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Abstract: Diffusion methods, including agar disk-diffusion and agar well-diffusion, as well as dilu-
tion methods such as broth and agar dilution, are frequently employed to evaluate the antimicrobial
capacity of extracts and essential oils (EOs) derived from Origanum L., Syzygium aromaticum, and
Citrus L. The results are reported as inhibition diameters (IDs) and minimum inhibitory concentra-
tions (MICs), respectively. In order to investigate potential sources of variability in antimicrobial
susceptibility testing results and to assess whether a correlation exists between ID and MIC measure-
ments, meta-analytical regression models were built using in vitro data obtained through a systematic
literature search. The pooled ID models revealed varied bacterial susceptibilities to the extracts and
in some cases, the plant species and methodology utilised impacted the measurements obtained
(p < 0.05). Lemon and orange extracts were found to be most effective against E. coli (24.4 ± 1.21
and 16.5 ± 0.84 mm, respectively), while oregano extracts exhibited the highest level of effectiveness
against B. cereus (22.3 ± 1.73 mm). Clove extracts were observed to be most effective against B.
cereus and demonstrated the general trend that the well-diffusion method tends to produce higher ID
(20.5 ± 1.36 mm) than the disk-diffusion method (16.3 ± 1.40 mm). Although the plant species had
an impact on MIC, there is no evidence to suggest that the methodology employed had an effect on
MIC (p > 0.05). The ID–MIC model revealed an inverse correlation (R2 = 47.7%) and highlighted the
fact that the extract dose highly modulated the relationship (p < 0.0001). The findings of this study
encourage the use of extracts and EOs derived from Origanum, Syzygium aromaticum, and Citrus to
prevent bacterial growth. Additionally, this study underscores several variables that can impact ID
and MIC measurements and expose the correlation between the two types of results.

Keywords: foodborne pathogens; inhibition diameter; minimum inhibitory concentration; meta-
regression; mixed-effects model

1. Introduction

Plant extracts and essential oils (EOs) have potential as antimicrobial agents, owing
to their rich secondary metabolites (e.g., phenols, terpenoids, and alkaloids) [1]. Several
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studies have investigated the in vitro antimicrobial activity of Origanum L., Syzygium aro-
maticum, and Citrus L. extracts and EOs against foodborne pathogens, yielding encouraging
results [2–7].

A range of in vitro assays can be utilised to determine the susceptibility of a microor-
ganism to antimicrobial agents, including diffusion methods (agar disk-diffusion and agar
well-diffusion) and dilution methods (broth and agar dilution), with standardised methods
available from CLSI, ISO, and EUCAST [8–11]. The agar disk-diffusion method involves
placing paper disks containing the test compound on a bacterial lawn on the surface of an
agar medium at a specific concentration, while the agar well-diffusion method involves
placing a pre-defined volume of the antimicrobial agent at a specific concentration into
a hole of 6 to 8 mm in diameter punched aseptically into the agar [12]. Both methods
require incubation under suitable conditions, followed by measurement of the diameters
of inhibition zones around the disks or wells [12]. However, it is important to note that
these diffusion methods have some limitations, including the inability to differentiate
between bactericidal and bacteriostatic effects and to establish the minimum inhibitory
concentration (MIC), due to the difficulty in calculating the quantity of the antimicrobial
agent that has diffused into the agar medium [12].

Alternatively, dilution methods, unlike diffusion methods, are well-suited for deter-
mining MIC values, as they allow for estimation of the antimicrobial concentration in both
broth (macro-dilution or micro-dilution) and agar medium (agar dilution) [12]. In the
agar dilution method, the antimicrobial agent is incorporated into liquid agar medium at
varying concentrations, followed by inoculation of a standardised bacterial inoculum onto
the agar plate surface [12,13]. Broth macro- and micro-dilution methods involve placing a
standardised bacterial suspension into tubes (macro) or 96-well trays (micro) filled with a
liquid medium of predetermined formulation and two-fold serial dilutions of the antimi-
crobial agent to be tested [12,13]. After adequate incubation of agar plates, tubes, or trays,
MIC values are determined through visual or spectrophotometric inspection, depending
on the protocol employed [8–12].

With diffusion and dilution methods reporting antimicrobial activity in terms of in-
hibition diameter (in millimetres) and MIC (in mg/mL, for example) of the bacterium
being tested, respectively, the following question was raised: can a relationship be detected
between inhibition diameter and MIC values obtained from different in vitro methodolo-
gies? Moreover, how are the results affected by the method used (disk- vs. well-diffusion;
broth vs. agar dilution)? To investigate and answer these questions, a meta-analysis was
conducted on the antibacterial capacity of Syzygium aromaticum, Citrus, and Origanum
species extracts and EOs. While some studies have attempted to compare and correlate
results obtained by different methods [14–18], to the best of our knowledge, this is the first
time that a meta-analysis has been used to investigate the relationship between inhibition
zone diameters and MIC and quantify the heterogeneity among antimicrobial susceptibility
tests. Meta-analysis is a statistical synthesis technique that combines the results from
various studies to produce a more precise and statistically powerful estimate of the effect
of a specific treatment [19]. Furthermore, it allows identification and quantification of
heterogeneity sources between the outcomes of the studies [19].

Our study aims to use systematic literature search and meta-regression modelling
to achieve the following goals: (i) to collate and summarise publicly accessible data on
the antimicrobial properties of Citrus, Origanum, and Syzygium aromaticum extracts and
EOs in vitro; (ii) to examine the presence of heterogeneity in the observed effect sizes of
antimicrobial activity and, if present, to identify its sources using multilevel meta-analyses
and coded study characteristics; (iii) to investigate whether a relationship exists between
inhibition diameter and MIC values obtained from different in vitro procedures; and (iv) to
evaluate likelihood of publication bias, which is defined as “the failure to publish the study
results based on the direction or strength of the study’s findings” [20].
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2. Materials and Methods
2.1. Collection and Characterisation of the Dataset

A rigorous electronic search of the Web of Science, PubMed, Scopus, and SciELO
databases was performed to identify high-quality, peer-reviewed, original publications
since 2000 which reported data on inhibition diameter, MIC, and minimum bactericidal
concentration (MBC) of extracts derived from Origanum, Syzygium, and Citrus. The aim of
the search was to locate studies that had been validated by the scientific community.

The logical connectors “and” and “or” were appropriately utilised to merge terms
related to biopreservatives, pathogens, and antimicrobial susceptibility testing method-
ologies in the electronic search. The following terms were used: (Listeria or Salmonella
or “Staphylococcus aureus” or “Escherichia coli” or Campylobacter) and (extract* or antimi-
crobial* or “essential oil”) and (MIC or MBC or “agar diffusion” or halo or inhibition or
zone or “minimum inhibitory concentration” or “minimum bactericidal concentration”)
and food. The search was conducted in the title, keywords, and abstract to identify high-
quality studies validated by the scientific community and covered articles published from
2000 onwards.

The study excluded grey literature, meta-analyses, and systematic reviews to avoid
data duplication and ensure data validity. The inclusion criteria specified Origanum, Syzy-
gium, or Citrus extracts or EOs with either MIC or inhibition diameter measurements
against selected foodborne pathogens, including Shiga toxin-producing E. coli (STEC), S.
aureus, L. monocytogenes, Salmonella spp., and Campylobacter spp. The extract dosage and
pathogen inoculum size were also required. The selected bacteria were chosen for their
frequent use in antimicrobial susceptibility testing and their importance as causative agents
of foodborne diseases [21].

After evaluating the collected publications, a total of 131 papers published since 2000
were considered appropriate for inclusion [2,4–7,22–150]. The information collected from
the chosen studies includes article identification, plant species, plant portion used, extrac-
tion method including its parameters such as temperature and solvent, antimicrobial sus-
ceptibility test, extract or EO dosage applied (“LogDose”; %w/v or %v/v), bacterium, strain,
inoculum size, inhibition diameter value (ID, mm), and MIC value (“LogMIC”; mg/mL for
extracts, µL/mL for EOs).

2.2. Meta-Regression Modelling

Weighted mixed-effects linear models were utilised to estimate pooled inhibition
diameters or MIC values produced by extracts or EOs of Syzygium aromaticum, Origanum,
and Citrus species against specific bacteria. For each dataset, study characteristics were
extracted from primary studies to explain variability in effect size between studies. These
characteristics included plant type, extract or EO dose tested, volume of extract or EO
absorbed or poured, inoculum level, method of determining inhibition diameter, and
number of replicates used for test. Pooled MIC models were codified based on plant type,
method of determination of MIC/MBC, standard errors, antimicrobial type (extract or EO),
and number of replicates used for the test. Interactions between factors were evaluated in
some models to determine if the effect of one term depended on the level of one or more
terms. Over 30 meta-regression models were adjusted to synthesise inhibition diameter
(ID) and MIC, using a general form (Equations (1) and (2)):

IDij = β1LogDose +
(

β2j + ui
)

Plantj + εij (1)

logMICijmn =
(

β1j + ui
)

Plantj + β2m Methodm + β3n AntimicrobialTypen + εijmn (2)

Equation (1) provides the model used to estimate the ID, where IDij refers to the
ID observation obtained from the j-th plant and the i-th study. The effect of a one log
increase in extract dose (%v/v or %w/v) on the inhibition diameter is represented by β1.
Additionally, the fixed effects of the j types of plant are captured by β2j.
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Similarly, Equation (2) represents the model used to estimate the MIC produced by
plant extracts, where MICijmn refers to the MIC observation obtained from the j-th plant,
the m-th method of MIC determination (which can be agar dilution or broth micro-dilution),
the n-th antimicrobial type (extract or EO), and the i-th study. The fixed effects of the j
categories of plant, m types of MIC determination method, and n types of antimicrobial
test are represented by β1j, β2m, and β3n, respectively.

The terms εij and εijmn of Equations (1) and (2), respectively, are the model residuals.
The remaining unexplained variability was extracted by introducing random effects ui due
to study i in β2j and β1j (set of fixed effects of the j types of plant in Equations (1) and (2),
respectively). In both models, the terms ui are assumed to follow a normal distribution
with mean zero and between-study variability τ2.

The correlation between inhibition diameter and MIC of different pathogens produced
by extracts or EOs of Syzygium aromaticum, Origanum, and Citrus species was examined by
adjusting another weighted mixed-effects linear model to the corresponding dataset. The
moderators considered in this model included the logarithm of the extract dose, logarithm
of the MIC, and bacterium. The adjusted meta-regression model had the following form:

IDik = (β0 + ui) + β1LogDose + β2LogMIC + β3kBacteriumk + εik (3)

Equation (3) specifies the model adjusted, where β0 is an intercept and β1 and β2
represent the effect of a one log increase in extract dosage (%v/v or %w/v) and of a one log
increase in MIC (mg/mL for extracts and µL/mL for EO), respectively, on the inhibition
diameter. The set of fixed effects of the k bacteria types is denoted by β3k. The error term εik
accounts for the variability between pathogens k and studies i. The remaining unexplained
variability was extracted by placing random effects ui due to study i in β0.

All models were adjusted by logarithmically transforming (base-10) the extract or EO
dose tested, as well as MIC values, to normalise data distribution and reduce heteroscedas-
ticity. Moreover, weights were allocated to each primary study based on its sample size, n
(n ≥ 2), with the aim of capturing the quality of research design and obtaining accurate
estimations of the antimicrobial effect on pathogen inactivation.

The model parameters, influenced by moderators, were derived from the fitted meta-
regressions and assessed for significance through analysis of variance (ANOVA, α = 0.05).
Two methods were employed to evaluate publication bias: (1) analysis of funnel plot
and (2) examination of the effect of the total sample size of the study (n) on the pooled
ID/MIC [19,151]. The meta-regression models were fitted using the metafor package
available in R software (version 4.1.0, R Foundation for Statistical Computing, Vienna,
Austria) [152], in particular the rma.mv function.

3. Results and Discussion

It is noteworthy that the synthesised results of inhibition diameters and MIC of Citrus,
Origanum, and Syzygium aromaticum species against specific pathogens form the basis of this
meta-analysis. As such, the estimates presented herein cannot be extrapolated to different
plant species or bacteria.

3.1. Inhibition Diameter
3.1.1. Citrus Species

The inhibition diameters produced by EOs of Citrus species were pooled, and resulting
estimates are presented in Table 1. The meta-analysis models were separately adjusted
for four specific pathogens, namely E. coli, S. aureus, Salmonella, and L. monocytogenes. The
inhibition diameters collected from primary studies and used in the meta-analysis models
were determined using the disk-diffusion method. Thus, the influence of the method of
determination could not be assessed.
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Table 1. Pooled inhibition diameters (mean and standard error, SE, in mm) of Citrus species EOs
against specific bacteria using separate meta-analysis models. Number of observations (n), number
of primary studies (N), and p-value of the publication bias test are presented for each model.

Bacterium 1 Plant Pooled Inhibition Diameter 2

(SE) (mm)
n N Pub. Bias

(p-Value)

E. coli A

Hybrids 3 23.68 a (2.320) 13
Lemon 24.43 a (1.205) 43
Lime 18.76 a (0.971) 11 20 0.402

Mandarin 19.11 a (1.392) 9
Orange 16.48 b (0.835) 18

S. aureus B

Hybrids 3 12.92 a (0.293) 10
Lemon 13.23 a (1.344) 44
Lime 14.45 a (1.673) 9 22 0.002

Mandarin 13.09 a (0.942) 12
Orange 11.88 a (1.987) 16

Salmonella B
Lemon 12.77 b (0.365) 42
Lime 16.21 a (0.256) 7 11 0.086

Orange 14.59 ab (1.527) 17

L. monocytogenes B
Lemon 14.56 a (1.976) 182

Mandarin 13.63 a (1.980) 33 10 0.293
Orange 13.54 a (1.977) 152
1 Different superscript uppercase letters mean significant differences in the pooled inhibition diameter produced by
the EOs of lemon and orange at a dose of 100 mg/mL; A to B: highest to lowest. 2 Different superscript lowercase
letters mean significant differences in the pooled inhibition diameter against a given bacterium produced by the
EOs of Citrus species at a dose of 100 mg/mL. 3 Category that groups Citrus medica, C. reticulata, C. reticulata
cultivar Wilking, C. japonica Thunb., and a commercial citrus extract (FOODGARD F410B).

Considering only the outcomes pertaining to lemon and orange EOs, since they were
observed across all meta-analysis models, E. coli was found to be the most susceptible
bacterium (p < 0.05), whereas S. aureus, Salmonella, and L. monocytogenes exhibited similar
levels of reduced susceptibility.

The inhibitory effect of Citrus EOs against S. aureus and L. monocytogenes was not
significantly different (p > 0.05) among the investigated species, as indicated by the equal
superscript lowercase letters for both models. In contrast, the effect on Salmonella and E. coli
varied (p < 0.05) depending on the EO tested. E. coli exhibited similar inhibition caused by
the EOs of lemon, lime, mandarin, and Citrus hybrids but lower inhibition when exposed
to orange EO.

Publication bias was evaluated by introducing the total sample size of a study (n) as
a moderator in the multilevel meta-analysis. If the effect of sample size is significant, it
suggests that non-significant studies may not have been published, indicating the existence
of publication bias. Of the meta-analysis models examined, only the one adjusted for S.
aureus suggests the possibility of publication bias (p = 0.002).

However, since some studies do not report sample size, the presence of publication
bias can also be evaluated through funnel plots. This method may be inconclusive as it
relies on visual inspection rather than statistical significance. In a funnel plot, if there is no
publication bias, larger studies (with larger sample sizes) will cluster around the average,
while smaller studies will be evenly distributed on both sides of the average, resulting in a
funnel-shaped distribution of data points. Any deviation from this pattern or the presence
of large gaps may suggest publication bias, though these deviations may also be due to
other factors, such as study heterogeneity. The funnel plots of these meta-analysis models
are presented in Figure S1 in the Supplementary Materials.
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3.1.2. Origanum Species

Table 2 displays the results of meta-analysis models that estimated the pooled inhibi-
tion diameters produced by Origanum species extracts against E. coli, B. cereus, S. aureus,
Salmonella, L. monocytogenes, and STEC.

Table 2. Pooled inhibition diameters (mean and standard error, SE, in mm) of Origanum species
extracts against specific bacteria using meta-analysis models. Number of observations (n), number of
primary studies (N), and p-value of the publication bias test are presented for each model.

Bacterium 1 Plant Method Pooled Inhibition
Diameter 2 (SE) (mm) n N Pub. Bias

(p-Value)

E. coli C
Marjoram Disk 16.58 a (1.360) 7 18 0.877

Oregano Disk and Well 4 15.01 a (1.059) 27

B. cereus A Oregano Disk and Well 4 22.27 (1.734) 9 6 0.840

S. aureus AB

Marjoram Disk 27.77 a (2.315) 5

Oregano Disk and Well 4 20.15 b (1.944) 78 20 0.815

Others 3 Well 10.21 c (0.509) 3

Salmonella B

Greek oregano Disk 24.68 b (2.192) 11

Marjoram Disk 19.45 a (1.079) 22 21 0.130

Oregano Disk and Well 4 19.29 a (1.435) 97

L. monocytogenes B

Greek oregano Disk 44.96 a (0.297) 10

Marjoram Disk 25.53 b (0.343) 8

Oregano Disk
Well

18.66 c (1.877)
21.49 bc (1.015)

45
7 11 0.117

Others 3 Well 13.64 d (2.699) 6

STEC B

Greek oregano Disk 22.71 a (1.665) 11

Marjoram Disk 15.19 b (1.885) 14 7 0.348

Oregano Disk and Well 4 20.05 a (1.829) 21
1 Different superscript uppercase letters mean significant differences in the pooled inhibition diameter produced
by the extracts of oregano only at a dose of 100 mg/mL; A to C: highest to lowest. 2 Different superscript lowercase
letters mean significant differences in the pooled inhibition diameter against a given bacterium produced by
extracts of Origanum species at a dose of 100 mg/mL. 3 Category that groups Origanum dictamnus, O. syriacum,
and O. minutiflorum. 4 Inhibition diameters from the disk and well method were combined, since the effect of
method of determination was not significant (p > 0.10).

Based on the pooled inhibition diameters presented in Table 2, it was observed that E.
coli was the least susceptible bacterium to oregano extracts at a concentration of 100 mg/mL
(p < 0.05), while the remaining bacteria showed comparable levels of susceptibility, namely
S. aureus, Salmonella, L. monocytogenes, and STEC (in no particular order). The antimicrobial
action of Origanum extracts was found to be influenced by the plant species for most bacteria,
as indicated by the different superscript lowercase letters in Table 2. For instance, the
extracts of marjoram, oregano, and “others” (which includes O. dictamnus, O. syriacum, and
O. minutiflorum) differently (p < 0.05) inhibited the growth of S. aureus and L. monocytogenes.
However, no significant difference (p > 0.05) was observed in the case of E. coli, as it was
equally (p > 0.05) affected by marjoram and oregano extracts.

The impact of the method used to determine the inhibitory activity of oregano extracts
against all bacteria was evaluated in the adjusted models, as observations were available
for two distinct methods, disk- and well-diffusion. Only in the model adjusted for L.
monocytogenes were differences (p < 0.05) observed between the methods. Specifically, the
well method produced a superior pooled inhibition diameter (21.49 ± 1.015 mm) compared
to the disk method (18.66 ± 1.877 mm). However, it should be noted that in the remaining
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models, a non-significant effect (p > 0.10) of the technique was detected. Consequently,
the inhibition diameters from both the disk and well methods were merged and denoted
as “Disk and Well”. Moreover, it is noteworthy that none of the models generated for
Origanum species revealed any signs of publication bias (p > 0.05). A graphical depiction of
the funnel plots of these models is presented in Figure S2 of the Supplementary Materials.

3.1.3. Syzygium aromaticum

Table 3 displays the pooled inhibition diameters obtained by extracts of Syzygium aro-
maticum (clove), as estimated by meta-analysis models separately adjusted for six bacterial
strains: E. coli, B. cereus, S. aureus, Salmonella, L. monocytogenes, and STEC.

Table 3. Pooled inhibition diameters (mean and standard error, SE, in mm) of Syzygium aromaticum
extracts against specific bacteria using meta-analysis models. Number of observations (n), number of
primary studies (N), and p-value of the publication bias test are presented for each model.

Bacterium 1 Method
Pooled Inhibition

Diameter 2 (SE)
(mm)

n N Pub. Bias
(p-Value)

E. coli B Disk
Well

14.60 b (0.894)
18.08 a (1.123)

22
9 14 0.162

B. cereus A Disk
Well

16.29 b (1.399)
20.53 a (1.359)

15
5 9 0.044

S. aureus B Disk
Well

12.86 b (1.032)
20.10 a (2.613)

14
9 12 0.293

Salmonella C Disk and Well 3 13.17 (1.360) 27 13 0.337

L. monocytogenes C Disk and Well 3 15.81 (1.573) 20 12 0.042

STEC C Disk 12.61 (1.227) 14 4 0.004
1 Different superscript uppercase letters mean significant differences in the pooled inhibition diameter produced
by extracts of Syzygium aromaticum at a dose of 100 mg/mL; A to C: highest to lowest. 2 Different superscript
lowercase letters mean significant differences in the pooled inhibition diameter against a given bacterium produced
by the extracts of Syzygium aromaticum at a dose of 100 mg/mL. 3 Inhibition diameters from the disk and well
method were combined, since the effect of method of determination was not significant (p > 0.10).

According to the pooled inhibition diameters obtained, B. cereus exhibited the highest
susceptibility to clove extracts at a concentration of 100 mg/mL, followed by E. coli and
S. aureus. On the other hand, Salmonella, L. monocytogenes, and STEC were found to be the
least susceptible to the antimicrobial effects of clove extracts.

The effect of determination method on the pooled inhibition diameters was evaluated
for all bacteria, except STEC, as observations using both disk- and well-diffusion methods
were available. Significant differences (p < 0.05) between the methods were observed in
models adjusted for E. coli, B. cereus, and S. aureus. In all models, the well method produced
higher pooled inhibition diameters (E. coli = 18.08 ± 1.123 mm; B. cereus = 20.53 ± 1.359 mm;
S. aureus = 20.10 ± 2.613 mm) than the disk method (E. coli = 14.60 ± 0.894 mm; B.
cereus = 16.29 ± 1.399 mm; S. aureus = 12.86 ± 1.032 mm). However, the effect of the
determination method was not significant (p > 0.10) in the models adjusted for Salmonella
and L. monocytogenes.

Three of the models produced indicated the presence of publication bias: those ad-
justed for B. cereus (p = 0.044), L. monocytogenes (p = 0.042), and STEC (p = 0.004). The funnel
plots of all models are presented in Figure S3 of the Supplementary Materials.

3.2. Minimum Inhibitory Concentration
3.2.1. Citrus Species

The pooled MICs produced by extracts or EOs of Citrus species, as estimated by
meta-analysis models separately adjusted for E. coli, B. cereus, S. aureus, Salmonella, and L.
monocytogenes, are presented in Table 4.
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Table 4. Pooled MICs (mean and 95% confidence intervals, CIs) produced by extracts (in mg/mL)
or EOs (in µL/mL) of Citrus species by method of determination (agar dilution (AD) and broth
micro-dilution (BMiD)), as estimated by meta-analysis models separately adjusted by bacterium.
Number of observations (n), number of primary studies (N), and p-value of the publication bias test
are displayed per meta-analysis model.

Bacterium Plant Type Method MIC 1 (95% CI)
(mg/mL or µL/mL)

n N Pub. Bias
(p-Value)

E. coli

Bitter orange Extract AD
BMiD

8.692 b [2.086–36.21]
2.540 ab [0.877–7.358]

5
6

Hybrids Extract BMiD 0.841 a [0.309–2.288] 9 6 0.709

Lime Extract BMiD 3.806 ab [1.034–14.00] 4

Sweet orange Extract BMiD 0.283 ab [0.019–4.342] 6

B. cereus All 2 Extract and EO BMiD 1.411 [0.527–3.779] 9 4 0.659

S. aureus

Bitter orange Extract AD
BMiD

7.647 b [1.835–31.86]
2.850 b [0.984–8.259]

5
6

Hybrids Extract BMiD 0.552 a [0.196–1.554] 8

Lemon EO BMiD 2.365 ab [0.286–19.56] 3 14 0.283

Lime Extract BMiD 2.298 b [0.858–6.154] 9

Mandarin EO BMiD 5.000 ab [0.308–81.22] 2

Sweet orange Extract BMiD 0.689 ab [0.187–2.536] 4

Salmonella
Bitter orange Extract AD 10.43 b [3.505–23.50] 5 4 0.755

Hybrids Extract BMiD 0.796 a [0.323–1.965] 10

L. monocytogenes

Bitter orange Extract AD 8.692 b [2.086–36.22] 5

Hybrids Extract BMiD 0.618 a [0.158–2.410] 4 6 0.946
EO BMiD 2.500 ab [0.995–6.281] 3

Lemon EO AD 0.884 ab [0.179–4.358] 4
1 Within a given bacterium, where a meta-analysis model was fitted, different superscript lowercase letters mean
significant differences in MIC produced by extracts and EOs of Citrus species. 2 No significant differences were
found between Citrus species.

Significant differences (p < 0.05) were observed in MIC values of extracts or EOs
of different Citrus species for all bacteria except B. cereus, as evidenced by the distinct
superscript lowercase letters in Table 4. The hybrids category displayed the lowest MIC
in models adjusted for E. coli, S. aureus, Salmonella, and L. monocytogenes. However, it is
important to note that the hybrids category is a group of various Citrus species, and lower
MIC does not necessarily imply greater efficacy against the mentioned pathogens compared
to other species such as bitter orange or lime. Nonetheless, it does suggest that the plant
species reported in literature that comprise the hybrids category generally possess greater
antimicrobial potency than other species, including bitter orange or lime.

The effect of determination method was evaluated for orange extracts in the models
adjusted for E. coli and S. aureus, and no differences (p > 0.05) were found in pooled
MIC values obtained using either agar dilution or broth micro-dilution. Furthermore,
a comparison of the pooled MIC values between EO and extracts was conducted for
Citrus hybrids against L. monocytogenes, and no significant differences (p > 0.05) were
observed between the outcomes, suggesting that these extracts and EO possess comparable
antimicrobial effect.

None of the models produced indicate the presence of publication bias (p > 0.05).
Figure S4 in the Supplementary Materials displays the funnel plots of these models.
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3.2.2. Origanum Species

The pooled MICs produced by extracts or EOs of Origanum species, as estimated
by meta-analysis models separately adjusted for E. coli, B. cereus, S. aureus, Salmonella, L.
monocytogenes, and STEC, are presented in Table 5.

Table 5. Pooled MICs (mean and 95% confidence intervals, Cis) produced by extracts (in mg/mL)
or EOs (in µL/mL) of Origanum species by method of determination (agar dilution (AD), broth
macro-dilution (BmaD) and broth micro-dilution (BmiD)), as estimated by meta-analysis models
separately adjusted by bacterium. Number of observations (n), number of primary studies (N), and
p-value of the publication bias test are displayed per meta-analysis model.

Bacterium Plant Type Method MIC 1 (95% CI)
(mg/mL or µL/mL)

n N Pub. Bias
(p-Value)

E. coli

Marjoram Extract BmiD 3.876 b [0.573–26.22] 5 30 0.172

Oregano Extract All 2 0.566 ab [0.197–1.629] 39

EO BmiD 0.018 a [0.001–0.437] 12

B. cereus
Oregano Extract BmiD 1.664 a [0.412–6.719] 8 9 0.021

EO BmiD 3.681 a [0.610–22.22] 4

S. aureus

Marjoram Extract BmiD 2.219 c [1.843–2.670] 103 42 0.749

Oregano Extract
AD

BmaD
BmiD

1.013 b [0.467–2.196]
0.098 a [0.035–0.276]
0.389 b [0.255–0.593]

17
9
44

EO BmaD
BmiD

1.053 bc [0.172–6.459]
1.219 c [0.557–2.665]

5
56

Za’atar EO BmiD 0.363 ab [0.057–2.313] 4

Salmonella

Marjoram Extract BmiD 2.161 b [0.519–9.003] 4 26 0.075

Oregano Extract BmiD 0.473 a [0.192–1.168] 32

EO BmiD 1.319 b [0.671–2.594] 56

L. monocytogenes

Marjoram EO BmiD 1.901 b [0.256–14.12] 3 22 0.850

Oregano Extract BmaD
BmiD

0.129 a [0.042–0.401]
0.558 b [0.242–1.293]

8
9

EO BmaD
BmiD

0.822 b [0.209–3.229]
1.204 b [0.723–2.006]

3
60

STEC
Oregano Extract BmiD 0.394 a [0.107–1.448] 4 5 0.554

EO BmiD 0.364 a [0.139–0.953] 5
1 Within a given bacterium, where a meta-analysis model was fitted, different superscript lowercase letters mean
significant differences (p < 0.10) in MIC produced by extracts and EOs of Origanum species. 2 MICs measured by
AD, BmaD, and BmiD were combined since the effect of method of determination was not significant (p > 0.10).

In some cases, the extracts or EOs derived from distinct Origanum species were found
to have a significant impact (p < 0.05) on the pooled MIC values of E. coli, S. aureus,
Salmonella, and L. monocytogenes, as indicated by the varying superscript lowercase letters
in Table 5. However, in the case of B. cereus and STEC models, the effect of plant species
could not be evaluated as observations were limited to oregano species exclusively.

In general, oregano extracts and EOs exhibited greater antimicrobial activity than
extracts from other plant species, such as marjoram. However, differences (p < 0.05) in
inhibitory activity were observed between extracts and EOs originating from the same plant
species but only in some of the models (those adjusted for Salmonella and L. monocytogenes).
Moreover, the method of MIC determination significantly affected the results for oregano
extracts and EOs in models adjusted for S. aureus and L. monocytogenes. For the E. coli model,
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agar dilution, broth macro-dilution, and broth micro-dilution yielded similar MIC values
for oregano extracts (p > 0.10).

Publication bias was not detected (p > 0.05) in any of the models, except for the one
adjusted for B. cereus (p = 0.021). A graphical representation of these outcomes is shown in
Figure S5 of the Supplementary Materials.

3.2.3. Syzygium aromaticum

The pooled MICs produced by extracts or EOs of clove, as estimated by meta-analysis
models separately adjusted for E. coli, B. cereus, S. aureus, Salmonella, and L. monocytogenes,
are presented in Table 6.

Table 6. Pooled MICs (mean and 95% confidence intervals, CIs) produced by extracts (in mg/mL)
or EOs (in µL/mL) of clove by method of determination (agar dilution (AD) and broth micro-
dilution (BMiD)), as estimated by meta-analysis models separately adjusted by bacterium. Number of
observations (n), number of primary studies (N), and p-value of the publication bias test are displayed
per meta-analysis model.

Bacterium Type Method MIC 1 (95% CI)
(mg/mL or µL/mL)

n N Pub. Bias
(p-Value)

E. coli Extract and EO AD and BMiD 2 0.080 [0.004–1.837] 11 8 0.970

B. cereus Extract AD and BMiD 2 4.978 [1.552–15.96] 5 4 ND 3

S. aureus Extract AD and BMiD 2 0.313 a [0.028–3.519] 11 7 ND 3

EO BMiD 1.047 a [0.166–6.606] 3

Salmonella
Extract BMiD 0.815 a [0.358–1.858] 9 8 0.298

EO BMiD 1.854 a [0.620–5.540] 6

L. monocytogenes EO BMiD 1.029 [0.417–2.539] 8 5 0.877
1 Within a given combination plant × bacterium, where a meta-analysis model was fitted, different superscript
lowercase letters mean significant differences in MIC against a given bacterium produced by extracts and EOs.
2 MIC from AD and BMiD were combined, since the effect of method of determination was not significant
(p > 0.10). 3 Effect of study size could not be determined since it was the same across all outcomes (p > 0.10).

3.3. Inhibition Diameter as a Function of MIC, Extract Dose, and Bacterium

Table 7 presents the parameters estimated from the meta-regression model that cap-
ture the relationship between the inhibition diameter generated by extracts of Origanum,
Syzygium aromaticum and Citrus and the MIC, extract dose, and bacterium.

Table 7. Meta-regression analysis of the inhibitory diameter induced by extracts from Origanum
(n = 145), Syzygium aromaticum (n = 10), and Citrus (n = 7) plants, as a function of the MIC (mg/mL
for extracts and µL/mL for EOs), extract dose (%), and bacterium. Number of observations (n) per
factor level, heterogeneity analysis, and p-value of the publication bias test are presented.

Parameter Estimate 1 Standard Error p-Value n
Heterogeneity

Analysis 2

Intercept −1.515 6.499 0.816
Log MIC −5.554 0.181 <0.0001 s2 = 29.34
Log Dose 18.00 0.227 <0.0001 τ2 = 33.96
Bacterium I2 = 53.6%

L. monocytogenes 1.319 b 0.150 <0.0001 43 τ2
res = 17.75

S. aureus 2.668 c 0.146 <0.0001 37 R2 = 47.7%
Salmonella 2.429 c 0.141 <0.0001 41
STEC −0.411 a 0.234 <0.0001 9 Publication bias
C. jejuni - - - 32 p = 0.254

1 Superscript letters indicate significant differences in the estimates among bacteria. 2 The heterogeneity analysis
comprises the following components: within-study variability (s2), between-study variability of the null model
(τ2), intra-class correlation (I2), residual between-study variability (τ2

res), and between-study variability explained
by significant moderators (R2).
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The impact of certain moderating factors on the association between inhibition di-
ameter and MIC was evaluated. Overall, the results of the statistical analysis indicated
an inclination towards an inverse correlation, as demonstrated by the negative intercept
(−1.515 ± 6.499). Notably, the negative estimate of “Log MIC” (−5.554 ± 0.181, p < 0.0001)
suggested an inverse correlation between this moderator and inhibition diameter. Specifi-
cally, a higher MIC was associated with a reduced efficacy of the plant extract in suppressing
microbial growth. Consequently, the testing of such plant extract at the given concentration
via any diffusion or dilution method resulted in a smaller diameter of inhibition. Despite
the influence of various factors affecting the measurements, this relationship persisted, as
exemplified by the negative slope illustrated in the scatter plot depicted in Figure 1.
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Figure 1. Scatter plot depicting the effect of the logarithm of the MIC (log MIC) of Origanum (n = 145),
Syzygium aromaticum (n = 10), and Citrus (n = 7) extracts on inhibition diameters for each bacterium.
Markers symbolise the following: � = C. jejuni, # = L. monocytogenes, ∆ = S. aureus, + = Salmonella,
× = STEC. The size of each marker corresponds to the sample size, with larger markers representing
larger study populations.

Conversely, the positive estimate of “Log dose” (18.00 ± 0.227, p < 0.0001) suggests
that there is a tendency for the inhibition diameter to increase as the dosage of the extract
applied increases.

Table 7 demonstrates that different pathogens exhibit distinct inhibition diameters
when subjected to the same plant extract at the same dose, as indicated by the various
estimates of the moderating variable “Bacterium”. In this model, the estimate for Campy-
lobacter jejuni served as the base value for inhibition diameter, with a mean of zero, and
the estimates for the remaining microorganisms represent deviations from this mean, with
positive and negative estimates above and below the base value, respectively. Based on
these findings, S. aureus demonstrated the most substantial deviation in inhibition diameter
when exposed to a specific plant extract at a certain dose (2.668 ± 0.146), followed by
Salmonella (2.429 ± 0.141) and L. monocytogenes (1.319 ± 0.150). In contrast, STEC was
the most resilient pathogen to the action of such antimicrobial agents, as indicated by the
least deviation in inhibition diameter (−0.411 ± 0.234). Notably, no significant differences
(p < 0.05) were detected between the inhibition diameters estimated for S. aureus and
Salmonella, although these differed from the remaining pathogens. However, no discernible
difference between the effects of the extract on Gram-positive and Gram-negative bacteria
was observed in the meta-analytical models produced for the pooled inhibition diameters
(Tables 1–3). This finding is consistent with the conclusions of other researchers who
have reported no differences between the two types of bacteria [153], despite theoretical
differences in cell wall structure, composition, and other mechanisms [154].
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Upon analysis of the model produced and in conjunction with Figure S7 of the Supple-
mentary Materials, no evidence of publication bias (p = 0.254) was detected.

The measurement of heterogeneity in the inhibition diameter can be quantified by the
intra-class correlation, I2, which represents the proportion of total variability that arises
from differences between studies. For this, an I2 value of 53.6% indicates that over half
of the total variability observed in effect sizes is due to genuine heterogeneity between
studies rather than mere sampling error. This level of heterogeneity is classified as medium
according to Higgins and Thompson, who consider an I2 value around 25% or 75% to
indicate low and high heterogeneity, respectively [155]. Additionally, a heterogeneity
analysis was conducted to determine the extent to which moderators incorporated into
the meta-regression model can explain between-study variability. The results indicate
that the moderators accounted for 47.7% of the variability between studies (R2), leaving
some residual variability unaccounted for by the model. Potential sources of variation
that may explain the residual variability include factors such as the origin of the plant
extract, the developmental stage and plant part used, as well as the inoculum size and
strain employed. The inclusion of these factors in the models would be expected to increase
the percentage of variability that can be explained. This R2 value also suggests that disk
diffusion methodologies may not be appropriate to compare results from different studies,
as the inhibition diameter measurements could be affected by errors and variations in the
protocols, impacting on the degree of extract diffusion within the agar matrix.

The evaluation of the model’s goodness of fit was conducted by plotting the pre-
dicted inhibition diameter against the observed, as depicted in Figure 2. The resulting
correlation coefficient value (R2 = 0.860) is deemed satisfactory for a meta-analysis study,
indicating a robust fundamental relationship between the two antimicrobial susceptibility
determinations.
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Figure 2. Scatter plot depicting inhibitory effects of extracts derived from Origanum (n = 145),
Syzygium aromaticum (n = 10), and Citrus (n = 7) plants against predicted values generated by the
meta-regression model (R2 = 0.860), with 45◦ reference line. Symbols represent different bacterial
strains: � = C. jejuni, # = L. monocytogenes, ∆ = S. aureus, + = Salmonella, × = STEC; marker size
corresponds to the sample size of the respective study.

While the developed model may not account for all sources of variability within the
literature, its results are nevertheless valuable as they offer valuable insight into the compar-
ative effectiveness of extracts and EOs derived from Syzygium aromaticum, Origanum, and
Citrus species against various organisms as well as the effect of dosage on biopreservatives’
efficacy. Such findings have practical applications in selecting suitable pathogen control
measures for use in food products or packaging, aligning with current trends in the food
industry that emphasise the development of novel preservatives.
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4. Conclusions

Meta-regression analyses of pooled inhibition diameters demonstrated varied bacterial
susceptibilities, with some instances of the plant species and methodology used (disk- vs.
well-diffusion) having an impact. Of note, E. coli displayed the highest sensitivity to Citrus
EOs, while extracts from Origanum and S. aromaticum were most effective against B. cereus.
In situations where these pathogens are a particular concern in a given food product,
the addition of such antimicrobial agents could be suggested to provide an inhibitory
effect, thereby enhancing food safety. Models for pooled MIC generally revealed no effect
of the methodology used (agar, broth micro- or macro-dilution) or differences between
the antimicrobial capacity of extracts compared to EOs. However, some exceptions were
observed. For Citrus and Origanum, the plant species had an impact on MIC values. The
model for inhibition diameter as a function of MIC demonstrated an inverse correlation
between the two variables while also summarising the reduction in various pathogen
populations and elucidating the inhibitory capacity by extract dose. It further revealed
that numerous aspects may affect the measurements of inhibition diameter, and thus
comparison of results from different studies using the disk-diffusion method must be
conducted carefully. While meta-analysis is not without limitations, the outcomes of
these models support the potential of Origanum, Syzygium aromaticum, Citrus extracts, and
essential oils to hinder or decelerate bacterial growth. Additionally, they provide insight
into the variables affecting inhibition diameter and MIC measurements.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/foods12061265/s1, Figure S1: Funnel plots of meta-analysis models
on inhibition diameters produced by essential oils of Citrus species for each bacterium. Markers
symbolise species: # = hybrids, ∆ = lemon, + = lime, × = mandarin, ♦ = orange; Figure S2: Funnel
plots of meta-analysis models on inhibition diameters produced by extracts of Origanum species
for each bacterium. Markers symbolise species: � = Greek oregano, # = marjoram, ∆ = oregano,
+ = others; Figure S3: Funnel plots of meta-analysis models on inhibition diameters produced by
extracts of Syzygium aromaticum for each bacterium. Markers symbolise method of determination:
# = disk, ∆ = well; Figure S4: Funnel plots of meta-analysis models on MICs of extracts/EOs of clove
for each bacterium. Markers symbolise method of determination: � = agar dilution, ∆ = broth micro-
dilution; Figure S5: Funnel plots of meta-analysis models on MICs of extracts/EOs of Citrus species
for each bacterium. Markers symbolise plant species: � = bitter orange, # = hybrids, ∆ = lemon,
+ = lime, × = mandarin, ♦ = sweet orange; Figure S6: Funnel plots of meta-analysis models on MICs
of extracts/EOs of Origanum species for each bacterium. Markers symbolise species: � = marjoram,
# = oregano, ∆ = zaatar; Figure S7: Funnel plot of the meta-regression model on inhibition diameters
produced by extracts of Origanum (n = 145), Syzygium aromaticum (n = 10), and Citrus (n = 7) plants.
Markers symbolise bacteria: � = C. jejuni, # = L. monocytogenes, ∆= S. aureus, + = Salmonella, × = STEC.
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