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Figure S1. Map of Australia with South Australia highlighted in red. Inset shows the eight South 

Australian GIs (and their abbreviations) where grape parcels were obtained in 2013, 2014, and 2015 

(n = 74 in total).  

Table S1. Values used in grid-search to optimise XGB hyperparameters for the predictions of wine 

sensory attributes using A-TEEM data alone or feature-level fused A-TEEM and CIELAB data. 

 Description Grid search values for models 

using A-TEEM data 

Grid search values for models 

using fused A-TEEM and 

CIELAB data 

max_depth Maximum depth of a tree 

(i.e. number of branches) 

1, 2, 3, 4, 5, 6 1, 2, 3, 4, 5, 6 

num_round Maximum number of 

decision trees in 

ensemble 

50, 100, 200, 300, 400, 500, 600 50, 100, 200, 300, 400, 500, 

600 

eta Shrinkage value for 

feature weights to make 

boosting process more 

conservative 

0.02, 0.04, 0.08, 0.1, 0.2, 0.3, 

0.4, 0.5 

0.02, 0.04, 0.08, 0.1, 0.2, 0.3, 

0.4, 0.5 

alpha L1 regularization term on 

weights 

1 1 

lambda L2 regularization term on 

weights 

2 2 

gamma Before further partition 

on a leaf node of a tree, 

the minimum loss 

reduction (gamma) must 

be achieved. 

0.2 0.4 

compression Method used for 

dimension reduction 

PLS with 2 to 6 LVs None 

declutter Method to remove clutter 

covariance on X-Block 

GLSW (α = 0.02) or EPO (3 

LVs) 

GLSW (α = 0.02) or EPO (3 

LVs) 
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Figure S2. Scree plot of the percentage of explained variance of principal components (PCs) from principal 

component analysis (PCA) using (a) A-TEEM data, and (b) CIELAB colour coordinates.  

 

Figure S3. A-TEEM variable loadings on PC3 to 7 from PCA performed before feature-level data fusion. 

  



Armstrong et al. Machine learning and fused spectral data for prediction of sensory characteristics 

S4 

 

 

 

 

Figure S4. Percentage of contributions of the top ten highest contributing variables on (a) PC1 to (g) PC7, 

from principal component analysis of A-TEEM data.  



Armstrong et al. Machine learning and fused spectral data for prediction of sensory characteristics 

S5 

 

Figure S5. Correlation matrix plot for the relationship between the seven selected principal components (PCs) 

from principal component analysis using A-TEEM data and the top ten most contributing variables (see Figure 

S1) to the seven PCs, divided into (a) the absorbance region of A-TEEM, which is variable 1 to 93 and relates 

to absorbance wavelength 700 to 240 nm (with 5 nm increments), respectively, and (b) the 2D EEM region of 

A-TEEM, which is variable 94 to 10416. A strong positive linear correlation with a value of 1 between two 

variables is coloured dark blue and a strong negative linear correlation with a value of -1 is coloured dark red. 

The size of circles also depicts the strength of the relationship. 
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Figure S6. (a) A-TEEM variable loadings on partial least squares (PLS) regression latent variables (LVs) 1-4 

used in the XGB algorithm to predict confectionery aroma attribute scores and (b) the gain of LVs.   

 

Figure S7. (a) A-TEEM variable loadings on PLS LVs 1 and 2 used in the XGB algorithm to predict dark fruit 

aroma attribute scores and (b) the gain of LVs.   

 



Armstrong et al. Machine learning and fused spectral data for prediction of sensory characteristics 

S7 

 

Figure S8. (a) A-TEEM variable loadings on partial least squares (PLS) regression latent variables (LVs) 1-

6 used in our XGB algorithm to predict earthy aroma attribute scores and (b) the gain of LVs. 

 

Figure S9. (a) A-TEEM variable loadings on PLS LVs 1-3 used in the XGB algorithm to predict green aroma 

attribute scores and (b) the gain of LVs. 
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Figure S10. (a) A-TEEM variable loadings on partial least squares (PLS) regression latent variables (LVs) 1-

4 used in the XGB algorithm to predict overall intensity aroma attribute scores and (b) the gain of LVs.   

 

Figure S11. (a) A-TEEM variable loadings on PLS LVs 1-4 used in the XGB algorithm to predict pepper 

aroma attribute scores and (b) the gain of LVs.   
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Figure S12. (a) A-TEEM variable loadings on partial least squares (PLS) regression latent variables (LVs) 1-

4 used in the XGB algorithm to predict red fruit aroma attribute scores and (b) the gain of LVs.   

 

Figure S13. (a) A-TEEM variable loadings on PLS LVs 1-4 used in the XGB algorithm to predict savoury 

aroma attribute scores and (b) the gain of LVs.   
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Figure S14. (a) A-TEEM variable loadings on partial least squares (PLS) regression latent variables (LVs) 1-

4 used in the XGB algorithm to predict confectionery flavour attribute scores and (b) the gain of LVs. 

 

Figure S15. (a) A-TEEM variable loadings on PLS LVs 1-4 used in the XGB algorithm to predict dark fruit 

flavour attribute scores and (b) the gain of LVs. 
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Figure S16. (a) A-TEEM variable loadings on partial least squares (PLS) regression latent variables (LVs) 1-

4 used in the XGB algorithm to predict green flavour attribute scores and (b) the gain of LVs. 

 
Figure S17. (a) A-TEEM variable loadings on PLS LV1-4 used in the XGB algorithm to predict pepper flavour 

attribute scores and (b) the gain of LVs.   
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Figure S18. (a) A-TEEM variable loadings on partial least squares (PLS) regression latent variables (LVs) 1-

4 used in the XGB algorithm to predict red fruit flavour attribute scores and (b) the gain of LVs.   

 

Figure S19. (a) A-TEEM variable loadings on PLS LVs 1-4 used in the XGB algorithm to predict savoury 

flavour attribute scores and (b) the gain of LVs.   
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Figure S20. (a) A-TEEM variable loadings on partial least squares (PLS) regression latent variables (LVs) 1-

4 used in the XGB algorithm to predict acid taste attribute scores and (b) the gain of LVs.   

 

Figure S21. (a) A-TEEM variable loadings on PLS LVs 1-4 used in the XGB algorithm to predict bitter taste 

attribute scores and (b) the gain of LVs.   
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Figure S22. (a) A-TEEM variable loadings on partial least squares (PLS) regression latent variables (LVs) 1-

4 used in the XGB algorithm to predict fruit sweetness taste attribute scores and (b) the gain of LVs.   

 

Figure S23. (a) A-TEEM variable loadings on PLS LVs 1-4 used in the XGB algorithm to predict alcohol 

intensity mouthfeel attribute scores and (b) the gain of LVs.   
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Figure S24. (a) A-TEEM variable loadings on partial least squares (PLS) regression latent variables (LVs) 1-

4 used in the XGB algorithm to predict astringency mouthfeel attribute scores and (b) the gain of LVs.   

 

Figure S25. (a) A-TEEM variable loadings on PLS LVs 1-4 used in the XGB algorithm to predict body 

mouthfeel attribute scores and (b) the gain of LVs.   
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Figure S26. (a) A-TEEM variable loadings on partial least squares (PLS) regression latent variables (LVs) 1-

4 used in the XGB algorithm to predict depth colour attribute scores and (b) the gain of LVs.   

 

Figure S27. (a) A-TEEM variable loadings on PLS LVs 1-4 used in the XGB algorithm to predict hue colour 

attribute scores and (b) the gain of LVs. 
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Figure S28. Gain of PC1-7 from principal component analysis (PCA) of A-TEEM data and PC1 and 2 from 

PCA of CIELAB data used to predict confectionery aroma. 

 

Figure S29. Gain of PC1-7 from PCA of A-TEEM data and PC1 and 2 from PCA of CIELAB data used to 

predict dark fruit aroma. 

 

Figure S30. Gain of PC1-7 from PCA of A-TEEM data and PC1 and 2 from PCA of CIELAB data used to 

predict earthy fruit aroma. 

 

Figure S31. Gain of PC1-7 from PCA of A-TEEM data and PC1 and 2 from PCA of CIELAB data used to 

predict green fruit aroma. 



Armstrong et al. Machine learning and fused spectral data for prediction of sensory characteristics 

S18 

 

Figure S32. Gain of PC1-7 from principal component analysis (PCA) of A-TEEM data and PC1 and 2 from 

PCA of CIELAB data used to predict overall intensity aroma. 

 

Figure S33. Gain of PC1-7 from PCA of A-TEEM data and PC1 and 2 from PCA of CIELAB data used to 

predict pepper aroma. 

 

Figure S34. Gain of PC1-7 from PCA of A-TEEM data and PC1 and 2 from PCA of CIELAB data used to 

predict red fruit aroma. 

 

Figure S35. Gain of PC1-7 from PCA of A-TEEM data and PC1 and 2 from PCA of CIELAB data used to 

predict savoury aroma. 
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Figure S36. Gain of PC1-7 from principal component analysis (PCA) of A-TEEM data and PC1 and 2 from 

PCA of CIELAB data used to predict confectionery flavour. 

 

Figure S37. Gain of PC1-7 from PCA of A-TEEM data and PC1 and 2 from PCA of CIELAB data used to 

predict dark fruit flavour. 

 

Figure S38. Gain of PC1-7 from PCA of A-TEEM data and PC1 and 2 from PCA of CIELAB data used to 

predict green flavour. 

 

Figure S39. Gain of PC1-7 from PCA of A-TEEM data and PC1 and 2 from PCA of CIELAB data used to 

predict pepper flavour. 
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Figure S40. Gain of PC1-7 from principal component analysis (PCA) of A-TEEM data and PC1 and 2 from 

PCA of CIELAB data used to predict red fruit flavour. 

 

Figure S41. Gain of PC1-7 from PCA of A-TEEM data and PC1 and 2 from PCA of CIELAB data used to 

predict savoury flavour. 

 

Figure S42. Gain of PC1-7 from PCA of A-TEEM data and PC1 and 2 from PCA of CIELAB data used to 

predict acid taste. 

 

Figure S43. Gain of PC1-7 from PCA of A-TEEM data and PC1 and 2 from PCA of CIELAB data used to 

predict bitter taste. 
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Figure S44. Gain of PC1-7 from principal component analysis (PCA) of A-TEEM data and PC1 and 2 from 

PCA of CIELAB data used to predict fruit sweetness taste. 

 

Figure S45. Gain of PC1-7 from PCA of A-TEEM data and PC1 and 2 from PCA of CIELAB data used to 

predict alcohol intensity mouthfeel. 

 

Figure S46. Gain of PC1-7 from PCA of A-TEEM data and PC1 and 2 from PCA of CIELAB data used to 

predict astringency mouthfeel. 

 

Figure S47. Gain of PC1-7 from PCA of A-TEEM data and PC1 and 2 from PCA of CIELAB data used to 

predict body mouthfeel. 
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Figure S48. Gain of PC1-7 from principal component analysis (PCA) of A-TEEM data and PC1 and 2 from 

PCA of CIELAB data used to predict depth colour. 

 

Figure S49. Gain of PC1-7 from PCA of A-TEEM data and PC1 and 2 from PCA of CIELAB data used to 

predict hue colour. 


