amine compounds
13 P30/1 hydrocarbons, ammonia, ethanol
14 P40/2 chlorine, hydrogen sulfide, hydrogen fluoride
15 P30/2 hydrogen sulfide, ketones
16 T40/2 chlorine
17 T40/1 fluorine
18 TA/2 ethanol

2.2.7. Statistical Analysis

SPSS 26.0 (SPSS Inc., Chicago, IL, USA) was used for data analysis. Data are expressed
as the mean ± standard deviation, according to an analysis of variance (ANOVA) and
Duncan’s multiple-range test (p < 0.05). The figures were plotted using OriginPro 2021
(OriginLab, Northampton, MA, USA). GC-IMS data were collected and analyzed from
different perspectives using the Laboratory Analytical Viewer (LAV) software and three
plug-ins (Reporter, Gallery Plot, Dynamic PCA) as well as the GC-IMS Library Search
qualitative software.

3. Results
3.1. Determination of the Effective Vanillin Anaesthesia Concentration Range for Crucian Carp

As the concentration of vanillin increased, the time taken to achieve deep anaesthesia
(stage A5; anaesthesia time) decreased and the time for complete recovery increased (Table 2,
Figure 1); the anaesthesia time with 0.25 g/L vanillin was markedly longer than at other
concentrations. The average anaesthesia time at 1.50 g/L was 50% of that at 0.50 g/L,
whereas the average recovery time was 281% of that at 0.50 g/L. The recovery rate of
carp was 100% at all six vanillin concentrations, indicating that, within the concentration
range of 0.50–1.50 g/L, the vanillin bath was safe for the fish. As the vanillin concentration
increased, the anaesthesia time decreased, in a dose-responsive, though nonlinear manner
(Table 2). Taking market application as the starting point, the short average anaesthesia
time is the focus of market demand, and it can be seen that the anaesthesia efficiency is
higher when the test concentration is 0.50 g/L~1.50 g/L.
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Table 2. Effect of different vanillin concentrations on the time taken to achieve anaesthesia and time
taken for complete recovery for crucian carp.

Vanillin Concen-
tration/(g/L)

Test the Number
of Fish/Tail Length/cm Body Mass/g Anaesthesia

Time/min
Recovery
Time/min

Recovery
Rate/100%

0.25 10 16.1 ± 0.35 271.7 ± 37.86 33.00 ± 8.54 2.58 ± 0.13 100
0.50 10 16.3 ± 0.95 273.3 ± 79.11 2.48 ± 0.03 2.13 ± 0.12 100
0.75 10 16.6 ± 0.96 291.6 ± 68.07 1.64 ± 0.35 2.21 ± 0.22 100
1.00 10 15.8 ± 0.41 263.4 ± 70.71 1.42 ± 0.52 2.46 ± 0.07 100
1.25 10 16.6 ± 0.80 288.3 ± 25.65 1.36 ± 0.13 2.48 ± 0.02 100
1.50 10 17.8 ± 0.72 310.1 ± 13.22 1.24 ± 0.09 4.59 ± 0.27 100
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Behavioural Characteristics of Crucian Carp during the Five Stages of Anaesthesia Onset
and the Four Stages of Recovery

The timing and behavioural characteristics at each stage of anaesthesia (A0–A4) and
recovery (R1–R4) of crucian carp were determined using 1.00 g/L vanillin (Table 3). When a
fish stopped swimming, completely lost the ability to respond, and the operculum opened
weakly and slowly, it was defined as being at the A3 stage of the anaesthesia period, and
when the fish body was balanced and responsive, and the operculum opened normally, it
was defined as being at the R3 stage of recovery.
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Table 3. Behavioural characteristics of crucian carp during the successive stages of anaesthesia
and recovery.

Stages Behavioural Characteristics Minute

A0 stress period A stress response occurs, swimming is accelerated, and operculum
opening and closing are accelerated 0.40 ± 0.06

A1 sedation period
The response to external stimuli is weakened, the ability to swim is

weakened, the body is slightly out of balance, and the breathing
rate is further increased

0.75 ± 0.12

A2 Mild anaesthesia phase
The body rolls on its side, the ability to respond to external stimuli
continues to weaken, swimming slowly, and the rate of operculum

opening and closing decreases
1.09 ± 0.15

A3 anaesthesia period The body of the fish is out of balance, ventral face up, stationary,
and the operculum opening is reduced but continuous 2.60 ± 0.13

A4 deep anaesthesia period The body of the fish is stationary, and the operculum opens and
closes extremely slowly and irregularly 4.45 ± 0.42

R1 recovery stage 1 The ventral side of the fish is stationary and breathing begins to
slowly resume continuously 1.44 ± 0.12

R2 recovery stage 2
The fish can swim slowly laterally, but the sense of direction is not

clear, and the frequency of operculum opening is close to that
before anaesthesia

1.91 ± 0.10

R3 recovery stage 3
The fish body was completely restored to its preanaesthesia state,
and the operculum and upper and lower jaw opening frequency

returned to normal
3.61 ± 0.18

R4 recovery stage 4 The operculum opens and closes normally, fully returns to normal
swimming, and responds rapidly to stimuli 4.78 ± 0.27

3.2. Effect of Vanillin Concentration on Blood and Serum Parameters of Crucian Carp
3.2.1. Effect of Vanillin Concentration on the Blood Composition Index of Crucian Carp

The control WBC count was 809.76 ± 21.51 × 109/L; the vanillin treatment WBC
count initially markedly decreased, then slightly increased, with the increased vanillin
concentration (Figure 2A). The control RBC count was 0.17 ± 0.10 × 1012/L and markedly
decreased at all vanillin treatment concentrations, with a minimum of 0.75 g/L (Figure 2B).
The control HGB content was 95.11 ± 4.59 g/L and moderately decreased, then slightly
increased, with increased vanillin treatment concentration (Figure 2C). The control blood
PLT content was 27.22 ± 4.63 × 109/L and markedly decreased at all vanillin treatment
concentrations; the PLT content was not significantly different between the five vanillin
concentrations (Figure 2D).

3.2.2. Effect of Vanillin Concentration on Blood Serum Enzymes in Crucian Carp

The control serum ALT concentration was 97.73 ± 58.18 U/L; the vanillin treatment
ALT concentration initially markedly decreased, then slightly, though not significantly,
increased, with increased vanillin concentration, except for a marked increase at 1.50 g/L
vanillin, to 111.77 ± 21.97 U/L (Figure 3A). The control serum AST concentration was
440.4 ± 177.39 U/L; the vanillin treatment AST concentration markedly increased, though
remained relatively constant, at all vanillin treatment concentrations (Figure 3B). The control
serum ALP concentration was 26.67 ± 12.66 U/L; the vanillin treatment ALT concentration
initially markedly decreased, then gradually increased, with the increased vanillin con-
centration (Figure 3C). The control serum LDH concentration was 2560.02 ± 7.23 U/L and
moderately decreased at all vanillin treatment concentrations, with a minimum of 1.00 g/L
(Figure 3D).
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aminotransferase (ALT); (B) aspartate aminotransferase (AST); (C) alkaline phosphatase (ALP); and
(D) lactate dehydrogenase (LDH). Different letters above the columns indicate a significant difference
(p < 0.05); the same letter indicates no significant difference (p > 0.05).
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3.2.3. Effect of Vanillin Concentration on the Blood Serum Ion Concentrations of
Crucian Carp

The PO4
3− concentration gradually decreased from the control value with the in-

creased vanillin concentration, with a minimum of 1.25 g/L, and a significant increase at
1.50 g/L (Figure 4A). The K+ concentration markedly decreased from the control value with
increased vanillin concentration, with a minimum of 1.00 g/L, and a significant increase at
1.50 g/L (Figure 4B). The Mg2+ concentration gradually decreased from the control value
with increased vanillin concentration, with a minimum of 1.25 g/L, and a slight increase of
1.50 g/L (Figure 4C). The Na+ concentration significantly increased from the control value
at all vanillin treatment concentrations, with a gradual increase with increased vanillin
concentration to a maximum of 1.25 g/L, and a small decrease at 1.50 g/L (Figure 4D).
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Figure 4. Effect of vanillin concentration on the blood serum ion content of crucian carp:
(A) phosphate (PO4

3−); (B) potassium (K−); (C) magnesium (Mg2+); and (D) sodium (Na+). Differ-
ent letters above the columns indicate a significant difference (p < 0.05); the same letter indicates no
significant difference (p > 0.05).

3.2.4. Effect of Vanillin Concentration on the Blood Serum Concentrations of Organic
Components in Crucian Carp

The control TP concentration of 76.33 ± 6.79 g/L decreased gradually with increasing
vanillin treatment concentration to a minimum of 1.00 g/L vanillin, then gradually in-
creased; the variation in ALB content was very similar to that of the TP content (Figure 5A).
The CHO concentration of the vanillin treatments was slightly higher than the control
(Figure 5B). The GLU concentration varied widely with increased vanillin concentration,
increasing markedly at 0.50 g/L with a further increase at 0.75 g/L, followed by a marked
decrease to a minimum at 1.25 g/L, and then a small increase at 1.50 g/L (Figure 5C). The
control TG concentration slightly increased at 0.50 g/L vanillin, then slightly decreased
with increasing vanillin concentration (Figure 5D).
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their integrity was better. 
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crucian carp: (A) total protein (TP) and albumin (ALB); (B) cholesterol (CHO); (C) glucose (GLU); and
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the same letter indicates no significant difference (p > 0.05).

3.3. Histopathological Examination

Liver tissue sections (Figure 6) showed that the hepatocytes in the control and treat-
ment groups were evenly arranged, intact and clear, except at 1 g/L vanillin, and vacuola-
tion in the treatment groups was more marked than in the control. At 1.50 g/L vanillin, the
accumulation of hepatocyte nuclei was greater than in the control, though their integrity
was better.
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ments at 0.50, 0.75, 1.00, 1.25, and 1.50 mg/L, respectively. Note: VS: vacuoles; HC: Hepatocytes;
HN: Hepatocyte nucleus; BV: blood vessels.
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Gill tissue sections (Figure 7) showed that the control gill lamellae (GL) were flattened,
vesicular, elongated, and arranged in a comb-like pattern, they consisted of a single layer of
epithelial cells, capillaries, and columnar support cells. The epithelial cells were flattened
with spindle-shaped nuclei, and the columnar support cells had large, round nuclei and
were attached to the basement membrane. The filaments and lamellae contained small
numbers of chlorine-secreting cells. Compared to the control, the filaments and lamellae
were swollen at 1.50 g/L vanillin; there was a proliferation of flattened and columnar cells in
the vascular walls of the filaments, an increase in chlorine-secreting cells, curling and fusion
of the lamellae, and detachment of the supragillar cells. Microstructural measurements
showed a slight swelling of the chlorine-secreting cells at all treatment concentrations,
which was not significantly different from the control, except at 1.00 g/L, at which the
width and spacing of the gill lamellae increased significantly.
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Figure 7. H&E-stained crucian carp gill tissue sections of (a) control group; (b–f) vanillin treatments
at 0.50, 0.75, 1.00, 1.25, and 1.50 mg/L, respectively. Note: BC: blood corpuscle; CC: chlorine cells;
GL: gill lamellae; PC: column cells; PVC: flat epithelial cells.

3.4. Effect of Vanillin Concentration on the Volatile Flavour Compound Profile of Carp Muscle,
Determined by E-Nose Analysis
3.4.1. Radar Fingerprinting of the E-Nose Sensor Responses to Carp-Muscle
Flavour Volatiles

The muscle aroma of the anaesthetized crucian carp was analyzed at different vanillin
treatment concentrations. The 18 sensors of the FOX4000 E-Nose are sensitive to different
chemical classes of volatile compounds and the ratio of relative conductivity G/G0 is
proportional to the concentration of the corresponding compound class. When G/G0 > 1,
the volatile concentration is detectable and when G/G0 ≤ 1 the volatile concentration is
below the detection limit [23]. There was a wide variation in sensor response (Figure 8),
with six sensors giving no response and those of T30/1, P10/1, PA/2, and P30/1 being rela-
tively strong. However, the differences between the control and the six vanillin treatment
concentrations were very small. It appears that vanillin treatment has a negligible effect on
fish flavour, which is highly desirable from a commercial viewpoint.

3.4.2. Linear Discriminant Analysis (LDA) of E-Nose Data

LDA is a statistical method that uses samples of known categories to establish a
discriminant model and discriminate samples of unknown categories [24]. The E-Nose
data were subjected to an LDA dimension reduction analysis (Figure 9). The contributions
of LDA1 and LDA2 were 77.29% and 19.69%, respectively, and the combined contribution
was 96.98%. LDA can distinguish the treatment and control samples, though there was no
dose response to the vanillin treatment.
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(control), 1.25, and 1.50 g/L, respectively.
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Figure 9. LDA of E−Nose response to crucian carp muscle at different vanillin treatment concentra-
tions. Note: A, B, C, CK, D, and E represent vanillin concentrations of 0.50, 0.75, 1.00, 0 (control), 1.25,
and 1.50 g/L, respectively.

3.5. GC-IMS Analysis of Aroma Volatiles from Crucian Carp Muscle at Different Vanillin
Treatment Concentrations

The GC-IMS 3D spectra of carp-muscle flavour volatiles resulting from different
vanillin treatment concentrations (Figure 10) are not easily distinguished by the eye.
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Figure 10. GC-IMS 3D spectra of crucian carp muscle after anaesthesia. From left to right: 0, 0.50,
0.75, 1.00, 1.25, and 1.50 g/L vanillin.

The 2D top-view GC-IMS plots (Figure 11A,B) allow visual comparison of the volatile
flavour profiles of carp muscle resulting from different vanillin treatment concentrations
and significant differences between samples are visible.

The GC retention time and IMS migration time of the volatile flavour compounds
from carp muscle after treatment, with different concentrations of vanillin, were compared
with the GC-IMS database on crucian carp muscle volatiles. The library search identi-
fied 40 flavour compounds (Figure 12, Table 4), including eight aldehydes, 11 alcohols,
10 ketones, two esters, and one furan.
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Figure 12. The 2D GC-IMS chromatogram of volatile organic compounds in crucian carp muscle,
after treatment with vanillin. The numbers correspond to the identities in Table 4.
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Table 4. Volatile organic compounds were identified from crucian carp muscle, after treatment
with vanillin.

Category Characteristic
Peak Number

Name of the
Compound CAS# Retention

Index
Retention
Time/min

Migration
Time/min

Description of the
Incense

Aldehydes

1 Nonanal C124196 1107.9 512.244 1.47608
grease, cucumber

and sweet
orange flavours

5 (E,E)-2,4-heptadienal C4313035 1012.9 368.968 1.19232 aroma of grass
and chicken

8 5-methylfurfural C620020 974.9 328.377 1.47055 cocoa, almonds
11 Octanal C124130 989.8 342.276 1.41258 fat, soap

15 (E)-2-hexenal C6728263 844.7 233.629 1.5202 fruity, green and
vegetable

16 (E)-hept-2-enal C18829555 955.1 310.888 1.25698 aroma of grass
and oil

22 Hexanal-D C66251 788.4 204.748 1.56613 grassy flavour
39 Hexanal-M C66251 787.5 204.354 1.26096 grassy flavour

Alcohols

2 1-octen-3-ol- M C3391864 982.7 335.632 1.15976 mushroom, lavender,
rose and hay aromas

3 1-octen-3-ol-D C3391864 982.2 335.107 1.60295 mushroom, lavender,
rose and hay aromas

10 n-Hexanol-D C111273 865.2 245.133 1.64596 herbal flavour
12 n-Hexanol-M C111273 867 246.147 1.32588 herbal flavour
13 3-Methyl-1-pentanol C589355 852.3 237.822 1.31307 fermented taste
21 ethanol C64175 421.1 99.501 1.13351 alcohol

28 2-methylbutan-1-ol C137326 714.7 171.67 1.23403 aromatic with wine
and ether

31 2,3-Butanediol C513859 788.4 204.748 1.36608 fermented taste
32 pent-1-en-3-ol C616251 684.2 159.959 0.94764 fruity aroma
36 1-Pentanol,2-methyl C105306 845.8 234.228 1.29357 fermented taste
38 (E)-2-hexen-1-ol C928950 851.7 237.511 1.50757 grassy, fruity

Ketones

9 3-Octanone C106683 987.9 340.428 1.71197 fruity aroma

14 2-nonanone C821556 1094.4 488.937 1.40882 fruity, sweet and
green notes

17 3-hydroxybutan-2-one C513860 717.3 172.744 1.33455 aromatic smell

20 2,3-butanedione C431038 580.2 132.579 1.17293 Fermented aroma,
sweet aroma

24 3-Pentanone C96220 693.3 163.079 1.36017 sweet scent
25 2-Butanone C78933 576.6 131.72 1.24487 aromatic smell

34 2,3-pentanedione C600146 697 164.522 1.22074
Caramel aroma,
diluted with a
creamy smell

35 2-heptanone C110430 890.4 260.017 1.26204 fruity aroma
37 2-Hexanone C591786 779 200.268 1.50009 spicy smell

40 3-Penten-2-one,
4-methyl C141797 790.2 205.63 1.45009 sweet scent

Esters
18 ethyl acetate C141786 610.7 140.096 1.34145 pineapple flavour
19 methyl acetate C79209 548.8 125.276 1.19757 pineapple flavour

Furans 6 2-pentyl furan C3777693 993.6 345.924 1.25402 fruity, grassy

Note: M indicates monomer and D indicates dimer.

To analyze differences in aroma profiles resulting from different vanillin treatment
concentrations, a flavour profile fingerprint was generated from the triplicate analyses
of the control and vanillin treatment samples (Figure 13). Some compounds, such as
3-hydroxy-2-butanone, 2,3-butanedione, 2,3-pentanedione, 2,3-butanediol, ethanol, and
2-methylbutanol were present in similar amounts in all samples. Some other compounds
varied in content greatly between different samples, such as hexanal, E-2-hexenal, methyl ac-
etate, 2-heptanone, 3-octanone, 4-methyl-3-penten-2-one, 2-pentylfuran, and 5-methylfuran,
which were higher in A or D and lower in C, E, and F. The difference in muscle volatile
flavour substances between group A and group D was not significant, indicating that
vanillin with a mass concentration of 1 g/L had little effect on the muscle flavour of the
crucian carp.
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4. Discussion and Conclusions

Vanillin had an anaesthetic effect on crucian carp when added to the water in which
the fish were present. With an increasing vanillin concentration, the time taken to achieve
deep anaesthesia decreased in an exponential, dose-responsive manner and the recovery
time of the fish, when removed to vanillin-free water, increased. All the test fish recovered
completely and there was no evidence of adverse effects. This is consistent with reports on
the anaesthetic effect of eugenol on juvenile yellow-spotted basketfish (Siganus oramin) [25],
magnolia essential oil on spotted seabass (Lateolabrax maculatus) [26], and carbon dioxide
on juvenile oval pompano trevally (Trachinotus ovatus) [27].

Blood physiological indices in fish are good indicators of their metabolic state, nu-
tritional status, and health. White blood cells (WBC) are an essential part of the immune
system [28]; red blood cells (RBC) deliver oxygen to body tissues [29]; platelets (PLT) are
mainly involved in blood clotting, though they also have immunomodulatory effects; and
haemoglobin HGB is the oxygen-binding protein in RBCs [30]. Liang et al. [31] analysed
the anaesthetic effect of clove oil on the blood indexes of tilapia; the content of WBC, RBC,
HGB, and PLT increased after anaesthesia. In this study, vanillin-induced anaesthesia
moderately reduced the contents of WBC and HGB, though more than halved the contents
of RBC and PLT.

Blood serum indices in fish are also good indicators of their metabolic state, nutritional
status, health, and of cell membrane integrity [32]. Alanine and aspartate aminotransferases
(ALT and AST) are important mitochondrial enzymes and are abundant in hepatocytes [33].
Under normal conditions, only small amounts of aminotransferases are released into the
blood from hepatocytes and, therefore, serum aminotransferase activity is low. Elevated
serum levels of ALT and AST are indicators of liver damage. Alkaline phosphatase (ALP)
is involved in metabolism and the immune system [34]. Lactate dehydrogenase (LDH) is
abundant in cardiac muscle cells and increased activity is an indicator of damage to the
cardiomyocytes [35]. In this study, the ALT activity of carp anaesthetized with vanillin
was reduced, whereas the AST activity markedly increased, indicating that there may have
been some liver damage in the fish, which is consistent with the effect of anaesthesia with
Buddleja lindleyana on serum AST in crucian carp [36]. The LDH activity was moderately
reduced, suggesting that anaesthesia reduced myocardium damage, consistent with the



Foods 2023, 12, 1614 16 of 19

response of MS-222 anaesthesia on bream (Parabramis pekinensis) [37]. The ALP activity of
crucian carp anaesthetized by the various concentrations of vanillin solution was lower
than that of the control group, indicating that the vanillin aqueous solution contained
components that inhibited ALP activity, indicating that vanillin had less effect on ALP in
crucian carp.

Inorganic ions such as PO4
3−, Mg2+, K+, and Na+ in serum are important for maintain-

ing osmolality, acid-base balance, and overall homeostasis in fish, and their content changes
after environmental stress [38]. Elevated serum PO4

3− and Mg2+ levels in fish can indicate
kidney damage [39]. In this study, the levels of PO4

3− and Mg2+ in anaesthetized crucian
carp were reduced, indicating that vanillin did not cause kidney damage. The increase
in serum Na+ and the decrease in serum K+ suggest increased permeability of the gill
epithelium, which allows leakage of Na+ and ingress of K+. In this study, with the increase
in the vanillin mass concentration, the Na+ content of each concentration of the anaesthesia
group increased compared with the control group, and the K+ content decreased compared
with the control group, and it was speculated that the higher concentrations of vanillin
caused increased gill tissue cell deformation. This is consistent with the anaesthesia of
tilapia with MS-222, which decreased serum K+ in a dose-responsive manner, whereas the
Na+ concentration remained relatively stable [40].

Glucose in the bloodstream supplies energy for various vital activities in fish [41]
and its concentration is regulated by insulin and epinephrine and fluctuates in response
to environmental factors [42]. In this study, the treatment group’s blood glucose levels
were higher than the control in different proportions, possibly due to less dissolved oxygen
in the water, which lowered the metabolic rate and/or because of the reduced physical
activity of the anaesthetized fish. The increases in GLU concentration after anaesthesia
may result from a need for increased energy associated with the stress response, which is
met by increased glycogenolysis. At higher vanillin concentrations, there was an irregular
decrease in blood glucose, consistent with more rapid anaesthesia, which is consistent
with a previous report on electroanesthetized pearl gentian grouper [43]. In contrast,
blood glucose concentrations decreased after CO2 anaesthesia of the grouper [44]. Serum
albumin (ALB) is the most abundant serum protein and acts as a transporter for insoluble
fatty acids [45]. The ALB concentration was slightly decreased by vanillin treatment.
Cholesterol (CHO) is an important component of the cell membrane and is transported in
the bloodstream by lipoproteins in fish [46]. Triglycerides, cholesterol, and total protein
levels are affected by protein catabolism and hepatic glycogenolysis. In this study, except
for triglycerides, the TP and ALB contents of the crucian carp after anaesthesia were lower
than those in the control group, indicating that the protein breakdown and liver glycogen
decomposition of crucian carp decreased after anaesthesia.

Fishery anaesthetics are a class of substances that inhibit the sensory centres of the
fish brain to varying degrees, causing the fish to lose the ability for reflex action. The
mechanism of action is to first inhibit the brain cortex (tactile loss phase), then act on the
basal ganglia and cerebellum (excitation phase), and finally on the spinal cord (anaesthesia
phase) [47]. An appropriate dose of anaesthetic reduces oxygen consumption and ammonia
excretion, inhibits excessive stress in the fish, and effectively reduces injury, or mortality
during handling. The liver is an important glandular and digestive-metabolic organ in fish
and is involved in bile secretion, metabolism, detoxification, and defence [48]. The gills
are the main respiratory organ of fish and excrete metabolic wastes, such as ammonia and
nitrogen [49]. Anaesthesia, with 40 mg/L MS-222 for 24 h, may cause some damage to the
liver tissue of the Larimichthys crocea [50]; eugenol anaesthesia of the carp (Cyprinus carpio)
did not result in detectable liver or kidney damage [51]; deep anaesthesia of rainbow trout
with Coriandrum sativum essential oil did not result in gill or liver damage [52]. In this study,
vanillin caused no detectable pathological effects on the liver. All concentrations of vanillin,
except for 1.00 g/L, had some effect on the gill tissue, increasing the width and spacing of
the gill lamellae. Further research will be needed to determine whether this is harmful to
the fish and the mechanism of any harm.
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The electronic nose (E-Nose) is an array of gas sensors that mimics the human olfactory
system and characterizes the aroma of a sample, which has low cost, ease of operation, and
high accuracy [53]. E-Nose analysis of carp muscle after vanillin treatment indicated that
the most abundant flavour volatiles are alcohols, amines, and hydrocarbons. Linear dis-
criminant analysis separated the control and the different vanillin concentration treatments,
though there was no clear dose response in the separation, indicating that, although the
E-Nose could discriminate the control and treatment samples, there was little difference in
the flavour profiles between the different vanillin treatment concentrations. The response
of different concentrations of vanillin to the muscle of crucian carp. Gas-phase ion mobility
spectrometry (GC-IMS) combines gas chromatography and ion mobility spectrometry [54]
and has the advantages of the high resolution of ion mobility spectrometry and the high
sensitivity of gas chromatography, resulting in richer chemical information than GC-mass
spectroscopy [55]. In this study, the GC-IMS was used to analyze differences in carp-muscle
flavour profile after anaesthesia with different vanillin concentrations. A total of 40 flavour
compounds were identified, including eight aldehydes, 11 alcohols, 10 ketones, two es-
ters, and one furan. Of these, 3-hydroxy-2-butanone, 2,3-butanedione, 2,3-pentanedione,
2,3-butanediol, ethanol, and 2-methylbutanol were present in all samples with similar
signal intensities, suggesting that these compounds are the main contributors to the overall
flavour of crucian carp muscle tissue after anaesthesia. Moreover, the difference between
the control group and the vanillin concentration of 1 g/L on muscle volatile flavour sub-
stances was not significant, indicating that vanillin with a mass concentration of 1 g/L had
little effect on the muscle flavour of crucian carp.

In conclusion, the effective concentration range of vanillin to anaesthetize crucian carp
is 0.50–1.50 g/L, which resulted in relatively small changes to blood biochemistry, and no
detectable liver damage, though minor, nonlethal damage to the gills. Future research on
the anaesthetic effect of vanillin should include an examination of molecular toxicology
and protein metabolism. GC-IMS proved very useful for the identification of carp-muscle
flavour volatiles, however, the GC-IMS database is not yet complete for fish muscle flavour
compounds, so more information on these compounds will be needed.
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