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Abstract: Broccoli sprouts have high isothiocyanate and selenium accumulation capacity. This study
used a combination of methods, including physiological and biochemical, gene transcription and
proteomic, to investigate the isothiocyanate and endogenous selenium accumulation mechanisms
in broccoli sprouts under exogenous sodium selenite treatment during germination. Compared
with the control, the sprouts length of broccoli sprouts under exogenous selenium treatment was
significantly lower, and the contents of total phenol and malondialdehyde in 6-day-old broccoli
sprouts were substantially higher. The contents of isothiocyanate and sulforaphane in 4-day-old were
increased by up-regulating the relative expression of genes of UGT74B1, OX-1, and ST5b. The relative
expression of BoSultr1;1, BoSMT, BoHMT1, and BoCOQ5-2 genes regulating selenium metabolism was
significantly up-regulated. In addition, 354 proteins in 4-day-old broccoli sprouts showed different
relative abundance compared to the control under selenium treatment. These proteins were classified
into 14 functional categories. It was discovered that metabolic pathways and biosynthetic pathways
of secondary metabolites were significantly enriched. The above results showed that exogenous
selenium was beneficial in inducing the accumulation of isothiocyanate and selenium during the
growth of broccoli sprouts.
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1. Introduction

Broccoli, an edible plant in Brassica, is rich in a variety of functional, active ingredients
beneficial to human health, such as isothiocyanates (ITCs), sulforaphane (SFN), glucosino-
lates (GLs), phenolic compounds, etc. [1-3]. Shapiro et al. [4] showed that high consumption
of broccoli could reduce the incidence of cancer, which is mainly related to ITCs [5]. In
plants, ITCs are hydrolysates produced by hydrolysis of GLs under the action of myrosinase
(MYR, EC3.2.1.147) [6], and ITCs are effective carcinogenic blockers, widely existing in
broccoli [7]. They have many effects, such as antioxidation [8], anti-inflammatory [9], and
prevention of cardiovascular disease [10]. In addition, SEN, an ITC has proven, has been
found to have anticancer activity [11]. Broccoli sprouts are more suited to the enrichment of
ITCs than mature broccoli because of the physiological and biochemical changes that occur
during germination [12]. Moreover, abiotic stress is a widely used and effective strategy
to promote the enrichment of ITCs in broccoli sprouts [13]. Based on the above factor, the
enrichment of ITCs in broccoli sprouts under abiotic stress has aroused people’s interest.

Selenium (Se) is one of the trace elements found in the human body. It plays a crucial
part in the regular function of the immune system and thyroid gland [14]. The primary
source of Se in the human body is the consumption of plants high in Se. Therefore, a
practical and effective way to produce foods containing Se is to enhance plants with Se
at the proper concentration. Se supplementation can also promote the accumulation of
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various healthy secondary metabolites in plants [15,16]. Tian et al. [17] showed that the
contents of SEN, anthocyanin, and flavonoids in broccoli sprouts increased markedly after
Se treatment. In addition, broccoli sprouts can accumulate high Se, and the total Se content
is dramatically increased under exogenous Se treatment [18]. Exogenous Se treatment
increased the Se content in broccoli sprouts [17,18]. However, the molecular mechanism
of exogenous Se in promoting the accumulation of ITCs and Se in broccoli sprouts is
still unclear.

Based on the aforementioned issues, the proteome modifications caused by exogenous
Se stress were investigated using the isobaric tag for the relative and absolute quantitative
(iTRAQ) labeling approach. The findings of physiological and biochemical analyses, gene
expression levels, and comparative proteomics analysis all contribute to a better under-
standing of the mechanisms affecting ITCs metabolism and Se metabolism in broccoli
sprouts in response to NaySeOj3 treatment.

2. Materials and Methods
2.1. Plant Growth and Experimental Design

The broccoli seeds (Brassica oleracea L. var. Italica) were cleaned before being sterilized
for 15 min with 1% (v/v) sodium hypochlorite. They were then soaked in distilled water at
30 °C for 4 h. The soaked seeds were then equally distributed over a clear case, covered
with vermiculite, and allowed to germinate at 30 °C in an incubator with a 16 h light/8 h
dark cycle. After a day of sprouting with distilled water, the treatments were carried out
with different additives: (1) CK: distilled water; (2) Se: 0.10 mM NaSeOs. Samples of
4-day-old and 6-day-old broccoli sprouts were taken randomly, then flash-frozen in liquid
nitrogen and kept at —20 °C for later examination. The concentration of Na;SeO3 and the
germination time depended on our pre-experiments.

2.2. Determination of Sprout Length, Fresh Weight, Malondialdehyde Content, and Total
Phenolics Content

Thirty sprouts from each treatment were randomly selected to be measured in length
with a micrometer and weighed in fresh weight (FW) with an electronic balance. The
contents of malondialdehyde (MDA) and the total phenolics were determined following
the protocol by Zhuang et al. [19] and Mencin et al. [20], respectively.

2.3. Determination of ITCs Content, Myrosinase Activity, Glucosinolates Content, and
Sulforaphane Content

The content of ITCs was determined following the protocol by Ding et al. [5]. Ab-
sorbance was measured using a spectrophotometer (UV-7504C, Xinmao Instrument Co.,
Shanghai, China) at 365 nm. A standard curve was prepared with sulforaphane. The ITCs
content was expressed as mg/100 g fresh weight of broccoli sprouts. MYR activity determi-
nation was conducted as described by Burow et al. [21]. Glucose content was determined by
glucose kit (F006-1-1, Nanjing Jiancheng Biological Engineering Research Institute, Nanjing,
China). Each minute was converted to 1 nmol glucose by MYR as one enzyme activity unit
(U/mg protein). The GL content was measured according to Guo et al. [22]. Extraction
and determination of SFN were performed according to Guo et al. [23]. The extracts were
analyzed using a Thermo UHPLC U3000 Pump system (Thermo Fisher Scientific, San Jose,
CA, USA) with a Gemini-NX C18 RP column (5 pm particle size, 3 x 250 mm, Phenomenex,
Warsaw, Poland).

2.4. Determination of Inorganic Selenium and Organic Selenium Content

The separation of inorganic Se and organic Se was, according to Sun et al. [24]. The
content of Se in the supernatant and precipitate measured based on the method of Lyi
et al. [25] indicates the inorganic and organic Se content of the sample, respectively.
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2.5. RNA Extraction and Quantitative Real-Time PCR Analysis

The total RNA isolated and reverse transcription was performed using the E.A.N.A.™
Plant RNA Kit (R6827-01, OMEGA, Norcross, GA, USA) and the PrimeScriptTM RT Master
Mix Kit (RR047A, Takara, Japan), respectively. Quantitative real-time PCR was performed
on the cDNA samples using TB Green Premix DimerEraser™ (RR091A, Takara, Japan). A
list of the sequence-specific primers employed in this study is provided in Table 1.

Table 1. The primer sequence of ITCs and Se metabolism genes in broccoli sprouts.

Primer Forward Primer (5'-3') Reverse Primer (5'-3')

Actin CTGTTCCAATCTACGAGGGTTTCT GCTCGGCTGTGGTGGTGAA
MYB28 AGACTGCGATGGACTAACTACCTAAA CCGACCACTTGTTTCCACGA
UGT74B1 CAAAGACGATAAAGGCTACGGC TCCCAAAGGAACCAAACGAA
ST5b CCGACACTACCTTACCGAACCA CGTGAGGAAAAGAGGCGATG
OX-1 GTGGACATTATACCGAACCTTACG TGTGGACTTCTTTGGCGACCT
MYR AAGGTCATCAGGGAGAAGGGTG TGTTTGGCAGGGTTCTTAGTGG
ESP-F ACATTTGGGACCAGGGACG TTTCCATACACGGTGGCAGTC
BoSultrl;1 GATTCTGCTGCAAGTGACGA ACGCGAATGATCAAGATTCC
BoSAT1;1 ATATCCATCCAGCAGCGAAG CTGTCTCCGCAAGCTTTACC
BoHMT1 TTCAGGAATGCCTTGAAACC TTAGCTTTTCCGTCCCACAC
BoSMT GATCAACTGTACCCCTCCAAG TCCCAACTCCTGTGTTTTCC
BoCOQ5-2 AAGGAAAGACTCGTTGGGAAG TCCTAAACGCAACATCACCC

2.6. Protein Extraction, Digestion, and iTRAQ Labeling

The total protein in 4-day-old broccoli sprouts was extracted, determined by using
the Plant Total Protein Extraction Kit (PE0230, Sigma-Aldrich, St. Louis, MO, USA) and
the Pierce™ Coomassie Protein Assay Kit (23200, Thermo Fisher Scientific, Waltham, MA,
USA), respectively. Following the procedure by Cheng et al. [26], the sample was reduced,
alkylated, and then subjected to trypsin digestion. The iTRAQ 8-plex Kit (4381662, Sigma-
Aldrich, St. Louis, MO, USA) was then used to label each sample individually by the
manufacturer’s instructions. All samples were mixed and lyophilized finally.

2.7. LC-MS/MS and Data Analysis

The labeled samples were fractionated using a Thermo UHPLC U3000 Pump system
(Thermo Fisher Scientific, San Jose, CA, USA) with a Gemini-NX C18 RP column (5 um
particle size, 3 x 250 mm, Phenomenex, Torrance, CA, USA). Detailed specific parameters
for the liquid chromatography tandem mass spectrometry analysis are given in our previ-
ous research [26,27]. The raw tandem mass spectrometry files were processed using the
Proteome Discoverer Software. Protein identification was performed using the uniport
Arabidopsis thaliana database. The search parameters were as follows: trypsin was selected
as the enzyme, with the tolerance set at one missed cleavage, a peptide allowance of 10 ppm,
and an MS and MS/MS allowance of 0.02 Da. A protein had to contain at least two distinct
peptides with a p-value less than 0.05 and a fold change larger than 1.5 or less than 0.67 to
be classified as important differentially abundant proteins (DAPs) [28]. Identified proteins
were annotated with their biological functions according to Kyoto Encyclopedia of Genes
and Genomes (KEGG, http://www.kegg jp/kegg/pathway.html, accessed on 10 July 2022)
and the literature. Information on the DAPs was obtained from the universal protein re-
source (http://www.uniprot.org/, accessed on 10 July 2022). Pathway enrichment analysis
was performed using DAVID6.8 (https:/ /david.ncifcrf.gov/, accessed on 10 July 2022).

2.8. Statistical Analyses

The mean values + standard deviation of the experimental data was expressed with
three replications. One-way ANOVA and Tukey’s multiple tests were used to assess the
data statistically, and a p-value of 0.05 was deemed significant. Relative gene expression
was analyzed by the 2722Ct method [29].
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3. Results
3.1. Effect of Selenium on Growth Performance, Sprout Length, Fresh Weight, Malondialdehyde
Content, and Total Phenolic Content of Broccoli Sprouts

The Na,SeOj3 treatment considerably reduced the length of the broccoli sprouts and
hindered their growth and development (Figure 1LII) compared to the CK. However, it
did not significantly affect their fresh weight (Figure 1III). MDA content, as a sign of
membrane damage, significantly increased in 6-day-old broccoli sprouts treated with
Na,SeOs (p < 0.05) (Figure 11V). To grow normally, total phenols with certain antioxidant
capacities played a role, and their content increased dramatically by Nay;SeOs3 treatment
(p < 0.05) (Figure 1V). The above facts showed that Na;SeO3 treatment hindered the growth
and development of broccoli sprouts.
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Figure 1. Effect of exogenous selenium on growth performance (I), sprout length (II), fresh weight
(IIT), malondialdehyde content (IV), and total phenolic content (V) of broccoli sprouts during ger-
mination. Each data point represents the average of three independent biological replications (aver-
age £ SD). Lowercase letters reflected the significance of differences in indexes among treatments
at different germination times using Tukey’s test (p < 0.05). For example, CK-4, Se-4, CK-6 and
Se-6 indicated the 4- and 6-day-old broccoli sprouts treated with distilled water and 0.10 mM
NaySeOs, respectively.

3.2. Effect of Selenium on ITCs Content, Myrosinase Activity, Glucosinolates Content, and
Sulforaphane Content of Broccoli Sprouts

GLs can be transformed by MYR into ITCs in plants. With Na,;SeOj; treatment, the
content of ITCs and SFN in broccoli sprouts all dramatically improved during germination
as compared to the CK (p < 0.05), and the contents of ITCs and SEN in 6-day-old broccoli
sprouts under NaySeOj treatment were 1.73 and 1.77 times more than the CK, respectively
(Figure 2LIV). The MYR activity and GLs content in 6-day-old broccoli sprouts increased
significantly in 6-day-old broccoli sprouts (p < 0.05) (Figure 2ILIII). In contrast to the CK,
the GLs content dramatically dropped after 4 days of germination (p < 0.05) (Figure 21I1I).
The above facts showed that Na;SeOs treatment could promote the accumulation of ITCs
in broccoli sprouts.
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Figure 2. Effect of exogenous selenium on ITCs content (I), myrosinase activity (II), glucosinolate
content (IIT), and sulforaphane content (IV) of broccoli sprouts during germination. Each data point
represents the average of three independent biological replications (average + SD). Lowercase letters
reflected the significance of differences in indexes among treatments at different germination times
using Tukey’s test (p < 0.05). For example, CK-4, Se-4, CK-6 and Se-6 indicated the 4- and 6-day-old
broccoli sprouts treated with distilled water and 0.10 mM NaySeOs, respectively.

3.3. Effect of Selenium on Inorganic Selenium Content and Organic Selenium Content of
Broccoli Sprouts

When broccoli sprouts were exposed to Na;SeO3 during germination, both the inor-
ganic and organic Se contents drastically increased (p < 0.05) (Figure 3), and in 4-day-old
broccoli sprouts treated with Na,;SeOs, the contents of inorganic and organic Se were 199.19
and 153.06 times higher than the CK, respectively. According to the information, NaySeOs
treatment can encourage Se accumulation in broccoli sprouts.
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Figure 3. Effect of exogenous selenium on inorganic selenium content (I) and organic selenium
content (II) of broccoli sprouts during germination. Each data point represents the average of three
independent biological replications (average + SD). Lowercase letters reflected the significance of
differences in indexes among treatments at different germination times using Tukey’s test (p < 0.05).
For example, CK-4, Se-4, CK-6 and Se-6 indicated the 4- and 6-day-old broccoli sprouts treated with
distilled water and 0.10 mM Na,SeO3, respectively.

3.4. Changes in Gene Expression of ITCs and Selenium Metabolism Key Enzyme in
Broccoli Sprouts

Figure 41-VI showed the relative expression of ITCs metabolism key enzyme in broccoli
sprouts treated with exogenous Se. As the figures show, the expression of ESP, UGT74B1,
OX-1, and ST5b was significantly induced by Se treatment of 4-day-old broccoli sprouts,
which were 118.48, 15.58, 7.62, and 31.34 times more than that of CK, respectively. While
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the expression of MYR and MYB28 showed no significant change under Na,;SeOj3 treatment
(p > 0.05).
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Figure 4. Changes of MYR (I), ESP (II), MYB28 (III), UGT74B1 (IV), OX-1 (V), ST5b (VI),
BoSultr1;1 (VII), BoSAT (VIII), BoSMT (IX), BoHMT1 (X), and BoCOQ5-2 (XI) relative expression
in broccoli sprouts under selenium treatment during germination. Each data point represents the
average of three independent biological replications (average + SD). Lowercase letters reflected the
significance of differences in indexes among treatments at different times using Tukey’s test (p < 0.05).
For example, CK-4, Se-4, CK-6 and Se-6 indicated the 4- and 6-day-old broccoli sprouts treated with
distilled water and 0.10 mM Na;SeO3, respectively.

Figure 4 VII-XI showed the relative expression of the Se metabolism key enzyme
in broccoli sprouts under NaySeOj; treatment. After NaySeO; treated 4-day-old broccoli
sprouts, the expressions of BoSultr1;1, BoSMT, BOHMT1 and BoCOQ5-2 were 31.05-, 123.93-,
505.17-, and 22.63-fold of that in the CK, respectively, while Na,SeOj; treatment significantly
decreased the expression level of BoSAT (p < 0.05). Compared with the CK, the expression
of BoSAT, BoSMT BoHMT1, and BoCOQ5-2 showed no significant change in 6-day-old
broccoli sprouts (p > 0.05).

3.5. iTRAQ Analysis and Identification of Differentially Abundant Proteins

When the expression ratio is more than 1.50 or less than 0.67 and p < 0.05, it is
considered DAPs [28]. The Se/CK samples in the present study had 354 DAPs, including
343 up-regulated and 11 down-regulated proteins (Table S1 and Figure 5).
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Figure 5. Heatmaps and cluster analysis of DAPs in Se/CK of 4-day-old broccoli sprouts. CK: control;
Se: 0.10 mM NaySeOj3. Expression changes were made based on the log 2 conversion expression

ratios of the proteins applying Gene Cluster 3.0 software. Visualize results using JAVA Treeview
software. The numbers in the color scale are the changes in the abundance of the DAPs.

AOA17x\/RA7 Protein destination and storage
AOA178VDSS QOWNZS

In this study, these DAPs could be classified into 14 functional classes based on the
molecular functions listed on the UniProt and KEGG websites, i.e., amino acid metabolism,
carbohydrate metabolism, cell growth/division, defende/stress, energy, lipid metabolism,
nucleotide metabolism, protein biosynthesis, protein destination and storage, protein
folding and degradation, secondary metabolism, signal transduction, and transcription,
transport and other (Figure 6I). After four days of germination in Na;SeO3, the abundance
of all DAPs in the carbohydrate metabolism, cell growth/division, defende/stress, lipid
metabolism, nucleotide metabolism, protein destination and storage, protein folding and
degradation, and signal transduction classes increased significantly (Figure 61I).

Bioinformatics methods were used to evaluate these DAPs to get pertinent route data.
To gather pertinent pathway data, these DAPs were analyzed utilizing bioinformatics
methods. Biological process (BP), cellular component (CC), and molecular function (MF)
were the three main gene ontology (GO) categories into which all the discovered peptides
and DAPs under the Na;SeOj3 treatment were categorized. The most frequent CC is
chloroplasts and the cytosol, while the most frequent MF involves ribosome structural
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components. The most frequent BP was oxidation-reduction reactions and translation
(Figure 7).
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The KEGG database was used to do additional studies on the DAPs and examine the
affected metabolic pathways. With a threshold of a p-value of less than 0.05, the pathway
enrichment analysis discovered 22 KEGG pathways (Table 2). Most of the KEGG pathways
were metabolic pathways, such as the synthesis of secondary metabolites, biosynthesis of
antibiotics, and carbon metabolism. In the present study, a total of 23 differentia-regulated
proteins involved in ITCs and selenium metabolism in 4-day-old broccoli sprouts were
identified (Figure 8).

Table 2. Pathway enrichment analysis of differential proteins in 4-day-old broccoli sprouts. C: control;
Se: 0.10 mM Na,SeOs.

Pathway ID Pathway Input Number p-Value
Se/C Se/C

ath00195 Photosynthesis 12 0.0007
ath00250 Alanine, aspartate and glutamate metabolism 8 0.0061
ath00260 Glycine, serine and threonine metabolism 10 0.0056
ath00270 Cysteine and methionine metabolism 12 0.0057
ath00290 Valine, leucine and isoleucine biosynthesis 5 0.0198
ath00380 Tryptophan metabolism 8 0.0048
ath00450 Selenocompound metabolism 10 2.82 x 1078
ath00460 Cyanoamino acid metabolism 10 0.0016
ath00480 Glutathione metabolism 10 0.0273
ath00620 Pyruvate metabolism 9 0.0395
ath00630 Glyoxylate and dicarboxylate metabolism 14 2,69 x 107°
ath00710 Carbon fixation in photosynthetic organisms 11 0.0011
ath00920 Sulfur metabolism 15 7.49 x 10710
ath00940 Phenylpropanoid biosynthesis 19 0.0003
ath01100 Metabolic pathways 132 9.41 x 1071
ath01110 Biosynthesis of secondary metabolites 81 1.48 x 1077
ath01130 Biosynthesis of antibiotics 52 2.01 x 10710
ath01200 Carbon metabolism 45 1.23 x 1071
ath01210 2-Oxocarboxylic acid metabolism 9 0.0202
ath01230 Biosynthesis of amino acids 37 6.95 x 10710
ath03010 Ribosome 44 403 x 1077
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Figure 8. The differentia-regulated proteins involved in ITCs (I) and selenium (II) metabolism in
4-day-old broccoli sprouts on Se/CK. CK: control; Se: 0.10 mM NaySeOs.

4. Discussion

The level of secondary metabolites in plants can be affected by abiotic stress [13]. For
example, the production of sulfur-containing compounds GLs and SEN increased under
sulfate stress [30]. While under the stress of exogenous Se, the growth and development of
broccoli sprouts were significantly inhibited, and the length of the sprouts was significantly
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shortened (Figure 11II), which may be due to the production of many cellular structure-
destroying components [31]. The MDA content, a sign of membrane damage, increased
significantly in 6-day-old broccoli sprouts in this study (Figure 1IV). Total phenols with
specified antioxidant capabilities were required for optimal growth, and their concentration
increased considerably after Na;SeOs; treatment (Figure 1V). When plants are stressed,
the GLs are hydrolyzed by MYR [32], and the ITCs content increased significantly under
Se stress compared with the control in this study (Figure 2I). Gui et al. [33] also showed
that Se could participate in vital physiological and metabolic processes and improve the
antioxidant defence system in plants. Moreover, 343 DAPs out of 354 DAPs were up-
regulated, and all DAPs associated with stress were up-regulated to ensure broccoli sprout
development (Figure 5). In addition, the concentration of selenium also affects the growth
of broccoli sprouts. A low concentration of Se can promote the growth of plants, while a
high concentration of Se will inhibit the growth of sprouts [31]. Therefore, it may be that
the concentration of Se used in this experiment was too high, which inhibited the growth
and development of broccoli sprouts.

S and Se are members of the VI-A elemental family of chalcogens. Thus, they have
similar physical and chemical characteristics and share a common metabolic pathway
in plants. Selenite treatment is beneficial to the biosynthesis of GLs and promotes the
accumulation of Se in plants [34]. In our study, exogenous Se treatment enhanced the
content of ITCs and SEN in broccoli sprouts (Figure 21,IV). While the GLs content in 4-day-
old broccoli sprouts decreased significantly (Figure 21I1I), it differed from the conclusion
of Wang et al. [34]. It could be because broccoli and cabbage are different species or the
consumption of cysteine in broccoli sprouts treated with Na;SeO3, as McKenzie et al. [35]
showed that cysteine is the S donor of GLs and Se will bind to cysteine in the process
of metabolism in plants to form selenocysteine. The level of inorganic Se and organic Se
in broccoli sprouts increased considerably after treatment with exogenous Se (Figure 3),
consistent with Avila et al. [36].

The transcription levels of key genes related to ITCs and Se metabolism in broccoli
sprouts under NaySeOs treatment were analyzed using qRT-PCR (Figure 4). MYB28, OX-1,
and ST5b regulate the synthesis of GLs, MYR is involved in the hydrolysis of GLs to ITCs,
while ESP is involved in the conversion of GLs to nitrile products, and UGT74B1 regulates
the production of SEN, which is an ITC [3,37]. In this study, Nay;SeOs treatment caused
several alterations in the expression of genes associated with ITC production. Na;SeOs
up-regulated the gene expression of OX-1 and ST5b while related to GLs metabolism in
4-day-old broccoli sprouts. Nevertheless, GLs content in broccoli sprouts has no significant
change compared to the control, which may be related to the excessive concentration of
selenite that consumed the S donor cysteine of GLs [35]. The up-regulation of UGT74B1
promoted the accumulation of sulforaphane in 4-day-old broccoli sprouts. BoSultr1;1 and
BoCOQ5-2 are involved in promoting the absorption of Se in plants, and BoSMT, BoSAT, and
BoHMT1 play an important role in transforming the inorganic Se to organic Se [38,39]. In
our study, under the treatment of exogenous Se, BoSultr1;1, BoSMT, BoHMT1 and BoCOQ5-2
genes in broccoli sprouts were significantly up-regulated, which promoted the absorption
and transformation of selenite by 4-day-old broccoli sprouts.

The proteomic study further clarified the mechanism of accumulation of ITCs and
endogenous Se in 4-day-old broccoli sprouts treated with Na;SeOs. A total of 354 DAPs
were found in the current study’s Se/CK comparison group, of which protein biosynthesis,
amino acid metabolism, carbon metabolism, and defence-related DAPs accounted for
17.5%, 15.3%, 11.3%, and 10.2%, respectively. According to the GO functional analysis, the
proteins related to chloroplast and cytosol were highly expressed, which was beneficial to
the enrichment of endogenous Se in broccoli sprouts, for chloroplasts played a key role in
the absorption and transformation of Se in plants [39]. In addition, ATP-sulfurylase plays
a catalytic selenate role in the cytosol [40]. The biological pathway of expressed proteins
has been described using KEGG pathway analysis. A total of 22 metabolic pathways
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were identified, most of which belonged to metabolic pathways, such as the synthesis of
secondary metabolites, biosynthesis of antibiotics and carbon metabolism, etc.

As shown in Figure 8, methylthioalkylmalate synthase 1 (MAM1), isopropylmalate
isomerase 2 (IPMI2), 3-isopropylmalate dehydratase large subunit (IIL1), 3-isopropylmalate
dehydrogenase (IMD1), branched-chain-amino-acid aminotransferase 3 (BCAT3), cytosolic
sulfotransferase 16 (STO16), cytosolic sulfotransferase 17 (SOT17), cytosolic sulfotrans-
ferase 18 (SOT18), myrosinase 1 (MYR1), myrosinase 2 (MYR?2), epithiospecifier protein
(ESP) and nitrilespecilier protein 2 (NSP2) play an important role in the formation of ICTs
(Figure 8). The enzymes IPMI2 (AOA178VZEL1), IIL1 (Q94ARS), IMD1 (Q5XF32), SOT16
(Q9C9D0), SOT17 (QI9FZ80) and CYP83B1 (065782) were involved in the metabolism of
aliphatic glucosinolates, while MAM1 (Q9FG67), BCAT3 (Q9M401) and SOT18 (Q9C9C9)
were involved in the metabolism of indole GLs [13,41]. Among these enzymes, only the
relative expression of BCAT3 was significantly up-regulated, while the enzymes MYR1 and
MYR?2 that hydrolyzed GLs were significantly up-regulated, which could also explain the
drop of GLs content in 4-day-old broccoli sprouts treated with exogenous Se. According
to the National Library of Medicine and the study of others [42,43], 11 enzymes involved
in Se metabolism were identified (Figure 8). They were methionine S-methyltransferase
(MMT, Q9LTB2), 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase 2
(MS2, Q9SRV5), 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase 3
(MS3, QOWNZ5), 5-methyltetrahydropteroyltriglutamate-homocysteine methyltransferase
1 (ATMS1, O50008), pyridoxal phosphate (PLP)-dependent transferases superfamily protein
(MTO1, A0A178VB36), thioredoxin reductase (NTRA, AOA1P8AZS7), hioredoxin reduc-
tase 2 (NTRA2, Q39242), tnitrilase 1 (NTRB, Q39243), ATP-sulfurylase 1 (APS1, B2CT25),
ATP-sulfurylase 2 (APS2, AOA178WAVY), ATP-sulfurylase 3 (APS3, AOA1P8B8I9). After
exogenous Se treatment, the relative expression of these enzymes was dramatically up-
regulated compared to the control, which was consistent with the result of the significant
increase in organic Se and inorganic Se content.

5. Conclusions

Exogenous Se decreased the sprouts length of broccoli sprouts, increased the con-
tent of MDA, and hindered the growth and development of broccoli sprouts. However,
from another perspective, the total phenolic content increased under exogenous Se treat-
ment, and the abundance of ITCs and selenium metabolism-related proteins increased
by up-regulating the expression level of ITCs and selenium metabolism genes and pro-
moting the enrichment of ITCs and endogenous selenium, thereby increasing the value of
broccoli sprouts.
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