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Abstract: For food drying, moisture content and shrinkage are vital in the drying process. This
paper is concerned with the moisture ratio modeling and prediction issues of the Hami melon drying
process. First, an experimental system was developed; it included an adjustable-power microwave
drying unit and an image-processing unit. The moisture contents and the areas of Hami melon slices
at different times were sampled in real time. Then, the expression of the moisture ratio with regard
to shrinkage was derived by using the Weierstrass approximation theorem. A maximum likelihood
fitness function-based population evolution (MLFF-PE) algorithm was then put forward to fit the
moisture ratio model and predict the moisture ratio. The results showed that the proposed MLFF-PE
algorithm was effective at fitting and predicting the moisture ratio model of the drying process of
Hami melon slices.

Keywords: image processing; Hami melon drying; moisture ratio model; adjustable-power microwave
drying system; shrinkage; maximum likelihood

1. Introduction

During food-drying processes, a variety of physical and chemical changes occur inside
foods, which affect the quality of dried products [1–3]. The changes in the moisture content
in high-moisture foods, such as Hami melons, generally result in shape changes [4–6].
This kind of shape change is expressed as shrinkage [7]. For modeling food-drying pro-
cesses, moisture content and shrinkage are two important indicators that reveal the drying
schedule [8–10], and they play significant roles in many aspects [11–13]. For instance, if the
relationship between the moisture content and the shrinkage is built, we will be able to
obtain the moisture content in real time by detecting the shrinkage, knowing the end point
of the drying process, or predicting the drying process. That is to say, according to the
modeling results, we can decide when to finish the drying process or design microwave
power-adjusting strategies to obtain dried products with better quality. In recent decades,
many researchers have studied different mathematical models of moisture content and
shrinkage during food-drying processes [14–16]. Yadollahinia et al. studied the drying
characteristics of potato slices and pointed out that the dimensionless area changes of potato
slices decreased linearly as the dimensionless moisture content decreased [17]. Afonso et al.
employed the three-order polynomial to describe the relationship between the physical
characteristics of coffee berries, such as the volume shrinkage and moisture content mea-
sured in drying experiments [18]. During the drying process of pineapple slices, a linear
function containing exponential constants was used to express the relationship between the
shrinkage and moisture content [19]. In [17–19], the models were shrinkage versus moisture
content. In this paper, we established the mathematical model of the moisture ratio with
regard to the shrinkage during the Hami melon drying process as the n-order polynomial
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in line with Weierstrass Approximation theorem, and developed a new algorithm to realize
model fitting.

In recent years, image processing has been widely applied in various drying sys-
tems [20–22]. By building the relationships between the visual appearances of foods, such
as the color, size, and shape, and the easily measured quality attributes of foods, such
as the moisture content, density, and porosity at different stages of the drying processes,
image processing has been used to evaluate the qualities of dried foods at specific times
in drying processes [23,24]. Madiouli et al. studied the shrinkage kinetics of bananas and
observed that banana slices showed ideal shrinkage at the beginning of drying, but stopped
shrinkage with low moisture content [25]. Huang et al. used hyperspectral imaging tech-
nology to capture the images of soybeans at different stages in microwave drying. Using
those images, they studied the relationship between the color changes of soybeans and the
moisture content and concluded that there was a correlation between the hyperspectral
reflectance, entropy, and moisture content [26]. In the microwave vacuum drying process
of carrots, Nahimana and Zhang exploited the image processing software called ImageJ
to monitor the shrinkage and color changes of carrots [27]. Nevertheless, the image pro-
cessing technology used in most research studies on drying, such as in [25–27], is offline,
which means that the products must be taken out to take photos and, thus, the drying
processes must be interrupted. To overcome this shortcoming, this paper developed an
image processing-based microwave drying system to study the changes in the moisture
ratio of Hami melons by detecting shrinkage during the drying process.

In the area of modeling and estimation, the maximum likelihood method is usually
utilized because it has good statistical properties and can be applied to linear and nonlinear
models [28–30]. The core idea of the maximum likelihood method is that the estimated
values are obtained by maximizing the probability of the occurrence of the experimental
data [31–33]. Xie et al. adopted the maximum likelihood method to recover the parameters
of Bernoulli autoregressive models [34]. Wu et al. developed a new method for the joint
amplitude and noise variance estimation of a single sinusoid on the basis of the maximum
likelihood method [35]. Çayır and Candan investigated the autoregressive model parameter
estimation issues by using the maximum likelihood method [36]. By taking advantage
of the maximum likelihood method, this paper derived the maximum likelihood fitness
function and studied a novel algorithm to solve the moisture ratio modeling problem of
the Hami melon drying process.

The main contributions of this paper are as follows.

1. An experimental system that included an adjustable-power microwave drying unit
and an image-processing unit was developed, and the moisture content and the area
of samples at different times during the Hami melon drying process were collected.

2. The representation of the moisture ratio with regard to the shrinkage of the drying
process of Hami melon slices was assumed by means of the Weierstrass approximation
theorem.

3. By deducing the maximum likelihood fitness function, a maximum likelihood fitness
function-based population evolution (MLFF-PE) algorithm was presented to fit the
moisture ratio model and predict the moisture ratio changes in the drying process of
Hami melon slices. The results showed that the estimated moisture ratio model given
by the MLFF-PE algorithm performed well in the moisture ratio model’s fitting and
the moisture ratio prediction of the Hami melon drying process.

This paper is organized as follows. Section 2 presents an experimental system, in-
cluding an adjustable-power microwave drying unit and an image-processing unit, and
introduces the experimental procedure of the Hami melon drying process. Section 3
presents the mathematical model of the moisture ratio versus the shrinkage. In Section 4,
the MLFF-PE algorithm is presented to fit the moisture ratio model. Section 5 provides
the results of model fitting and prediction. Finally, the conclusions and future work are
summarized in Section 6.
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2. Materials and Methods
2.1. Materials

Fresh Hami melons (Cucumis melo var. saccharinus) were purchased at a local market
in Wuxi, China. Undamaged Hami melons with moderate maturity and clear skin lines
were selected and stored at 5 °C and then placed at room temperature at 20 °C for 30 min
before drying. They were washed, peeled, and cut into 6 mm slices using a mechanical
cutter. The slices were then cut into 25 mm diameter cylindrical pieces with a cutting tool.
The initial moisture contents of fresh Hami melon samples were measured and obtained,
i.e., 9.87 g/g on a dry basis by drying with hot air at 105 °C for 24 h, which was adequate
to obtain the constant mass of the slices.

2.2. Microwave Drying System Based on Image Processing

The developed experiment system consisted of an image-processing unit and a mi-
crowave drying unit. The schematic of the system is shown in Figure 1.

Optical fiber 

temperature 

transmitter
Material 

plate
DAQ 

Module

Triac

Electric balance

Camera

PC

Figure 1. The schematic of the system.

In the image-processing part, 3 LED light strips were applied as light sources, which
were installed on the door of the microwave oven. A hole with a diameter of 6 mm
was drilled at the top of the microwave oven for imaging and an industrial camera (SKT-
SL1200C-123A, Chengyishun Tech. Co., Ltd., Shenzhen, China) was installed above the hole.
The collected images were transmitted to the PC via a USB cable. As for the microwave-
drying part, a 700 W microwave oven (EM7KCGW3-NR, Midea Co., Ltd., Guangzhou,
China) was utilized for drying, where the original circuit was modified to make the mi-
crowave power continuously adjustable with the help of a Triac and a data acquisition
(DAQ) board (USB 6008, National Instruments Corp., Austin, TX, USA). The sample hold-
ing plate was supported by an electric balance above the microwave oven cavity through
4 Teflon sticks for mass measurements. The electronic scale was able to read the mass
information in real time and transfer the data to the PC through the RS232 to USB cable.
The precision of the electronic balance was 0.01 g. An optical fiber sensor (HQFTS-PAA0A-
0300, Xian Heqi Photoelectric Tech. Co., Ltd., Xi’an, China) was inserted into the core of one
of the samples to take the temperature [37]. The collected optical signal representing the
temperature was converted into a DC voltage signal through the temperature transmitter
and was recognized by the PC via the DAQ module. The temperature error was ±1 °C.

2.3. Experimental Details

After several pre-experiments, considering the drying time and quality after drying,
60 °C was selected as the microwave drying temperature of the Hami melon. The tempera-
ture of the material core was measured in real-time by the optical fiber, and the constant
drying temperature of 60 °C was achieved by continuously adjusting the power under a
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PID control strategy [38]. A fan installed on the side wall of the microwave oven drew out
the hot air in the oven to achieve airflow. Mass was measured during the drying process
and the image-processing algorithm was performed every 30 s, followed by data recording.
Drying was stopped when the dry basis moisture content reached 0.176 g/g. The total
drying time was approximately 41 min. The experiments were performed in triplicates.

2.4. Image Processing Algorithm

An image-processing algorithm was developed to monitor the shrinkage of the mate-
rial. The software, Vision and Motion Module, based on LabVIEW (Version 16.0; National
Instruments Corp., Austin, TX, USA), was utilized to implement the algorithm. The major
steps of image processing are summarized below and a typical example of the steps is
illustrated in Figure 2.

Step 1: Capture and read the 24-bit RGB image—see (a) of Figure 2.
Step 2: Convert the RGB image into an 8-bit grayscale image by averaging the 3 color

components of the RGB image—see (b) of Figure 2.
Step 3: Transform the grayscale image into a binary image by computing the optimal

threshold value using the clustering method—see (c) of Figure 2.
Step 4: Fill in the holes found in each particle to remove the image noise inside the sam-

ples.
Step 5: Filter and retain the top 6 image particles in the area to eliminate the image

noise outside the samples—see (d) of Figure 2.
Step 6: Extract and sum the pixel counts of each filtered particle.

Figure 2. The image processing steps: (a) original RGB image before processing; (b) grayscale image;
(c) binary image; (d) image after the operation of filling holes and filtering particles.

3. Mathematical Model

In this section, the definitions of the moisture ratio and the shrinkage are given and
the relationship between the moisture ratio and the shrinkage is provided.

During the drying process, the moisture content and the moisture ratio of the samples
were, respectively, calculated by the following equations:
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MC(t) =
m(t)−md

md
,

MR(t) =
MC(t)
MC(0)

,

where t represents the drying time (min), m(t) stands for the real mass of the samples
at time t (g), md stands for the mass of dry matter of the samples (g), MC(t) denotes the
moisture content at time t (g/g), MC(0) denotes the initial moisture content at time t = 0
(g/g), and MR(t) symbolizes the moisture ratio at time t (dimensionless).

The shrinkage of the samples, which was regularly quantified as the area ratio, was
computed by the following equation:

S(t) =
A(t)
A(0)

,

where A(t) stands for the area at time t, which is expressed by the number of pixels of the
samples (px), A(0) stands for the initial area of the samples (px), and S(t) symbolizes the
shrinkage of the samples at time t (dimensionless).

To study the relationship between the moisture ratio and the shrinkage, the moisture
ratio was described as a function of the shrinkage:

M̂R(t) = f (S(t)), (1)

MR(t) = M̂R(t) + v(t), (2)

where S(t) is the shrinkage of the samples, M̂R(t) is the function value, MR(t) is the
experimental moisture ratio, and v(t) is the measurement error; it is supposed to be an
independent zero-mean white Gaussian noise with variance σ2.

Theorem 1 (Weierstrass approximation theorem). Let f (x) be continuous on an interval C.
Then for any ε > 0, there exists a polynomial p(x), such that

|p(x)− f (x)| < ε, ∀x ∈ C.

According to Theorem 1, it can be deduced that any continuous function f (x) can be
approximated arbitrarily well by means of a polynomial p(x) with the required accuracy.
Therefore, we utilized the n-order polynomial p(·) to replace the function f (·) in (1) and
rewrite (1) and (2) as

M̂R(t) = p(S(t))

= a0 + a1S(t) + a2S2(t) + · · ·+ anSn(t), (3)

MR(t) = M̂R(t) + v(t). (4)

The parameter vector α and the information vector ϕ(t) are defined as

α = [a0, a1, a2, · · · , an]
T ∈ RQ, Q = n + 1,

ϕ(t) = [1, S(t), S2(t), · · · , Sn(t)]T ∈ RQ.

Inserting (4) into (3), we could describe the relationship between the moisture ratio
and the shrinkage by
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MR(t) = a0 + a1S(t) + a2S2(t) + · · ·+ anSn(t) + v(t)

= [1, S(t), S2(t), · · · , Sn(t)]


a0
a1
a2
...

an

+ v(t)

= ϕT(t)α + v(t). (5)

The objective of this paper was to propose a novel parameter estimation algorithm to
identify the model in (5) from the collected discrete experimental data S(tk) and MR(tk) at
the discrete sampling time t = tk (k = 1, 2, · · · , D). Moreover, in this paper, we adopted the
uniform sampling method with the sampling period ∆T. Thus, the experimental data S(tk)
and MR(tk) could be represented as S(k∆T) and MR(k∆T) or S(k) and MR(k) for short.

4. MLFF-PE Method

In this section, we developed the maximum likelihood fitness function-based pop-
ulation evolution (MLFF-PE) algorithm to identify the parameter vector α of the model
in (5).

4.1. Population Initialization

The MLFF-PE algorithm began with the generation of an initial population. In consid-
eration of the Q-dimensional parameter vector to be estimated α in (5), the population size
was supposed to be P ∈ R and the initial population was defined as

Λ̂
0
= [α̂0

1, α̂0
2, · · · , α̂0

P]
T ∈ RP×Q, (6)

which consisted of P initial individuals (i.e., the parameter vectors to be estimated) from α̂0
1

to α̂0
P. In the initial population Λ̂

0, the pth initial individual was

α̂0
p = [α̂0

p,1, α̂0
p,2, · · · , α̂0

p,Q]
T ∈ RQ, p = 1, 2, · · · , P, (7)

where p is the index for the individuals. Each element in the pth initial individual α̂0
p was

randomly generated as follows:

α̂0
p,q = rand(0, 1), q = 1, 2, · · · , Q, (8)

where q is the index for the elements in the pth individual and rand(0, 1) is a uniformly
distributed stochastic number between 0 and 1. Thus, the initialization process of the
population was completed.

Because the population and the individuals were changed with the different evolution
generations, we defined the population Λ̂

gen and the individual α̂
gen
p at the generation

gen ∈ [0, genmax − 1] as

Λ̂
gen

= [α̂
gen
1 , α̂

gen
2 , · · · , α̂

gen
P ]T, (9)

α̂
gen
p = [α̂

gen
p,1 , α̂

gen
p,2 , · · · , α̂

gen
p,Q]

T. (10)

Each individual α̂
gen
p in the population Λ̂

gen was a possible estimate of the parameter
vector α.

4.2. Mutation Process

After the initialization process of the population, the mutation process was realized to
produce the mutant vector for each individual α̂

gen
p .
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The mutant vector β̂
gen
p was defined as

β̂
gen
p = [β̂

gen
p,1 , β̂

gen
p,2 , · · · , β̂

gen
p,Q]

T ∈ RQ. (11)

At this stage, the mutant vector β̂
gen+1
p was produced by adding the vectorial difference

between the second and third individuals to the first individual:

β̂
gen+1
p = α̂

gen
r1 + F · (α̂gen

r2 − α̂
gen
r3 ), r1, r2, r3 ∈ [1, P], (12)

where F ∈ R is a positive constant called the scaling factor, which controls the magnitude
of the vectorial difference α̂

gen
r2 − α̂

gen
r3 , and r1, r2, and r3 are integers stochastically selected

from the set {1, 2, · · · , P}, and those three integers (r1, r2, and r3) are not equal to each
other or to the index p.

4.3. Crossover Process

After producing the mutant vector β̂
gen+1
p during the mutation process, the crossover

process was implemented to enhance population diversity. The crossover vector λ̂
gen
p was

defined as
λ̂

gen
p = [λ̂

gen
p,1 , λ̂

gen
p,2 , · · · , λ̂

gen
p,Q]

T ∈ RQ. (13)

In the crossover process, some elements in the mutant vector β̂
gen+1
p and some elements

in the individual α̂
gen
p were mixed to construct the crossover vector λ̂

gen+1
p . The scheme for

generating every element in the crossover vector λ̂
gen+1
p is shown as follows:

λ̂
gen+1
p,q =

{
β̂

gen+1
p,q , if rand(0, 1) < CR or q = qrand
α̂

gen
p,q , if rand(0, 1) > CR and q 6= qrand

, (14)

where CR ∈ R is a positive constant called the crossover rate, which controls the probability

of preserving elements in the mutant vector β̂
gen+1
p or the individual α̂

gen
p ; qrand ensures

that the crossover vector λ̂
gen+1
p obtains at least one element in the mutant vector β̂

gen+1
p ,

is an integer stochastically selected from the set {1, 2, · · · , D}, and is newly produced for
each index p.

4.4. Maximum Likelihood Fitness Function

In this subsection, the maximum likelihood fitness function (MLFF) is deduced for the
MLFF-PE algorithm.

For the collected discrete experimental data {S(1), S(2), · · · , S(D)}, and {MR(1),
MR(2), · · · , MR(D)}, the likelihood function L(MR(1), MR(2), · · · , MR(D)|S(1), S(2),
· · · , S(D), α) is equal to the joint conditional probability density function of {MR(1),
MR(2), · · · , MR(D)} with the given {S(1), S(2), · · · , S(D)}, and α:

L(MR(1), MR(2), · · · , MR(D)|S(1), S(2), · · · , S(D), α)

= p(MR(1), MR(2), · · · , MR(D)|S(1), S(2), · · · , S(D), α)

= p(MR(D)|MR(1), MR(2), · · · , MR(D− 1), S(1), S(2), · · · , S(D), α)

×p(MR(D− 1)|MR(1), MR(2), · · · , MR(D− 2), S(1), S(2), · · · , S(D− 1), α)

× · · · × p(MR(1)|MR(0), S(1), α)

=
D

∏
k=1

p(ϕT(k)α + v(k)|MR(1), MR(2), · · · , MR(D− 1), S(1), S(2), · · · , S(k), α). (15)
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For the reason that v(k) is a white Gaussian noise and is independent of {MR(1),
MR(2), · · · , MR(D− 1)}, {S(1), S(2), · · · , S(k)}, and α, Equation (15) can be rewritten as

L(MR(1), MR(2), · · · , MR(D)|S(1), S(2), · · · , S(D), α)

=
D

∏
k=1

p(v(k)) + h

= (2πσ2)−
D
2 exp

(
− 1

2σ2

D

∑
t=1

v2(k)

)
+ h, (16)

where h denotes a constant. Here, the goal is to maximize the likelihood function L(MR(1),
MR(2), · · · , MR(D)|S(1), S(2), · · · , S(D), α) in (16), to maximize the joint conditional
probability density function of {MR(1), MR(2), · · · , MR(D)} with the given {S(1), S(2),
· · · , S(D)}, and α. Nevertheless, the above operation is difficult to realize due to the huge
computational burden. For the purpose of tackling this issue, we could take the logarithm
of the likelihood function L(MR(1), MR(2), · · · , MR(D)|S(1), S(2), · · · , S(D), α) in (16),
and equivalently maximize the logarithm likelihood function. That logarithm likelihood
function is calculated by

l(MR(1), MR(2), · · · , MR(D)|S(1), S(2), · · · , S(D), α)

= ln L(MR(1), MR(2), · · · , MR(D)|S(1), S(2), · · · , S(D), α)

= −D
2

ln(2πσ2)− 1
2σ2

D

∑
k=1

v2(k) + ln h. (17)

To maximize the logarithm likelihood function l(MR(1), MR(2), · · · , MR(D)|S(1),
S(2), · · · , S(D), α) in (17), we made its derivative equal to zero and obtained the solution

σ2 =
1
D

D

∑
k=1

v2(k). (18)

Inserting (18) into (17) gives

l(MR(1), MR(2), · · · , MR(D)|S(1), S(2), · · · , S(D), α)

= −D
2

ln(2π)− D
2
+ ln h− D

2
ln

1
D

D

∑
k=1

v2(k)

= const− D
2

ln
1
D

D

∑
k=1

v2(k). (19)

In view of (19) and (5), the MLFF J(α) is defined as

J(α) =
1
D

D

∑
k=1

[MR(k)−ϕT(k)α]2.

Therefore, the logarithm likelihood function l(MR(1), MR(2), · · · , MR(D)|S(1), S(2),
· · · , S(D), α) in (19) could be rewritten as

l(MR(1), MR(2), · · · , MR(D)|S(1), S(2), · · · , S(D), α) = const− D
2

ln J(α). (20)

From (20), the maximum value of the logarithm likelihood function l(MR(1), MR(2),
· · · , MR(D)|S(1), S(2), · · · , S(D), α) could be obtained by minimizing the MLFF,

J(α) =
1
D

D

∑
k=1

[MR(k)−ϕT(k)α]2 = min . (21)
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4.5. Selection Process

At this stage, the fitness of the crossover vector λ̂
gen+1
p and the individual α̂

gen
p are

assessed by calculating their MLFFs J(λ̂
gen+1
p ) and J(α̂gen

p ) and the greedy selection strategy

is adopted to determine whether the crossover vector λ̂
gen+1
p or the individual α̂

gen
p remains

in the population. From (21), it could be seen that the smaller value of the MLFF means
better fitness. The selection process is described by the following equations:

J(λ̂
gen+1
p ) =

1
D

D

∑
k=1

[MR(k)−ϕT(k)λ̂
gen+1
p ]2, (22)

J(α̂gen
p ) =

1
D

D

∑
k=1

[MR(k)−ϕT(k)α̂gen
p ]2, (23)

α̂
gen+1
p =

{
λ̂

gen+1
p , if J(λ̂

gen+1
p ) < J(α̂gen

p )

α̂
gen
p , if J(λ̂

gen+1
p ) > J(α̂gen

p )
. (24)

According to (24), if the MLFF of the crossover vector λ̂
gen+1
p is smaller, the individual

α̂
gen+1
p at the generation gen + 1 would take the place of the crossover vector λ̂

gen+1
p ;

otherwise, the individual α̂
gen
p would remain in the population until generation gen + 1.

Afterward, we could find the best individual α̂
gen+1
best at the generation gen + 1 in the

population Λ̂
gen+1

= [α̂
gen+1
1 , α̂

gen+1
2 , · · · , α̂

gen+1
P ]T through the following equation:

α̂
gen+1
best = arg min

α̂gen+1
p

J(α̂gen+1
p )

= arg min
α̂gen+1

p

1
D

D

∑
k=1

[MR(k)−ϕT(k)α̂gen+1
p ]2, p = 1, 2, · · · , P. (25)

When gen < genmax − 1, let gen increase by 1 and repeat the mutation process,
the crossover process, and the selection process to update the individual α̂

gen+1
p in the

population Λ̂
gen+1. When gen = genmax − 1, the best individual α̂

genmax
best is the final estimate

of the parameter vector α.
The flowchart utilizing the MLFF-PE algorithm in (6)–(14) and (22)–(25) to estimate

the parameter vector α of the model in (5) is displayed in Figure 3.
From Figure 3, it can be seen that there are seven main steps of the MLFF-PE algorithm.

In the stage of data collection, the discrete experimental data {S(1), S(2), · · · , S(D)} and
{MR(1), MR(2), · · · , MR(D)} are collected by the image processing-based microwave
drying system. In the stage of initialization, the initial values of the MLFF-PE algorithm are

given. In the stage of mutation, the mutant vector β̂
gen+1
p is produced for each candidate

solution α̂
gen
p . In the stage of crossover, the crossover vector λ̂

gen+1
p is constructed by mixing

some elements in the mutant vector β̂
gen+1
p and some elements in the individual α̂

gen
p . In

the stage of selection, the MLFFs of the crossover vector λ̂
gen+1
p and the individual α̂

gen
p

are calculated and compared to determine whether the crossover vector λ̂
gen+1
p or the

individual α̂
gen
p remained in the population. In the stage of the search, the best individual

α̂
gen+1
best is chosen from the population Λ̂

gen+1 by comparing the MLFFs of all individuals

α̂
gen+1
1 , α̂

gen+1
2 , · · · , α̂

gen+1
P at the generation gen + 1. Finally, if gen < genmax − 1, let

gen = gen + 1, and repeat the iteration process; otherwise, obtain the best individual
α̂

genmax
best .
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�� �
Start

?

Data collection: Collect the discrete experimental data
{S(1), S(2), · · · , S(D)}, and {MR(1), MR(2), · · · , MR(D)}
by the image processing-based microwave drying system.

?
Initialization: Set the population size P and the maximum
generation genmax. Let the generation gen = 0. Initialize

the population Λ̂
0 and the individual α̂0

p utilizing (6)–(8).

?
Mutation: Implement the improved mutation process by
(11) and (12).

?

Crossover: Implement the crossover process by (13) and (14).

?

Selection: Calculate J(λ̂
gen+1
p ) and J(α̂gen

p ) by (22) and (23).
Implement the selection process by (24).

?

�

Let gen = gen + 1

Search: Find the best individual α̂
gen+1
best utilizing (25).

?

YesIs gen < genmax − 1 ?

��������

XXXXXXXX

XXX
XXX

XX

���
���

��

No?
Result: Obtain the best individual α̂

genmax
best . Read the

elements of the best individual α̂
genmax
best by (9) and (10).

?�� �
End

Figure 3. The flowchart of the MLFF-PE algorithm.

The MLFF-PE algorithm is a population-based estimation algorithm. That is to say,
there are P parameter estimation vectors α̂

genmax
1 , α̂

genmax
2 , · · · ,α̂genmax

P at genmax. Therefore,
by calculating the MLFFs of the above parameter estimation vectors, we can choose one
parameter estimation vector α̂

genmax
best with the best MLFF as the final estimate of the param-

eter vector α. Therefore, the final parameter estimation vector α̂
genmax
best is called the best

parameter estimate.
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5. Modeling and Prediction

In model fitting and prediction, we used two different batches of discrete experimental
data—the shrinkage of the samples {S(1), S(2), · · · , S(D)} and the moisture ratio of the
samples {MR(1), MR(2), · · · , MR(D)} during the drying process of Hami melon slices
sampled by the developed image processing-based microwave drying system.

5.1. Model Fitting

The different orders n = 1, n = 2, and n = 3 are set for the model in (5) and the
MLFF-PE algorithm (the population size P = 30 and the maximum generation genmax = 20)
are exploited to produce the best parameter estimates. To evaluate the model-fitting ability
of the MLFF-PE algorithm and choose the optimal order, the coefficient of determination
R2 is computed by

R2 = 1− ∑D
k=1[M̂Rest(k)−MR(k)]2

∑D
k=1[MR(k)−MR]2

= 1− ∑D
k=1[ϕ

T(k)α̂genmax
best −MR(k)]2

∑D
k=1[MR(k)−MR]2

,

where M̂Rest(k) is the estimated moisture ratio, MR(k) is the experimental moisture ratio,
and MR is the average value of the experimental moisture ratios. For the same order (i.e.,
the number of parameters to be estimated), the larger the coefficient of determination R2 is,
the better the model-fitting ability of the MLFF-PE algorithm. However, the model orders
also affect the value of R2. When the model orders are different, R2 cannot be used to
evaluate the model-fitting ability. Hence, the adjusted coefficient of determination adjR2 is
introduced:

adjR2 = 1− (1− R2)(D− 1)
D− (n + 1)

,

which considers the number of discrete experimental data D and the number of parameters
to be estimated n + 1. The larger adjusted coefficient of determination adjR2 indicates the
better model-fitting ability of the MLFF-PE algorithm.

The root-mean-square error (RMSE) is also used to evaluate the model-fitting ability
and it is defined as follows:

RMSE =

{
1
D

D

∑
k=1

[M̂Rest(k)−MR(k)]2
} 1

2

=

{
1
D

D

∑
k=1

[ϕT(k)α̂genmax
best −MR(k)]2

} 1
2

.

The smaller the RMSE is, the better the model-fitting ability of the MLFF-PE algorithm.
The best parameter estimates given by the MLFF-PE algorithm for n = 1, n = 2, and

n = 3 are summarized in Table 1. Additionally, the values of R2, adjR2, and RMSE given
by the MLFF-PE algorithm for n = 1, n = 2, and n = 3 are shown in Table 1 and Figure 4.
The curves of the estimated moisture ratio M̂Rest(k) and the experimental moisture ratio
MR(k) versus the shrinkage S(k) for n = 1, n = 2, and n = 3 are depicted in Figures 5–7.

Table 1. The best parameter estimates given by the MLFF-PE algorithm for different orders n.

n α̂
genmax
0,best α̂

genmax
1,best α̂

genmax
2,best α̂

genmax
3,best R2 adjR2 RMSE

1 −1.1281 2.2675 – – 0.9458 0.9451 0.0637
2 −2.0551 4.8087 −1.7074 – 0.9623 0.9614 0.0531
3 −3.7212 12.3373 −12.4019 4.8339 0.9806 0.9799 0.0381
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Figure 4. The values of R2, adjR2, and RMSEs given by the MLFF-PE algorithm for different orders n.
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Figure 5. The estimated moisture ratio M̂Rest(k) versus the shrinkage S(k) for n = 1.
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Figure 6. The estimated moisture ratio M̂Rest(k) versus the shrinkage S(k) for n = 2.
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Figure 7. The estimated moisture ratio M̂Rest(k) versus the shrinkage S(k) for n = 3.
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5.2. Prediction

In Table 1, the best parameter estimate α̂
genmax
best given by the MLFF-PE algorithm for

n = 3 is used to compute the predicted moisture ratio M̂Rpre(k):

M̂Rpre(k) = ϕT(k)α̂genmax
best = −3.7212 + 12.3373S(k)− 12.4019S2(k) + 4.8339S3(k).

The coefficient of determination R2 of the predicted model is computed by

R2 = 1− ∑D
k=1[M̂Rpre(k)−MR(k)]2

∑D
k=1[MR(k)−MR]2

= 1− ∑D
k=1[ϕ

T(k)α̂genmax
best −MR(k)]2

∑D
k=1[MR(k)−MR]2

= 0.9782,

the adjusted coefficient of determination adjR2 of the predicted model is computed by

adjR2 = 1− (1− R2)(D− 1)
D− (n + 1)

= 0.9774,

and the RMSE of the predicted model is computed by

RMSE =

{
1
D

D

∑
k=1

[M̂Rpre(k)−MR(k)]2
} 1

2

=

{
1
D

D

∑
k=1

[ϕT(k)α̂genmax
best −MR(k)]2

} 1
2

= 0.0404.

The curve of the predicted moisture ratio M̂Rpre(k) versus the shrinkage S(k) is
illustrated in Figure 8. The comparison between the predicted moisture ratio M̂Rpre(k) and
the experimental moisture ratio MR(k) is illustrated in Figure 9.
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0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 8. The predicted moisture ratio M̂Rpre(k) versus the shrinkage S(k).
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Figure 9. The comparison between the predicted moisture ratio M̂Rpre(k) and the experimental
moisture ratio MR(k).

5.3. Results and Discussion

The parameter estimates given by the MLFF-PE algorithm for n = 1, n = 2, and n = 3
are summarized in Table 1 and the values of R2, adjR2, and RMSE given by the MLFF-PE
algorithm for n = 1, n = 2, and n = 3 are shown in Table 1 and Figure 4. The curves of the
estimated moisture ratio M̂Rest(k) and the experimental moisture ratio MR(k) versus the
shrinkage S(k) for n = 1, n = 2, and n = 3 are displayed in Figures 5–7. It could be deduced
from Table 1 and Figures 4–7 that the MLFF-PE algorithm is effective for model fitting
because the estimated moisture ratio M̂Rest(k) is close to the experimental moisture ratio
MR(k). Meanwhile, n = 3 is selected as the optimal order because the adjusted coefficient
of determination adjR2 = 0.9799 for n = 3 is larger than adjR2 = 0.9451 for n = 1 and
adjR2 = 0.9614 for n = 2, and the RMSE = 0.0381 for n = 3 is smaller than RMSE = 0.0637
for n = 1 and RMSE = 0.0531 for n = 2. A previous study [39] used the linear model
and the ANN model to estimate the moisture ratio versus the shrinkage of potato slices
during the drying process. For the linear model, R2 = 0.9310 and RMSE = 0.1398. For the
ANN model, R2 = 0.9575 and RMSE = 0.1015. In this paper, for the linear model (n = 1),
R2 = 0.9458 and RMSE = 0.0637. For the two-order polynomial model (n = 2), R2 = 0.9623
and RMSE = 0.0531. For the three-order polynomial model (n = 3), R2 = 0.9806 and
RMSE = 0.0381. Therefore, the estimated moisture ratio model M̂Rest(k) given by the
proposed MLFF-PE algorithm is more accurate.

The curve of the predicted moisture ratio M̂Rpre(k) versus the shrinkage S(k) is
illustrated in Figure 8. The comparison between the predicted moisture ratio M̂Rpre(k)
and the experimental moisture ratio MR(k) is illustrated in Figure 9. It could be seen from
Figures 8 and 9 that the predicted moisture ratio M̂Rpre(k) is very close to the experimental
moisture ratio MR(k). In other words, the estimated moisture ratio model given by
the MLFF-PE algorithm performed well in prediction with the adjusted coefficient of
determination adjR2 = 0.9774 and the root-mean-square error RMSE = 0.0404. A previous
study [39] used the linear model and the ANN model to predict the moisture ratio versus
the shrinkage of potato slices during the drying process. For the linear model, R2 = 0.9239
and RMSE = 0.1340. For the ANN model, R2 = 0.9687 and RMSE = 0.0966. In this paper,
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for the three-order polynomial model (n = 3), R2 = 9782 and RMSE = 0.0404. Therefore,
the predicted moisture ratio model M̂Rest(k) given by the proposed MLFF-PE algorithm is
more accurate.

6. Conclusions

In this paper, an experimental system (that included an adjustable-power microwave
drying unit and an image-processing unit) was built for the Hami melon drying process.
The mathematical model of the moisture ratio with regard to the shrinkage of the drying
process of Hami melon slices was built according to the Weierstrass approximation theorem,
and the MLFF-PE algorithm was developed to fit the moisture ratio model and predict the
moisture ratio. The results revealed that the presented MLFF-PE algorithm was effective
for model fitting and prediction. Compared with the previous study, both the estimated
and predicted moisture ratio models given by the proposed MLFF-PE algorithm were
more accurate. In future work, we will study the improved algorithms to obtain better
estimation and prediction results of the moisture ratio models during food microwave
drying processes.
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