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Abstract: The treatment of agricultural areas with pesticides is an indispensable approach to improve
crop yields and cannot be avoided in the coming decades. At the same time, significant amounts of
pesticides remain in food and their ingestion causes serious damage such as neurological, gastroin-
testinal, and allergic reactions; cancer; and even death. However, during the fermentation processing
of foods, residual amounts of pesticides are significantly reduced thanks to enzymatic degradation
by the starter and accompanying microflora. This review concentrates on foods with the highest
levels of pesticide residues, such as milk, yogurt, fermented vegetables (pickles, kimchi, and olives),
fruit juices, grains, sourdough, and wines. The focus is on the molecular mechanisms of pesticide
degradation due to the presence of specific microbial species. They contain a unique genetic pool
that confers an appropriate enzymological profile to act as pesticide detoxifiers. The prospects of
developing more effective biodetoxification strategies by engaging probiotic lactic acid bacteria are
also discussed.
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1. Introduction

Pesticides are biological or chemical substances intended for preventing, destroying,
or controlling any pest that causes losses in agricultural and food production (raw materials
and food), processing, storage, or marketing. Depending on their use, several types are
known: fungicides (prevent the development of molds), insecticides (destroy insects),
herbicides (used against weeds), and pesticides (repel or destroy rodents, nematodes,
and mollusks) [1,2].

Although pesticides solve significant agricultural problems in weed and pest control,
pesticide residues are released into the environment, especially newer pesticides, which
are water soluble. The older types of pesticides, such as DDT, are less soluble in water
but tend to remain in the soil for a long time. That is why, under the coordination of
the European Food Safety Authority (EFSA), annual reports of the European Union (EU)
monitor the pesticide residues in water and food [3]. The maximum residue level (MRL) is
an important determinant of human health risk. Pesticide residue levels in food are subject
to legal regulation to minimize their harmful effects [4]. However, in many developing
countries, such legislation has not been introduced or is poorly enforced [5]. MRLs are
affected by food processing including fermentation, heat treatment, and drying. In addition,
the chemical nature of pesticides and some factors, such as pH, light, metal ions, and ozone,
also affect the degradation of pesticide residues [6,7] Although MRLs are a reliable and
useful tool for regulating the use of pesticides, they are not sufficient to assess human
health risks unless the amounts of residues that remain after food processing are also
estimated [8]. The MRL for drinking water regulated by Directive 98/83 of the European
Council is set at 0.1 µg/L for each pesticide or its metabolite, except for aldrin, dieldrin,
heptachlor, and heptachlor epoxide where the limit is 0.03 µg/L. The limit for the sum of
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identified and quantified pesticides and their metabolites is 0.5 µg/L [9]. The MRL values
for different foods and pesticides are annually updated by the European Commission [10].

Pesticide use is widespread worldwide (Figure 1). Approximately 3 billion kg are
applied annually, as over 500 compounds are registered and used as pesticides or pesticide
metabolites [11]. According to the Food and Agriculture Organization of the United Nations
(FAO) statistics for 2019, in some countries, pesticide use exceeded 34 kg per hectare of the
cultivated area [12].
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Compared to previous analyzed periods (2014 to 2017), even with the strict regulations
of the EU, in 2020 pesticide residues in foods increased. The twelve most consumed foods
by EU citizens contain pesticides in concentrations above the MRL and these are carrots,
cauliflower, kiwi, onions, oranges, pears, potatoes, beans, brown rice, rye grain, beef
liver, and poultry fat [10]. Unprocessed fruits grown in the EU contain 13–14 different
pesticides, and among the goods with the highest frequency of detected pesticides above
the norm is wine. Dimethoate, linuron, and cypermethrin are most often found in oranges;
triadimenol—in dried nuts; iprodione, linuron, dieldrin, and chlorpyrifos-methyl—in
carrots; chlorpyrifos, fipronil, and diphenylamine—in potatoes; and thiacloprid—in rye
flour and dough. Hexachlorobenzene, which is used as a fungicide in poultry feed storage,
finally accumulates in poultry fat. Apparently, moving pesticides from soil to crops is easy
because soil particles adhere to the plant surface [13]. Pesticide uptake also occurs via roots
and through the vapor; therefore, high temperature, high wind speed, and low humidity
lead to increased uptake of pesticides in plants. The soil contamination risk is higher in
root crops and leafy vegetables [14].

Physical and chemical methods are known to reduce the residual amount of pesticides
in food, for example, water washing, hydro cooling, brushing, electrolyzed water treatment,
boiling, trimming, peeling, cooking, ozonation, drying and dehydration, pasteurization,
canning of fruits and vegetables, bleaching, and oil deodorizing [15–18].

These methods certainly reduce the content of pesticides in food, but some of them
are only somewhat effective and others are expensive, which is why current scientific
interest is focused on the possibility of pesticide detoxification through fermentation in
the food processing process. Microbial detoxification is being established as the most
cost-effective approach to combat unavoidable pesticide contamination. Local microflora
available in foods or purposefully added probiotic strains can metabolize a wide range of
synthetic insecticides and use them as a source of carbon and energy [19]. The undisputed
leaders in this process are the lactic acid bacteria (LAB) [20], but of course, many other
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species contribute to the purification of food as a result of fermentation, such as yeasts,
molds, and representatives of many other microbial groups. This review examines the
subtle interactions between microorganisms and particular pesticide substances. A detailed
overview of the microbial species and strains involved in the detoxification process, their
enzymatic spectrum, and capabilities that contribute to making the food a safe-to-eat
product is provided below.

2. Overview of Pesticides in Food

There is a vast range of pesticides available on the market. Over 1200 active sub-
stances have been registered for the production of pesticides. Pesticides can be classified
into more than 100 classes/groups, of which the most important and widely applied are
organochlorines, organophosphates, carbamates, triazines, pyrethroids, phenoxy alkane,
and glyphosate-based pesticides. The most frequently used pesticides usually found in
foods are shown in Figure 2.
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2.1. Organochlorine Pesticides (OCP)

OCPs are stable and very persistent in the environment. When taken into the human
body, organochlorines are capable of accumulating in the adipose tissue with possible long-
term effects; they also affect the central nervous system, altering the electrophysiological
properties of membranes [21]. Because of their anti-estrogenic effects, OCPs are classified
as endocrine disruptors [22]. The oldest organochlorine is the insecticide DDT (1,1,1-
trichloro-2,2-bis (4-chlorophenyl) ethane), applied since 1939 and already prohibited in
many countries. Structurally, organochlorines are divided into five classes: (1) DDT and its
main aerobic metabolite DDE (2,2-bis (4-chlorophenyl)-1,1,1-dichloroethylene); (2) HCH
(hexachlorocyclohexane), e.g., lindane; (3) cyclodienes: aldrin, dieldrin, endrin, heptachlor,
chlordane, endosulfan; (4) toxaphene; (5) mirex and chlordecone. The field half-life of aldrin
is 365 days, and of DDT—up to 30 years in soils; that is why DDT has been detected widely
in environments and biological samples [23]. In food, OCPs were detected in milk, hen eggs,
and breast milk [22]; in fruit and vegetable samples, such as in leafy vegetables (parsley
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and watercress), heptachlor is the most persistent member [24]. Another study found OCP
residues in 11 types of vegetable oils: olive, corn, colza, camellia, peanut, soybean, linseed,
blend, sunflower, and rice, with the highest concentration of OCPs found in sesame oil
samples [25]. Multiple OCPs pesticide residues above the MRLs (HCHs; Drins; Heptachlor;
Chlordane; DDT) were found in vegetable samples of tomato, cabbage, cucumber, carrot,
eggplant, watermelon, and lettuce [26–28]. In China, OCP contaminations of Chinese
cabbage and Welsh onion mainly originate from new inputs of lindane, while eggplant,
pepper, cucumber, and radish accumulate historical residues of lindane in soil [28]. The milk
samples containing residues of DDT, DDE, dieldrin,
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2.2. Organophosphate Pesticides (OPP)

OPPs are esters of phosphoric acid effective as insecticides, acaricides, and miticides,
commonly applied to treat stored cereal grains. Most often used are diazinon, chlorpyrifos,
chlorpyrifos-methyl, phorate, dimethoate, malathion, acephate, azinphos-methyl, phos-
met, dicrotophos, and naled [47]. In general, OPPs are acutely toxic to bees, wildlife,
and humans. They are acetylcholinesterase inhibitors, and the intoxication symptoms
include coma, dizziness, nausea, headache, cramps, convulsions, loss of reactions, and even
death [48–50]. The systemic herbicide glyphosate (N-(phosphonomethyl) glycine) is an-
other organophosphorus compound (phosphonate), but it acts by inhibiting the plant
enzyme 5-enolpyruvylshikimate-3-phosphate synthase [51].

The OPP residues can be detected in fruits, dairy products, cereals, olives, and vegeta-
bles (Table 1). In the EU, glyphosate residues are most frequently found in dry lentils, lin-
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seeds, soya beans, dry peas, tea, buckwheat, barley, wheat, and rye in concentrations around
the MRL of 0.5 mg/kg. A survey in Canada, however, found up to 4 mg/kg glyphosate in
beans and chickpeas, many times higher than the Canadian MRL of 0.1 mg/kg [52].

2.3. Pyrethroids

These are natural insecticides derived from pyrethrum extracts of chrysanthemum
flowers, but also large quantities of synthetic pyrethroids are made; they possess low
toxicity to birds and mammals, high toxicity to arthropods and fish, and are ineffective
against underground pests. About 30% of fruits and 25% of vegetables on the Chinese
market contain fipronil residues, with the highest concentrations in litchi and in leaf
lettuce [32,53,54]. Residues of cypermethrin, deltamethrin, and fenpropathrin were detected
in seafood in China; fenpropathrin concentrations exceeding the Japanese limit standard
were detected also in mollusks, crustaceans, and fish [55].

Pyrethroids with concentrations exceeding MRL were detected in nine leafy vegeta-
bles such as Chinese cabbage, baby Chinese cabbage, pakchoi, spinach, celery, Brassica
parachinensis Bailey, romaine lettuce, and mater convolvulus, collected during 2017–2019 in
China [32]. The most frequently spread pesticides were cypermethrin and λ-cyhalothrin.
Exceeding the MRL values were found in Chinese cabbage (λ-cyhalothrin and bifenthrin)
and pakchoi (cypermethrin) samples. Pyrethroid residues in high concentrations have been
found also in fruits, vegetables, tea, and honey [32]. In leafy vegetable samples, pakchoi,
choy sum, head mustard, and leaf mustard were detected as containing cypermethrin,
deltamethrin, and λ- cyhalothrin above the maximum residue limit for Vietnam [41].

2.4. Urea Pesticides

Phenyl urea derivatives (PUHs) are used as herbicides for weed control on crops such
as beans, maize, fruit, and wheat [56]. In this group are fall chlortoluron, chlorsulfuron,
linuron, diuron, fenuron, isoproturon, and many others. They possess moderate toxicity to
humans and animals by altering calcium metabolism and bone morphology [57]. In spite of
the fact that some of the urea pesticides are affiliated with the EU “black list” of dangerous
compounds, diuron, monuron, and linuron have been found in concentrations higher than
MRL in fruit juices (orange, strawberry, cherry, and apple) [58], corn, rice [59], courgette
cucumbers, lettuce, peppers [60], fresh and processed tomatoes [61], etc.

2.5. Carbamates

Carbamate pesticides are esters of carbamic acid used as insecticides, fungicides,
selective herbicides, and acaricides in the production of fruits, vegetables, hops cultures,
grains, or for seed treatment. Widely used are thiobencarb, propoxur, molinate, disulfiram,
pyridostigmine, methiocarb, and carbaryl. They also act as ACE inhibitors, although they
are generally shorter lived than OPPs. Human acute poisoning is fairly common and
severe, with symptoms such as bradycardia, blurred vision, nausea, vomiting, cough,
wheezing, slurred speech, drowsiness, and muscle cramps [62]. In food, carbaryl was
detected in spinach crops in Mexico with concentrations up to 0.399 mg/kg (as the EU
MRL is 0.01 mg/kg) [36], kresoxim (0.18 mg/kg), and thiodicarb (0.038 mg/kg) in potato
tubers in Egypt [39].

Carbofuran is one of the most toxic carbamate pesticides, classified by the WHO in the
category of highly hazardous insecticides class Ib, and that is why it has been banned in
Canada and the European Union since 2008. However, carbofuran residues exceeding the
MRL have been detected in 61 different types of fruits and vegetables collected from Chinese
markets: wolfberry leaves, nectarines, cowpeas, strawberries, tangerines, Chinese cabbage,
guava, and snap beans [44]. Carbaryl and carbofuran were found in high concentrations
in Cameroon, the most contaminated foods being pepper, soybeans, Egusi seeds, maize,
and groundnuts [30]. The notorious record value reported for carbofuran pollution is
1.66 mg/kg in potatoes [40].
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2.6. Neonicotinoids

Neonicotinoids are nerve-paralytic insecticides that are chemically similar to nicotine,
including acetamiprid, clothianidin, dinotefuran, imidacloprid, nitenpyram, nithiazine,
thiacloprid, and thiamethoxam. It is a relatively new family of pesticides (since 1990) that
is rapidly replacing the use of organophosphates, carbamates, pyrethrins, and pyrethroids
due to their lower toxicity to birds and mammals [63]. However, the use of neonicotinoids
is risky for human health and beneficial insects (such as bees). In humans, exposure results
in neurological damage, especially when it occurs during the embryonic period; leads
to cognitive and memory impairments; impairs neuronal development, with a reduction
in neurogenesis; and induces neuroinflammation. In food, high concentrations of neon-
icotinoids were found in honey [64], as well as in farmed algae, fish, and shrimp [65].
Low amounts of acetamiprid, thiamethoxam, clothianidin, imidacloprid, and thiacloprid
were found in Swiss cow, goat, and sheep milk, as well as in human breast milk [66].
Seven neonicotinoids were detected in cucumbers, six in eggplant and cabbage, and five in
tomatoes, kidney beans, carrots, Chinese greens, and apples [67]. Recently, Montiel-León
et al. detected the neonicotinoid insecticides imidacloprid, acetamiprid, and clothianidin in
lettuce, apples, grapes, and tomatoes [39].

3. Microbial Detoxification of Fermented Foods Containing High Amounts of
Pesticides

The scientific research related to microbial degradation of pesticide residues began
in the 1940s when people began to pay more attention to environmental protection [68].
Biodegradation is the use of microorganisms or their enzymes to degrade and detoxify
xenobiotics in food, water, and soil. The method is an efficient and inexpensive option
to deal with pesticide pollution [69,70]. Ideally, the result should be complete mineral-
ization/degradation of the pesticide to H2O and CO2 without the accumulation of more
toxic intermediates [71]. Pesticides can be degraded metabolically by microorganisms.
In catabolite degradation, microorganisms use pesticides as the main source of energy (as a
carbon, nitrogen, or phosphorus source). Co-metabolic degradation occurs when they are
not used as a primary energy source [72].

The reduction of pesticide residues during fermentation has been studied in various
food products [72–77]. Microorganisms with the highest pesticide degradation activity
belong to the genera Bacillus, Micrococcus, Arthrobacter, Corynebacterium, Flavobacterium,
Pseudomonas, and Rhodococcus, as well as fungi from the genera Penicillium, Aspergillus,
Fusarium, and Trichoderma [78–80]. Although fungal bioremediation of pesticides has
significant potential, it has received less attention than bacterial bioremediation. However,
most of the soil bacterial isolates are not applicable for food detoxification because of their
pathogenic nature.

3.1. Milk and Yogurt

A number of comprehensive studies have shown that strains of different LAB species
possess the natural ability to degrade pesticides in vitro and alleviate pesticide poisoning
in vivo [81–83]. The first studies of the natural degradation of pesticides in dairy products
due to the action of autochthonous microflora date back to the 1960s with the works of
Kallman and Andrews [84], investigating organochlorine residues. They reported that
the conversion of DDT by yeast occurs rather because of a pH decrease. Then, a true
degradation of DDT (1 mg/L in milk and cheese) was shown by Abou-Arab [73], who
observed the activity of starters containing Lactobacillus delbrueckii subsp. bulgaricus, Strepto-
coccus thermophilus, and yeasts. The maximum reduction in total DDT of contaminated Ras
cheese and milk was achieved after 8 days, 10 days, and 7 days for streptococci, lactobacilli,
and yeasts, respectively [73]. The achieved reduction of pesticide levels is shown in Table 2.
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Table 2. The main microbial species found to reduce pesticide levels in milk, yogurt, and cheeses.

Source Species and Strain Pesticide Reduction Reference

Egypt Ras cheese,
milk

Lactobacillus delbrueckii subsp.
bulgaricus,

Streptococcus thermophilus,
yeasts

DDT
40.6% at 0.1 mg/kg fat
33.9% at 1.0 mg/kg fat
25.5% at 10.0 mg/kg fat

[73]

Yogurt, cheese

Lactobacillus acidophilus, L.
delbrueckii subsp. bulgaricus,
Lactiplantibacillus plantarum,
Lacticaseibacillus rhamnosus,

Lacticaseibacillus casei, S.
thermophilus, Bifidobacterium

bifidum

α-hexachlorocyclohexane (HCH),
hexachlorobenzene (HCB),

γ-HCH, β-chlordane, α-chlordane

37.0–50.9% after 12 h
at 20 µg/kg for all [85]

Fermented
beverages from cow

and goat milk
(bio-yogurts)

L. acidophilus LA-5,
Bif. animalis subsp. lactis

BB-12

αHCH, βHCH, γHCH, 1,1-bis-(4-
chlorophenyl)-2,2-dichloroethene
(pp’DDE), 1-chloro-4-[2,2-dichloro-
1-(4-chlorophenyl) ethyl] benzene,
1,1′-(2,2,2-trichloroethane-1,1-diyl)

bis(4-chlorobenzene)

up to 48.6%
(heptachlor) and 54.7%
(pp’DDE) in goat milk

bio-yogurts after
14 days of cold storage

when both cultures
were used (synergistic

effect)

[86]

Yogurt
L. delbrueckii subsp.

bulgaricus,
S. thermophilus

Dimethoate, fenthion, malathion,
methyl parathion, monocrotophos,

phorate, trichlorphon

9.2–17.1% after 4 h
at 1.5 mg/kg

for all except malathion
[77]

Milk L. plantarum CICC20261 Dimethoate 81.28% at 50 mg/kg
for 24 h [87]

Skimmed milk

L. delbrueckii subsp.
bulgaricus, L. acidophilus, Lc.

casei, Lc. rhamnosus, S.
thermophilus

Chlorpyrifos, chlorpyrifos-methyl,
diazinon, dichlorvos, fenthion,

malathion, phorate,
pirimiphos-methyl, trichlorphon

up to 64.6% for
dichlorvos with

L. bulgaricus at 1 mg/kg
for 24 h

[88]

Skimmed milk

Lp. plantarum strains 1.0317,
1.0624, 1.0315, 1.066,

Levilactobacillus brevis 1.0209,
Lactobacillus helveticus strains

1.0203 and 1.9204,
Lactobacillus lactis 4.0611, L.
delbrueckii subsp. bulgaricus

L6, S. thermophilus 3.0503

Chlorpyrifos, diazinon,
fenitrothion, malathion, methyl

parathion

≈50% at 0.6 mg/kg
diazinon

for 24 h with Lev. brevis
1.0209

[89]

Skimmed milk L. bulgaricus, Lacticaseibacillus
paracasei, Lp. plantarum

Dimethoate, fenthion, malathion,
methyl parathion, monocrotophos,

phorate, trichlorphon

from 20.9% (methyl
parathion with Lc.
paracasei) to 46.9%

(malathion with Lp.
plantarum) at

1.2 mg/kg for 24 h

[90]

Much later, Latilactobacillus sakei strain pro7 reached 95.1% biodegradation of DDT with
a concentration of 20 mg/kg [91]. Duan et al. [85] proved that starter cultures (L acidophilus,
L. delbrueckii subsp. bulgaricus, Lp. plantarum, Lp. rhamnosus, Lc. casei, S. thermophilus,
and Bif. bifidum) decrease the concentration of five different OCPs during yogurt and cheese
production. Witczak and Mituniewicz-Małek [86] demonstrated a significant reduction of
the level of organochlorine pesticide residues after 14 days in cold storage by the addition
of a probiotic mixture of L. acidophilus LA-5 and Bif. animalis subsp. lactis BB-12 to the
yogurt starter cultures. The most significant was the reduction of heptachlor—by 36.6%.

Considering OPP reduction, Zhou and Zhao [88] showed the effectiveness of five
different species of LAB for the elimination of organophosphorus pesticides in skimmed
milk. Due to the activity of LAB, OPP concentrations decreased by 7.0–64.6%. All nine
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investigated compounds were most susceptible to L. delbrueckii subsp. bulgaricus, which
increased their degradation rate constants by 18.3–133.3%. Zhang et al. [89] tested ten LAB
strains (Table 2) and four combinations of strains for the degradation of five organopho-
suphate pesticides in skimmed milk. Lev. brevis 1.0209 was found to possess the highest
pesticide degradation activity. Similar results were obtained by Zhao and Wang [90],
reporting a strong acceleration of OPP degradation in skimmed milk by L. delbrueckii subsp.
bulgaricus, Lc. paracasei, and Lp. plantarum. They added seven organophosphate pesti-
cides to milk samples and 24 h later observed reduced pesticide concentrations by 20.9%
(of methyl parathion/methyl parathion incubated with Lc. paracasei), and by 46.9% (of
malathion/malathion incubated with Lp. plantarum). The greatest degradation activity was
observed by the use of L. delbrueckii subsp. bulgaricus and L. plantarum.

3.2. Pickled Vegetables

OPP residual concentrations are, as a rule, high in vegetables. Therefore, pesticide-
contaminated fermented vegetable products such as kimchi, sauerkraut, olives, and pickles
are correspondingly numerous (Table 3).

Table 3. The main microbial species and strains found to reduce pesticide levels in pickled vegetables.

Source Species and Strain Pesticide Reduction Reference

Kimchi

Leuconostoc mesenteroides
WCP907, Lev. brevis

WCP902, Lp. plantarum
WCP931, La. sakei WCP904

Chlorpyrifos, coumaphos,
diazinon, parathion,

methyl parathion

100% chlorpyrifos for 9 days
at 200 mg/L initial concentration [92]

Kimchi Lev. brevis WCP902
Chlorpyrifos, coumaphos,

diazinon, parathion,
methyl parathion

≈75% chlorpyrifos for 9 days
at 100 mg/L initial concentration [93]

Pickled
Chinese
cabbage

Lp. plantarum Chlorpyrifos, dichlorvos,
phorate, trichlorphon

6.5–18% more compared to normal
fermentation after 42 days at 1 mg/kg;
<1% of all except chlorpyrifos (≈4%)

in the end

[94]

Black olives Lp. plantarum
(LB-1 and LB-2)

Chlorpyrifos,
deltamethrin

96% for chlorpyrifos after 3 days and
86% for deltamethrin after 10 days for

LB-1 at 100 mg/L
[95]

Sauerkraut Lp. plantarum 112 λ-cyhalothrin, malathion,
chlorpyrifos-methyl

13–19% for λ-cyhalothrin (2 mg/kg)
after 14 days; 34–59% for the other
two (2–4 mg/kg), but lower than

natural fermentation (69–98%)

[96]

Black olives Lp. plantarum 112,
Lp. plantarum 123

Deltamethrin, dimethoate,
imidacloprid

2–8% greater compared to natural
fermentation after 60 days at

25–350 g/L initially
[97]

The role of lactic acid bacteria in the degradation of chlorpyrifos during kimchi fer-
mentation was profoundly investigated [92,93]. Chlorpyrifos was rapidly decreased by
day 3 of the fermentation (83.3%), and completely degraded by day 9 [92]. Four species
of lactic acid bacteria were isolated and identified as the cause: Leuconostoc mesenteroides
WCP907, Lev. brevis WCP902, Lp. plantarum WCP931, and La. sakei WCP904. It was found
that chlorpyrifos could be used by these four strains as the sole source of carbon and
phosphorus [93].

Zhou et al. [94] reported the ability of Lp. plantarum to degrade four organophosphate
pesticides, including chlorpyrifos, dichlorvos, phorate, and trichlorphon, in sauerkraut and
Mao-tofu. The results showed that about 16.6–31.8%, 96.2–99.7%, and 79.7–99.5% of the
OPPs were degraded after 5 h, 42 h, and 6 days, respectively.

Kumral et al. [95] investigated the degradation potential of two strains of Lp. plantarum
(LB-1 and LB-2) isolated from fermented black olive brine to eliminate chlorpyrifos (OPP)
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and deltamethrin (a pyrethroid). LB-1 and LB-2 degraded 96% and 90% of chlorpyrifos
and 24% and 53% of deltamethrin in three days, respectively. Maden and Kumral [96]
successfully used Lp. plantarum 112 (previously isolated from the olive brine) for sauerkraut
detoxication from malathion (2 mg/kg) and chlorpyrifos-methyl (4 mg/kg). Lp. plantarum
strain 123 was efficient in pesticide removal during black olive fermentation, although the
process of degradation was relatively slow. At the end of fermentation (after 60 days), 61%
deltamethrin, 68% dimethoate, and 50% imidacloprid were removed by the strain [97].

3.3. Grains, Flours, and Sourdough

The amylolytic LAB species Lp. plantarum is indispensable for reducing pesticide levels
in flours, sourdoughs, and silages. Zhang et al. [98] applied Lp. plantarum 1.0315, Lp. plan-
tarum 1.0624, Lp. plantarum 1.0622, and their combination at room temperature for 10 weeks
to detoxify corn silage from chlorpyrifos and phorate (0.36 mg/kg). The level of phorate
reduction in the treated samples was between 24.9% and 33.4%, depending on the strain.
The use of a combination of the three Lp. plantarum strains was found to be a more effective
strategy in the degradation of OPPs than the use of single strains. Ðord̄ević et al. [99]
monitored the degradation of pirimiphos/pirimiphos-methyl by Lp. plantarum during
wheat fermentation and observed 81% total OPP degradation without any influence on
bacterial growth or fermentation activity. Low et al. [100] demonstrated that Saccharomyces
cerevisiae can degrade glyphosate during bread fermentation, with 21% of the pesticide
being degraded within 1 h. Engaging the same yeast species, Sharma et al. [101] reported
dissipation of endosulfan (70%), deltamethrin (63%), malathion (60%), propiconazole
(52%), chlorpyriphos (51%), and hexaconazole (46%) during dough fermentation (Table 4).
However, the role of the starter Saccharomyces cerevisiae in the process of detoxication was
not elucidated.

Table 4. The main microbial species and strains found to reduce pesticide levels in flour, bread,
and sourdough.

Source Species and Strain Pesticide Reduction Reference

Corn silage
Lp. plantarum 1.0315, Lp.

plantarum 1.0624, Lp.
plantarum 1.0622

Chlorpyrifos, phorate
33.4% for phorate (0.36 mg/kg) after
10 weeks, but very close to control

fermentation (26.2%)
[98]

Bread wheat Lp. plantarum Pirimiphos,
pirimiphos-methyl

15–34% pirimiphos-methyl
(5 mg/kg) for 48 h [99]

Bread Saccharomyces cerevisiae Glyphosate 21% for 1 h at 50 mg/kg [100]

Bread Saccharomyces cerevisiae

Endosulfan, deltamethrin,
malathion, propiaconazole,

chlorpyriphos,
hexaconazole

75–89% at 1 mg/kg;
47–70% at 4 mg/kg;

after 12 h fermentation at 30 ◦C
and 20 min baking at 80 ◦C

[101]

Wheat flour Lp. plantarum Bifenthrin 42% at 0.5 mg/kg,
only 18% at 2.5 mg/kg [102]

Alfalfa
silage Lp. pentosus 3–27 Beta-cypermethrin 96% at 50 mg/L for 4 days [103]

Wheat Saccharomyces cerevisiae Pirimiphos methyl 48.8% at 5 mg/kg for 72 h [104]

Wheat Lp. plantarum Chlorpyrifos methyl 56.7% at 3 mg/kg for 72 h [105]

An important success was achieved by Ðord̄ević et al. [104] who revealed the possibil-
ity to decrease pesticide levels during the fermentation of wheat by yeasts and lactobacilli.
When the amounts of pesticides were 15 times above MRL, the degradation rate con-
stants increased by 594% for pirimiphos methyl in the presence of Saccharomyces cerevisiae,
and 469% for chlorpyrifos due to lactic acid fermentation by Lp. plantarum.
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3.4. Tea, Wine, and Fruit Juices

The only report concerning microbial detoxication of tea is that of Deng et al. [105].
The study proved the degrading ability of the Aspergillus niger strain YAT in Chinese
brick tea. The strain could degrade 54.83% of β-cypermethrin in 7 days and 100% of
3-phenoxybenzoic acid in 22 h during tea fermentation. These results indicate that the
A. niger YAT strain has great potential for bioremediation of pyrethroid insecticides in
fermented foods. However, due to safety reasons, this is hardly possible.

Multiple pesticide residues were found in grapes and wines, such as fungicides
boscalid, penconazole, pyrimethanil, fenhexamid, and iprovalicarb [106]. Actually, 79 dif-
ferent pesticides could be detected in grapes [107], most of them hindering the proper
fermentation process of wine and irreversibly changing its aroma [108].

LAB species from the genera Lactobacillus, Leuconostoc, and Pediococcus were found to
detoxicate red wine. Oenococcus oeni, the most promising species, was able to significantly
reduce the concentrations of chlorpyrifos, dicofol, chlorothalonil, and procymidone by
70, 40, 35, and 25%, respectively [109]. Another study by González-Rodríguez et al. [110]
reported about 86% decrease in tebuconazole during coupled fermentation of red wine by
Saccharomyces cerevisiae and O. oeni.

Rezaei et al. [111] investigated the ability of probiotic L. acidophilus to detoxify apple
juice from diazinon (1–5 mg/L). The strain efficiently reduced the pesticide concentration
after 72 h and eliminated all traces of it after 28 days of cold storage.

3.5. Meat and Sausages

Abou-Arab et al. [112] investigated the effect of starter cultures on the degradation
of DDT and lindane during the fermentation of meat products and sausages. When Lp.
plantarum and Micrococcus varians were used as a starter culture and the meat fermentation
was prolonged for 72 h, the DDT amount was reduced by 10%, and lindane by 18%.

4. Molecular Mechanisms of Pesticides Degradation

Many microbial species involved in food fermentation can metabolize a broad spec-
trum of pesticides and use them as carbon and energy sources [113]. The major enzymes
involved in pesticide degradation belong to the group of phosphoric monoester hydro-
lases (EC 3.1.3), such as alkaline phosphatase (EC 3.1.3.1), acid phosphatase (EC 3.1.3.2),
and phosphoric triester hydrolases (EC 3.1.8), for example, organophosphate hydrolase
(OPH, EC 3.1.8.1) and organophosphorus acid anhydrolase (OPAA, EC 3.1.8.2) [87,114].
OPH is a Zn-containing enzyme most effective in hydrolyzing P–O bonds, to a lesser extent
also P–F, P–CN, and (least of all) P–S, while OPAA shows 90% similarity with OPH but
differs in substrate specificity, being unable to hydrolyze P–S bonds at all, for instance [115].
Carbamates and pyrethroids share with OPP an ester bond in their structure that can be
hydrolyzed by esterases. At least 30 esterases with confirmed pesticide-degrading activity
have been isolated from plants, animals, and bacteria, but very few of them belong to LAB
species traditionally involved in the preparation of fermented foods [116]. Different OPH
are encoded by opd genes (from organophosphate degrading), while for OPAA synthesis
are responsible opaA genes [71].

The initial and most important step in the degradation of organophosphate pesticides
(OPP) is the hydrolysis of the phosphoesteric (P–O–C) or phosphothiesteric (P–S–C) bond.
Three of the most common OPPs, parathion, diazinon, and chlorpyrifos, all share a common
P–O–C bond (Figure 3a), which is hydrolyzed to diethylthiophosphoric acid (DETP);
p-nitrophenol, 2-isopropyl-4-methyl-6-hydroxypyrimidine (IMHP) and 3,5,6-trichloro-2-
pyridinol (TCP), respectively [115].
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Figure 3. Scheme of the known mechanisms of organophosphate pesticide (shown in bold) degra-
dation by food bacteria. (a) Degradation by phosphoric monoester hydrolases such as alkaline
phosphatase (EC 3.1.3.1) and acid phosphatase (EC 3.1.3.2) and general chemical equation accord-
ing to the KEGG database, https://www.kegg.jp/entry/R00626 (accessed on 25 February 2023).
(b) Dimethoate degradation by phosphatase of Lp. plantarum CICC20261. All chemical structures
were retrieved from the free chemical structure database ChemSpider, http://www.chemspider.com
(accessed on 25 February 2023).

Dialkylphosphate (DAP) metabolites, a group of OPP metabolic products to which
DETP belongs, have been associated with increased exposure in recent decades and various
neurological pathologies, including impaired intellectual development and attention-deficit
disorders in children [117–119]. TCP and DETP are toxic and persistent in nature. TCP has
been linked with several harmful effects, including reduced testosterone levels in men [120],
while DETP has been shown to have a negative influence on sex hormones in women [121].
TCP is known to have an anti-microbial activity that inhibits the growth of chlorpyrifos-
degrading microorganisms. Soil bacteria such as Pseudomonas and Enterobacter can use TCP
and DETP as sole sources of carbon, phosphorus, and energy [71,122]. The metabolic fate of
TCP and DETP is poorly understood in probiotic strains. Among the relatively few bacteria
able to mineralize TCP and DETP, as of yet, none have been confirmed in fermented foods.

Table 5 summarizes the current data concerning the genetic and biochemical charac-
terization of OPP-degrading enzymes of food bacteria.

https://www.kegg.jp/entry/R00626
http://www.chemspider.com
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Table 5. Enzymatic hydrolysis of organophosphate pesticides.

Pesticide Species/Strain Acting Enzyme Gene Protein Features Reference

Chlorpyrifos,
methylparathion,

parathion,
coumaphos,

diazinon

Lev. brevis WCP902 Organophosphate
hydrolase

opdB
723 bp

240 AA
27 kDa

‘Gly-X-Ser-X-Gly’-motif;
Ser82 *

pH 6.0, 35 ◦C
[93]

La. sakei WCP904 Organophosphate
hydrolase

opdD
825 bp

274 AA
31 kDa

‘Gly-X-Ser-X-Gly’-motif;
Ser 116 *

pH 6, 30 ◦C
[123]

Leuc. mesenteroides
WCP307

Organophosphate
hydrolase

opdA
930 bp

309 AA
35 kDa

‘Gly-X-Ser-X-Gly’-motif;
Ser128 *;

pH 7, 30 ◦C
[124]

Leuc. mesenteroides
WCP307

Organophosphate
hydrolase

opdE
894 bp

297 AA
33 kDa

‘Gly-X-Ser-X-Gly’ -motif,
Ser129 *;

pH 6, 30 ◦C
[124]

Lp. plantarum WCP931,
Leuc. mesenteroides

WCP907, Lev. brevis
WCP902, La. sakei

WCP904

Esterase
(suggested) - - - [92]

Parathion,
methylparathion,

chlorpyrifos
Lp. plantarum WCP931 Organophosphate

hydrolase
opdC

831 bp
276 AA
31 kDa

‘Gly-X-Ser-X-Gly’—
motif; Ser 116 *;

pH 6, 35 ◦C
[125]

Chlorpyrifos Lc. casei WYS3 Organophosphate
hydrolase opda -

(+) opda RNA levels;
hydrolysis products
detected by GC-MS

[126]

Dimethoate

Lc. casei 355 Alkaline
phosphatase - 43 kDa pH 8.5, 37 ◦C

(+) Mg2+, Ca2+ [127]

(purified) (−) Cu2+, Zn2+, EDTA

Lp. plantarum
CICC20261

Phosphatase (crude
activity) - - Gln375 and Ser415 * [87]

Dimethoate,
chlorpyrifos,
trichlorphon,

methylparathion

Lp. plantarum subsp.
plantarum CICC20261

Phosphatase (crude
activity) - - - [128]

Trichlorphon,
phorate,

malathion,
dichlorvos

L. delbrueckii subsp.
bulgaricus, S.

thermophilus, Lp.
rhamnosus

Phosphatase
activity

(correlation)
- - - [88]

Chlorpyrifos,
fenitrothion,
malathion

Lev. brevis 1.0209
Phosphatase

activity
(correlation)

- - - [89]

Chlorpyrifos

Pediococcus pentasaceus
4320, Leuc.

mesenteroides 8293, Ent.
faecium 86, Lactococcus.

lactis 1454, Lc.
rhamnosus GG53103,

Leuc. lactis 19256

Alkaline
phosphatase
(suggested)

- - - [129]

* Amino acid residue in the active center, which is crucial for enzyme hydrolysis.

Relatively few OPP-degrading enzymes in probiotic bacteria have been studied so far
in some detail. Five different OP hydrolases (OpdB, OpdD, OpdA, OpdE, OpdC) from four
different LAB species (Lev. brevis, La. sakei, Leuc. mesenteroides, Lp. plantarum) have been
isolated from kimchi, heterologously expressed in E. coli and characterized [92,116–118].
They all share certain structural features, such as a serine residue critical for their activity
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and the ‘Gly-X-Ser-X-Gly’ motif typical for serine hydrolases, and they all belong to the
GDSVG family of esterolytic enzymes. On the whole, both the original strains in vivo
and the recombinant enzymes in vitro show similar abilities for OPP degradation. They
are most effective in degrading chlorpyrifos, coumaphos, parathion, methylparathion,
and diazinon: well over 50% for nine days at 100 mg/L initial concentration. They are least
effective (well below 50% under the same conditions) in degrading dyfonate, cadusafos,
ethoprophos, and fenamiphos. The first three of these contain another sulfur atom bound
to the phosphorus, that is to say, a P–S–C bond, a somewhat unusual feature that explains
at least partly their resistance to OP hydrolases. Fenamiphos has the remnants of an amino
group (–NH–) attached to the phosphorus, quite a rare thing for OPP.

Alkaline phosphatase from Lc. casei 355 has been purified and characterized. It has
the ability to degrade in vitro the organophosphate insecticide and acaricide dimethoate
(1–2 mg/kg) almost in half after four hours that, in combination with its broad tolerance to
physical conditions (at least 70% activity at 22–42 ◦C and pH 7.5–10), makes it a promising
candidate for food detoxification [127]. Significant degradation of dimethoate, chlorpyrifos,
methylparathion, and trichlorphon (50–87% at 24 h) has also been achieved with Lp. plan-
tarum subsp. plantarum CICC20261. A positive correlation between this effect and the crude
phosphatase activity of the medium was established. Interestingly, however, in vitro degra-
dation by the crude phosphatase was lower and more uniform—around 50% for all four
OPP—suggesting an additional mechanism besides the enzymatic degradation, possibly
adsorption on the cell surface or perhaps even selective uptake [128]. Phosphatase activity
on the level of crude extract has also been confirmed in the degradation of dimethoate
by Lp. plantarum CICC20261 in milk, which yielded five products of estimated lower
toxicity such as omethoate and trimethyl phosphodithioate (Figure 3b), [87]. A positive
correlation between phosphatase activity and pesticide degradation was also found for
Lev. brevis 1.0209 [89] and L. bulgaricus [88], but in these cases, not even a crude enzyme
was isolated and tested in vitro. Moreover, such statistical methods have been questioned
by another study that did not find a significant correlation between OPP degradation and
both intracellular and extracellular acid phosphatase activities in Lp. plantarum P9 isolated
from sour porridge [130].

The experimental design in a number of studies concerned with OPP degradation
by probiotic bacteria completely lacks any investigation into the molecular mechanisms.
Sometimes the existence of an esterase [92] or an alkaline phosphatase [129] is no more than
merely suggested, thus leaving impressive achievements in pesticide detoxification essen-
tially incomplete. Sometimes an adverse effect (i.e., decelerated degradation) is observed,
for instance, when Lp. plantarum 112 is added as a starter in sauerkraut fermentation [96],
but again no mechanism has been suggested.

Pesticide adsorption has been reported for Lc. casei WYS3 [126] and Lc. rhamnosus
GG [82]. Both LAB species showed some ability to sequester chlorpyrifos from the medium.
In both studies, adsorption on the cell surface was in some way related to the better studied
and more robust mechanism of enzymatic degradation. In the case of Lc. casei WYS3,
hydrolysis products were detected by GC–MS, and an upregulation of the opd gene in
the presence of chlorpyrifos was confirmed by RT-PCR. Significantly, Lc. casei WYS3 was
rather more successful in chlorpyrifos removal: 80% after four days at 50 mg/L initial
concentration. An OP hydrolase was predicted in the genome of Lc. rhamnosus GG but
was not found to be functional. Compared to enzymatic degradation, pesticide adsorption
is a less effective way of detoxification and seems less likely to engender any scientific
breakthroughs in the future.

Microbial degradation of organochlorine pesticides [131], carbamates [132], and ne-
onicotinoids [133] has been studied extensively for decades. A number of bacterial species
isolated from soil and water have been implicated in the process. As of yet, however, there
are no probiotics from fermented foods among them. Considering the remarkable results
achieved with such bacteria in the degradation of organophosphates, their application for
biodegradation of other pesticides may prove to be an exciting area of future research.
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5. Prospects in Fermented Food Detoxification

Pesticides are a threat to human health of global magnitude. Chlorpyrifos, for example,
is found in fruits and vegetables all over the world, from cucumbers in Thailand (275 µg/kg)
to apples in Slovakia and Poland (21–93 µg/kg), even though in all three countries, the use
of chlorpyrifos is banned [134]. Some fermented foods can be detoxified from pesticides
thanks to the activity of the bacterial microflora present. Lactic acid bacteria are known
for their antagonistic activity against diseases caused by fungi and for which plants are
treated with tons of fungicides [135–139]. In these cases, the biological approach should
be preferred to chemical methods of pesticide removal. On the other hand, the selection
of strains with detoxification potential can occur in natural habitats. For example, LAB
isolated from the gut of bees exposed to pesticides such as chlorpyrifos, coumaphos,
and imidacloprid are capable of binding and neutralizing them in vitro as well [140].

Functional foods rich in probiotic LAB have the potential of combating accidentally
ingested pesticides in the GIT directly, by degradation or absorption as already discussed,
or indirectly by neutralizing the adverse effects of pesticides [15]. Many lactobacilli have
potent antioxidant properties and may be able to alleviate the oxidative stress and damage
caused by chronic exposure to OPP [141]. One recent study showed the antioxidant
capacity of Lp. plantarum Pb3 is increased in the presence of chlorpyrifos, imidacloprid
(a neonicotinoid), and chlorantraniliprole (an insecticide from the ryanoid class). A high
survival rate (70–75%) in simulated gastric and intestinal juices also makes the strain a
suitable candidate for combating the adverse effects of ingested pesticides. It should be
noted, however, that both the ability to inhibit lipid peroxidation and to scavenge hydroxyl
radicals were slightly increased (5–10%) in the presence of the pesticides [142]. In vivo
studies with rats show that Lp. plantarum BJ0021 can alleviate most harmful effects of
endosulfan (an organochlorine insecticide and acaricide) yet has no positive effect on major
antioxidant enzymes such as SOD and CAT [81]. The antioxidant properties of LAB should
be treated with caution.

Another indirect influence is the ability of many LAB species to enhance the gut
barrier function and thus prevent the absorption of pesticides. This is only one of the
numerous beneficial effects of LAB on intestinal health that are supported by a great and
growing body of evidence [15,143,144]. Lp. plantarum MB452 has been shown to affect the
expression of 19 genes related to tight junctions, thus improving the integrity and signaling
in human colon cancer (Caco-2) cells, a common model for intestinal epithelium [145].
Lc. rhamnosus strains GG and GR-1 reduced the absorption of 100 µM parathion and
especially chlorpyrifos within 60 min in Caco-2 Transwell model of the small intestine
epithelium [82]. Far from being merely preventive medicine, probiotic bacteria can also
help once the damage is done. A cocktail of four Lactobacillus species (JUP-Y4) isolated
from traditional Chinese fermented foods was shown to improve the recovery of antibiotic-
induced intestinal disruption in mice, including enhanced integrity of the gut barrier,
reduced inflammation, lower levels of endotoxins in the blood, and restored numbers of
beneficial gut bacteria [146].

Neurodegenerative diseases, especially Parkinson’s disease, have also been linked with
pesticide exposure and, consequently, probiotic bacteria may add to their health benefits a
neuroprotective effect [147]. In addition to pesticides, probiotics are studied as a potential
weapon against many other toxic substances [148]. Innovative microbial processes are
developed with the certain potential to detoxify foods from mycotoxins, polycyclic aromatic
hydrocarbons, perfluoroalkyl and polyfluoroalkyl compounds, phthalates, bisphenol A,
and heavy metals.

6. Conclusions

Although pesticides are indispensable chemical agents widely used in agriculture to
increase yields of key crops for human nutrition and to control pests, significant residual
amounts of them are found in foods of plant and animal origin. Besides physical detox-
ification methods, a very successful and promising approach is fermentation by natural
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microflora in foods or by purposefully added probiotic strains. Detoxification mechanisms
include enzymatic hydrolysis or oxidation of pesticides, which are degraded to less poi-
sonous products, and intermediate metabolites have been demonstrated in some scientific
publications by analysis with various analytical methods. In most cases, however, the exact
metabolic pathway of degradation by the strains in food has not been elucidated and
requires further research in the future. The application of microbial food detoxification is of
particular importance in less developed countries where control of pesticide residues is
weaker. In addition, naturally fermented plant-based products are common as traditional
ethnic foods in these countries.
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102. Dord̄ević, T.M.; Siler-Marinkovic, S.S.; Durovic, R.D.; Dimitrijevic-Brankovic, S.I.; Gajic Umiljendic, J.S. Stability of the pyrethroid
pesticide bifenthrin in milled wheat during thermal processing, yeast and lactic acid fermentation, and storage. J. Sci. Food Agric.
2013, 93, 3377–3383. [CrossRef]

103. Liu, F.; Bai, J.; Huang, W.; Li, F.; Ke, W.; Zhang, Y.; Xie, D.; Zhang, B.; Guo, X. Characterization of a novel beta-cypermethrin-
degrading strain of Lactobacillus pentosus 3-27 and its effects on bioremediation and the bacterial community of contaminated
alfalfa silage. J. Hazard. Mater. 2022, 423 Pt A, 127101. [CrossRef]
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